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Abstract

This paper presents a novel adaptively connected neural

network (ACNet) to improve the traditional convolutional

neural networks (CNNs) in two aspects. First, ACNet em-

ploys a flexible way to switch global and local inference in

processing the internal feature representations by adaptively

determining the connection status among the feature nodes

(e.g., pixels of the feature maps) 1. We can show that exist-

ing CNNs, the classical multilayer perceptron (MLP), and

the recently proposed non-local network (NLN) [48] are all

special cases of ACNet. Second, ACNet is also capable of

handling non-Euclidean data. Extensive experimental anal-

yses on a variety of benchmarks (i.e., ImageNet-1k classifi-

cation, COCO 2017 detection and segmentation, CUHK03

person re-identification, CIFAR analysis, and Cora docu-

ment categorization) demonstrate that ACNet cannot only

achieve state-of-the-art performance but also overcome the

limitation of the conventional MLP and CNN 2. The code

is available at https://github.com/wanggrun/

Adaptively-Connected-Neural-Networks.

1. Introduction

Artificial neural networks have been extensively studied

and applied over the past three decades, achieving remark-

able accomplishments in artificial intelligence and computer

vision. Among such networks, two types of neural networks

have had a large impact on the research community. The

first type is the multi-layer perceptron (MLP), which first be-

came popular and effective via the development of the back-

propagation training algorithm [34, 17]. However, since

each neuron of the hidden layer in MLP is assigned with a

private weight, the network parameters of MLP usually have

a huge number and can be easily overfitted during the train-

ing phase. Moreover, MLP has difficulty in representing the

spatial structure of 2D data (e.g., images). The second type

1In a computer vision domain, a node refers to a pixel of a feature map,

while in the graph domain, a node denotes a graph node.
2Corresponding author: Liang Lin (linliang@ieee.org)
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Figure 1: Some pixels prefer global dependencies, while others

prefer local inference. For example, without global inference we

cannot recognize the chair in (a). While in (b), the representation

capacity of the dog is weakened by global information. Thanks

to the adaptively determining the global/local inference, our AC-

Net achieves lower top-1 training/validation error than ResNet on

ImageNet-1k shown in (c) and (d).

is convolutional neural networks (CNNs) [18]. Motivated by

the biological visual cortex model, CNNs propose to group

adjacent neurons to share identical weights and represent 2D

data by capturing the local pattern (i.e., receptive field) of

each neuron.

Although CNNs have been proven to be significantly su-

perior over MLP, they have two drawbacks, as highlighted

by [36]. On one hand, due to only abstracting information

from local neighborhood pixels, the convolution operation

inside each layer of CNNs does not have the ability of global

inference. Consequently, convolution operations have diffi-

culties in recognizing objects with similar appearances. For

example, a convolution operation cannot distinguish the dif-

ference between the chair and the sofa in Fig.1 (a) which

share the same appearance. In practice, CNN captures the

global dependencies by stacking a number of local convo-

lution operations, which still have several limitations, such

as computational inefficiency, optimization difficulty, and
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Figure 2: “Nodes” are presented in form of orange cylinder in (a)

an image, (b) an audio, and (c) a general graph. (d) ACNet can be

considered as a generalization of MLP and CNN on these “nodes”.

message passing inefficiency [48]. On the other hand, unlike

MLP, conventional CNNs cannot be directly applied for non-

Euclidean data (e.g., graph data), which are quite common

in the area of machine learning.

To tackle the locality problem in CNNs, the recently pro-

posed non-local network [48] (denoted as fully non-local

networks) imposes global dependencies to all the feature

nodes. However, empirically we observe degradations in

fully non-local networks: as the non-locality of the network

increases, both the training and validation accuracies de-

grade for the ImageNet-1k classification. We conjecture the

degradation due to over-globalization. Specifically, the dog

in Fig.1 (b) is easy to recognize if we only perform the local

inference, while it can be misclassified as a cow when only

performing the global inference. Intuitively, although quite

challenging, it is necessary to jointly consider the global

and local inference from image-aware (Fig.1(a)) or even

node-aware (pixel-aware) (Fig.1(b)) perspective.

There have been many other recent attempts to address

the aforementioned issues raised by CNNs and have achieved

promising results [36, 12]. However, all of these methods

are either over-localized or over-globalized. In contrast, this

work focuses on developing a simple and general adaptively-

connected neural network (ACNet) to adaptively capture the

global and local dependencies, which inherits the strengths

of both MLP and CNNs and overcomes their drawbacks.

Thanks to the adaptively determining the global/local infer-

ence, our ACNet achieves lower top-1 training/validation

error than ResNet on ImageNet-1k (see Fig. 1(c) and (d)).

ACNet first defines a simple yet basic unit named “node”,

which is a unit of vectors in meta-data. As depicted in Fig.2,

a node may be seen as a pixel of an image (Fig. 2(a)), a sam-

pling of an audio (Fig. 2(b)), and a node of a general graph

(Fig. 2(c)). Given the input data, ACNet adaptively is trained

to search the optimal connection for each node, i.e., the con-

nection ⊆ connecting {the node itself, its neighbor nodes,

all possible nodes}. Keep in mind that different nodes are

connected adaptively, i.e., some nodes may be conjectured

to themselves, some nodes may relate to its neighborhood,

while other nodes have the global vision. Therefore, our

ACNet can be considered as a generalization of CNN and

MLP (Fig. 2 (d)). Note that, searching the optimal connec-

tions is differential by learning the importance degrees for

different kinds of connections, which can be optimized via

back-propagation.

The main contributions of this paper are summarized as

follows. Firstly, we propose a conceptually general yet pow-

erful network, which learns to switch global and local infer-

ence for general data (i.e. both Euclidean and non-Euclidean

data) in a flexible parameter saving manner. Secondly, to

the best of our knowledge, our proposed ACNet is the first

one who is capable of inheriting the strength of both MLP

and CNN while overcoming their drawbacks on a variety

of computer vision and machine learning tasks, i.e., image

classification on ImageNet-1k/CIFARs, object detection and

segmentation on COCO 2017, person re-identification on

CUHK03, and document categorization on Cora.

2. Related Work

Although significant progress has been achieved in the

architecture design of CNNs from LeNet [19] to more recent

deep and powerful networks (e.g., ResNet [10]), evolving the

structure of CNNs to overcome their drawbacks is also quite

crucial and a long-standing problem in machine learning

(e.g. [21]). This issue motivates many researchers to extend

CNNs to obtain different receptive fields [5]. Specifically,

Dai et al. [5] proposed to enhance the transformation mod-

eling capability of CNNs by introducing learnable offsets

to augment the spatial sampling locations within the feature

map. Chen et al. [2] revisited atrous convolution, a pow-

erful tool to explicitly adjust filter’s field-of-view as well

as control the resolution of feature responses computed by

DNNs, in the application of semantic image segmentation.

Peng et al. [31] proposed to use the large kernel filter and

effective receptive field for semantic segmentation. Sabour

et al. [36] proposed employing a group of neurons named a

capsule to represent the instantiation parameters of a specific

type of entity, such as an object and an object part. Building

upon the work of [36], Hinton et al. [12] further presented

a new type of capsule that has a logistic unit to represent

the presence of an entity and a 4×4 pose matrix to repre-

sent the pose of that entity. Motivated by the self-attention

mechanism [40], Wang et al. [48] incorporated non-local op-

erations into CNNs as a generic family of building blocks for

capturing long-range dependencies. Similarly, PSANet [52]

is built upon NLN by introducing a position encoding to each

pixel; GloRe [3] improves on NLN in a way of using a graph-

CNN to capture the global dependencies. Although these

methods achieved promising results, their performances are
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limited due to the over-localization or over-globalization of

the internal feature representation.

Moreover, several limited attempts [15, 38, 8, 59] have

been made to extend CNNs for handling graph data. For

instance, Kipf et al. [15] presented a layer-wise propagation

rule for CNNs to operate directly on graph-structured data.

Such et al. [38] defined filters as polynomials of functions

of the graph adjacency matrix for unstructured graph data.

However, these variants of CNNs pay close attention to

bridge the gap between the graph structure of network inputs

and the general graph data. The global inference inside the

internal representation are ignored.

Our work is also related to the fully-connected neural

networks (i.e. multilayer perceptron, or MLP), the densely

connected neural networks [13], and the skip-connection neu-

ral networks (e.g. UNet [33], ResNet [11]), sharing the goal

of finding an effective connection for the neural networks.

However, the connections in our ACNet are automatically

learned and adaptative to the data, while the connections in

existing methods are fixed and handcrafted.

3. Adaptive-Connected Neural Networks

In this section, we first present the formulation of our

proposed ACNet. Then, we discuss the relations between

our ACNet and three most representative prior works, i.e.,

MLP, CNN, and NLN. Actually, they are special cases of

our ANN. Moreover, we have also generalized our ANN

for non-Euclidean data. Finally, we present the details of

training, testing, and implementing our ACNet.

3.1. Formulation

Suppose x denotes the input signal (e.g., images, voices,
graph matrices or their features). We propose to obtain the
corresponding output signal as follows:

yi = αi

∑

j=i

xjuij + βi

∑

j⊆N(i)

xjvij + γi
∑

∀j

xjwij , (1)

where yi implies the i-th output node (e.g., the i-th pixel

of a feature map) of the output signal, and j is the index of

some possible nodes related to the i-th node. Actually, the

j-th node belongs to three different sets, including {the i-th

node itself}, {the neighborhood N(i) of the i-th node}, and

{all possible nodes}. These three sets indicate three different

modes of inference: self transformation, local inference, and

global inference, respectively. Moreover, uij , vij and wij

refer to the learnable weights between the i-th and j-th nodes

for the three different sets, respectively. Note that the biases

are omitted for notation simplification.
ACNet switches among different inference modes by

adaptively learning α, β and γ in Eqn.1, which are impor-
tance degrees used to weighted average the modes. Note
that, α, β and γ can be simple scalar variables, which are
shared across all channels. We force α + β + γ = 1, and

α, β, γ ∈ [0, 1], and define

α =
eλα

eλα + eλβ + eλγ
. (2)

Here α is computed by using a softmax function with λα as

the control parameter, which can be learned by the standard

back-propagation (BP). Similarly, β and γ are defined by

using another parameters λβ and λγ , respectively. Note that

the third term
∑

∀j xjwij in Eqn.1 is quite computational

consuming, because it equals to a fully-connected layer with

large feature maps as input, leading to potential overfitting.

To overcome this shortcoming, the x is first transformed by

an average pooling operation for downsampling in practice

before being fed to calculate
∑

∀j xjwij . Finally, the ob-

tained y in Eqn.1 can be activated by a non-linear function

f(·), such as BatchNorm+ReLU.
Actually, if α, β, γ are formulated as scalar variables,

the connection for adaptively determining the global/local
inference is an average connection over the whole dataset. To
enable node-aware connection for each node (e.g., a pixel),
α, β, γ can be also formulated as sample-dependent ones:

γi = γi(x) = wγi,2f(wγi,1

[

∑

j=i

xjuij ;
∑

j⊆N(i)

xjvij ;
∑

∀j

xjwij

]

),

(3)

where [; ; ] denotes a concatenation operation and wγ,· de-

notes a linear transformation. α and β are defined in the

similar way, which are omitted here. In the experimental

section we will show that the above two kinds of formulation

have the similar performance.

3.2. Relation to Prior Works

CNN. We take CNN as an illustrative example. For no-
tation simplification, we omit the non-linear activation f ,
which does not affect the derivation process of the formu-
lation. Let x be the input data represented by a 3D tensor
(C,H,W ). Let xi and yi be a node (pixel) of the input data
and the output respectively, where i, j ∈ [1, H ×W ]. Then
a general 3×3 convolution can be formulated as

yi =
∑

j⊆S

xjvij (4)

where S is the set that containing the nodes which have

interactions with the given i-th node. Specifically, S denotes

the set of eight neighbors for the i-th node, in addition to the

i-th node itself, i.e., S = {i−W − 1, i−W, i−W +1, i−
1, i, i+ 1, i+W − 1, i+W, i+W + 1}.

MLP. MLP shares the formulation of Eqn.4, but it uses

different sets of nodes to perform the linear combination. In

other words, MLP enables more nodes to interact with the

given i-th node, performing a global inference. For MLP,

S = {1, 2, 3, . . . , H ×W}.

In summary, ACNet can be seen as a pure data-driven

combination of CNN and MLP, fully exploiting the advan-

tage of these two kinds of basic neural networks. For in-

stance, let α = 0, β = 1, γ = 0 in Eqn.1, ACNet degrades
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into CNN; let α = 0, β = 0, γ = 1 in Eqn.1, ACNet de-

grades into MLP. More importantly, ACNet dynamically

switches between them by learning α, β and γ, providing

more reasonable inferences. This allows us to build a richer

hierarchy that combines both global and local information

adaptively.

NLN. NLN also shares the formulation of Eqn.4, with

S = {1, 2, 3, . . . , H ×W}, which is similar to MLP. How-

ever, there is a limitation in NLN. The vij in NLN is obtained

by computing the similarity of the i-th and the j-th nodes,

which is very computation-consuming and easy to overfit.

Therefore, NLN is rarely employed for image classification

tasks. Instead of directly computing vij , our proposed AC-

Net absorbs the advantage of MLP (i.e., regarding vij as a

learnable weight) and tackles its heavy computation problem

by employing downsampling operation to perform the global

inference. The relations between ACNet and prior works

have been summarized in Fig. 2 (d).

3.3. Generalization to Non­Euclidean Data

We present the difference between Euclidean and non-

Euclidean data, and then give a general definition of ACNet

to handle both Euclidean and non-Euclidean data.

Euclidean data include the image, audio, and video, while

non-Euclidean data contains graph and manifold. The differ-

ence is that Euclidean data are structured and non-Euclidean

data are unstructured. Mathematically, for Euclidean data,

we can denote the neighborhood of the i-th node in Eqn. 1

as N(i) = {i −W − 1, . . . , i +W + 1}, representing the

{upper left, ..., low right } neighbors. But for non-Euclidean

data we have difficulties. Besides, each node in Euclidean

data has a fixed number of neighbors, while the number of

neighbors is flexibly adapted to non-Euclidean data. Conse-

quently, there is a gap in using Eqn.1 between Euclidean and

non-Euclidean data. For Euclidean data vij has different val-

ues at different j. But for non-Euclidean data vij is shared

among different j in Eqn.1. This weakens the representation

capacity for non-Euclidean data due to the lack of position

encoding. The similar phenomenon also occurs in wij .
To fill the gap, Eqn. 1 is rewritten into a general form:

yi = αi

∑

j=i

xju+ βi

∑

j⊆N(i)

pij(xjv) + γi
∑

∀j

qij(xjw).

(5)

where u, v, and w are shared among all kinds of j, which
may be considered as 1× 1 convolution in computer vision.
Note that here α, β, γ is defined by using Eqn. 3. In compen-
sation for the information loss in local structure, another two
position encoding functions, i.e., pij and qij , are proposed
to encode the index. These functions are just simple linear
transformations using constant Gaussian noise. Specifically,

pij(xjv) = xjvζij , qij(xjw) = xjwξij (6)

where ζij and ξij are constant variables sampled from a

Gaussian noise.

Remark 1. Let ζij and ξij in Eqn.6 be learnable param-

eters instead of constant variables, then Eqn.6 turns out to

be Eqn.1.

Remark 1 reveals that Eqn.5 is a lightweight version of

Eqn.1, because a number of parameters are represented as

constant variables in Eqn.5, exception the 1× 1 convolution

kernels u, v, and w. In the experimental section we will

show that compared to the state-of-the-art CNNs that use

large kernels, ACNet with considerably fewer parameters

can also achieve their strengths in feature learning, by only

exploiting highly efficient 1× 1 convolution operations.

3.4. Training, Inference, and Implementation

Training & Inference. Let Θ be a set of network param-

eters (e.g. convolution filters and fully-connected weights)

and Φ be a set of control parameters that control the net-

work architecture. In ACNet, we have Φ = {λα, λβ , λγ}.

Training an ACNet network is to minimize a loss function

L(Θ,Φ), where Θ and Φ can be optimized jointly by back-

propagation (BP). ACNet is tested in the same way as stan-

dard networks such as CNN and MLP.

Compatibility with CNN Tricks and Techniques. Our

proposed ACNet is quite compatible with most existing

tricks and techniques for CNNs. For instance, through em-

bedding a batch normalization [14] layer into every non-

linear mapping function f(·), our ACNet can support a large

learning rate for high learning efficiency. Meanwhile, we can

also exploit the residual connection strategy [10] to create a

short-cut connection for each layer inside our ACNet.

Implementation. ACNet can be easily implemented by

using the existing software such as TensorFlow and PyTorch.

The backward computation of ACNet can be obtained by

automatic differentiation techniques (AD) in these software.

Without AD, ACNet can also be implemented by regarding

Φ = {λα, λβ , λγ} as learnable parameters.

4. Experiments

This section presents the main results of ACNet in

multiple challenging problems and benchmarks, such as

ImageNet-1k classification [35], COCO 2017 detection and

segmentation [27], CUHK03 person re-identification [20],

CIFAR [16] classification, and Cora document categoriza-

tion [37], where the effectiveness of ACNet is demonstrated

by comparing with the existing state-of-the-art CNNs/NLNs.

4.1. ImageNet­1k Classification

We first compare our ACNet with the most representative

CNNs/NLNs on the ImageNet classification dataset of 1k

categories. All the models are trained on the 1.28M training

images and evaluated on the 50k validation images. Our

baseline model is the representative ResNet50. We examine

top-1 accuracy on the 224×224 single/center-crop-single-

scale images. Note that the top-1 accuracies of the baseline
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Table 1: Comparison of ImageNet val top-1 accuracies and pa-

rameter numbers on ResNet50. ACNet‡: pixel-aware ACNet using

Eqn. 3; ACNet: dataset-aware ACNet with α, β, γ being scalar

variables;

top-1 accuracies #params

CNN-ResNet50 76.4↑0.0 25.56M×1.00

ACNet-ResNet50 77.5↑1.1 29.38M×1.15

ACNet‡-ResNet50 77.5↑1.1 31.85M×1.25

generalized ACNet 76.2↓0.2 19.80M×0.77

Table 2: Comparison between ACNet-Resnet50 and CNN-

ResNet60 in terms of ImageNet val top-1 accuracies and parameter

numbers.

top-1 accuracies (%) #params

CNN-ResNet60 76.7↑0.0 30.03M×1.00

ACNet-ResNet50 77.5↑0.8 29.38M×0.98

approximately equals to the official results and the model zoo
3 (Caffe; Tensorflow; Pytorch). CNN-ResNet50 is exactly

the original ResNet50. For ACNet-ResNet50, all the 3× 3
convolution in CNN-ResNet50 are replaced with ACNet

layers. And for NLN-ResNet50, the non-local operations

are attached to every 3× 3 convolution in CNN-ResNet50.

Classification accuracies. The comparison results of

top-1 validation accuracies are illustrated in Table 1. As de-

picted, our ACNet-ResNet50 performs approximately 1.1%

better than the compared CNN-ResNet50 (77.5% vs 76.4%).

The training and validation curves in Fig. 1 (c) and (d) also

show the sustainable competitive advantage of our ACNet-

ResNet50 over CNN-ResNet50. This improvement is quite

significant due to the challenge of ImageNet-1k.

The superior performance of our ACNet is attributed to

two reasons. First, ACNet adaptively performs global and

local inference for different pixels of internal feature maps

from each layer, leading to a flexible discriminative represen-

tation learning fashion, which contributes to capturing the

local and global dependencies for improving classification

accuracy. Second, the mechanism of ACNet may implicitly

act as comprehensive data-driven ensembling, which aggre-

gates the advantage of both global and local information.

Pixel-aware Connection. As is mentioned in Section

3.1, different pixels can have different pixel-aware connec-

tion by using Eqn. 3. We report the accuracies of pixel-aware

and dataset-aware connection in Table 1 respectively. For

the pixel-aware connection, we let α = 0, β = 1 and only

learn γ to save parameters and memory. The results show

that these two kinds of connection have the same top-1 accu-

racy. While the pixel-aware connection has more parameters

(31.85M vs 29.38M).

3https://github.com/Cadene/pretrained-models.

pytorch

Table 3: Computational complexity analysis on the ImageNet-1k.

Networks CNN-ResNet50 NLN-ResNet50 ACNet-ResNet50

Speedimages/sec 198×1.00 nan 144×0.77

MemoryGB 8.579×1 out of memory 8.580×1

Extra Parameters. In fact, ACNet has introduced extra

parameters by 0.15× (29.4M vs 25.6M, Table 1). The extra

parameters are from the global inference ( i.e.
∑

∀j xjwij

in Eqn.1). Thanks to downsampling operation, the extra

parameters only introduce negligible computation time and

memory usage, which will be examined later. To eliminate

the confounding factor of extra parameters and justify the

gain of ACNet, we present more comparisons:

1. We compare ACNet-ResNet50 with CNN-ResNet60,

which has the same level of parameters. The re-

sult in Table 2 shows that ACNet-ResNet50 obtains

a slightly higher accuracy (77.5% vs 76.7%) than CNN-

ResNet60, demonstrating the superiority of ACNet over

CNN with the nearly same number of parameters.

2. The general form of ACNet is also compared with CNN.

As is discussed in Sect. 3.3, ACNet can be rewritten

to a general form for supporting both Euclidean and

non-Euclidean data. Remark 1 in Sect. 3.3 reveals that

the general form is much more (0.77×) lightweight.

The experimental result in Table 2 confirms this remark,

and further shows that ACNet with considerably fewer

parameters can also achieve their strengths in feature

learning(76.2%vs76.4%), by only exploiting highly ef-

ficient 1× 1 convolution operations.

Computation Complexity. Table 3 reports the computa-

tion complexity of ACNet, CNN and NLN. For a fair compar-

ison, all methods are trained in the same desktop with 8 Titan

Xp GPUs. We observe that ACNet and CNN have similar

computational costs. Specifically, the memory consumption

of both ACNet and CNN are the same, i.e. 8.6GB. But the

speed of ACNet is slightly slower than CNN (144 vs 198

images/second/GPU). As a comparison, NLN is intractable

because NLN requires a vast amount of memory to calculate

the similarity between any two pixels of a feature map. The

memory required is beyond the testing desktop can provide.

Actually, NLN performs significantly slower than ACNet

and CNN according to our observation.

Visualization of importance degrees. The importance

degrees in each ACNet layer are visualized in Fig. 3, from

which we have two observations. First, the importance de-

grees differ from pixel to pixel. This is due to the global

and local inference are pixel-aware, i.e. different pixels have

different inference modes. Second, the importance degrees

also differs from layer to layer – there is much more global

inference in lower-level layers than in higher-level layers.
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3th layer                                        11th layer               23th layer     41th layer                     

...                                          ...                        ...

Figure 3: Visualization of the nodes with different types of in-

ference generated by our ACNet, which is trained on ImageNet.

One node painted by the yellow color indicates its the output of

the global inference from the preceding layer (i.e., it connects to

all nodes in the preceding layer), while the opposite black nodes

indicate the outputs of the local inference from the preceding layer.

Table 4: Ablation studies on CIFAR10.

Method Error (%)

Standard ACNet 6.0↓0.0

w/o global inference 7.1↓1.1

w/o local inference 24.0↓18

Fixed global+local 6.8↓0.8

Although CNN somewhat can capture a few global depen-

dencies in high-level layers by stacking a number of local

convolutional layer, it has difficulties in local inference in

lower-level layers, as shown in Fig. 3. Fortunately, our AC-

Net provides compensatory global inference for these lower-

level layers. Overall, examining the necessity of global

inference in lower layer discloses interesting characteristics

and impacts in DNNs, and sheds light on model design in

many research fields.

4.2. Analysis on CIFAR10

As the ImageNet-1k dataset is quite large and the training

from scratch is extremely time-consuming, we conduct more

ablation studies on CIFAR10 [16] classification benchmark

to deeply analyze ACNet. CIFAR-10 consists of 50k training

images and 10k testing image in 10 classes. The presented

experiments are trained on the training set and evaluated

on the testing set as [11]. Our focus is to analyze the com-

ponents of ACNet instead of achieving the state-of-the-art

results, therefore we use the representative ResNet32 pro-

posed in [11]. All the implementation details and experiment

settings are the same as [11, 46, 47].

The role of global inference. We first evaluate the ef-

fectiveness of global inference y constructing two different

networks, i.e. with and without the third term
∑

∀j qij(xjw)
in Eqn.5. As shown in Table 8, without global inference,

ACNet has a performance degradation of 1.1%. As we know,

ACNet without global inference equals to CNN. This com-

parison verifies the superiority of ACNet over CNN.

The role of local inference. Next, we investigate the

necessity of local inference. In Table 8, we compare two op-

erations, i.e. with and without local inference. Table 8 shows

that equipped with local inference, ACNet has a significant

performance gain of 18%, verifying the contribution of local

inference. This is natural in the image domain. The lack of

local inference leads to neglecting some critical information.

Intuitively, we can easily represent an image as an adjacent

matrix. But we can never recover the original image from

the adjacent matrix. demonstrating an information loss by

discarding the local inference.

Adaptively global+local vs fixed global+local. Next,

we investigate the necessity of adaptively switching between

global and local inference. We fixed the importance de-

grees α, β and γ as constant variables, forming the fixed

global+local version of ACNet. We have an interesting

observation in Table 8: imposing global information to every

pixel has poorer performance than adaptively adding global

information (6.0% vs 6.8%). In other words, the global infer-

ence is unessential for every pixel, because it may hurt the

training. This implies the superiority of adaptively connected

neural networks over the fully non-local networks.

4.3. COCO Object Detection and Segmentation

We have demonstrated the adaptive inference capacity of

ACNet in ImageNet classification task, whose receptive filed

is quite large due to 5 times of subsampling and a global

pooling. Next, we investigate an inevitable smaller receptive

field task, i.e. COCO 2017 detection & segmentation task

[27]. These computer vision tasks in general benefit from

higher-resolution input and output. Therefore, the global

pooling and some subsampling are removed from the back-

bone of ResNet50, leading to a smaller receptive filed. As a

result, the adaptively global and local inference is in desire.

We finetune the models trained on ImageNet [35] for

transferring to detection and segmentation. The batch nor-

malization parameters are frozen during the finetuning.

We conduct experiments on the Mask RCNN baselines [9]

using a ResNet50-FPN backbone. We replace CNN layers

with ACNet layers. The models are trained in the COCO

train2017 set and evaluated in the COCO val2017 set. We

use the standard training setting following the COCO model

zoo. We report the standard COCO metrics of Average

Precision (AP) for bounding box detection (APbbox) and

instance segmentation (APmask).

Table 5 shows the comparison of ACNet vs NLN vs CNN.

ACNet improves over CNN by 1.5% box AP and 0.6% mask

AP. This may be contributed to the fact that CNN lacks

adaptive inference capacity. We have also found NLN is

0.5% box AP worse than ACNet. In summary, although

NLN is also suitable global inference, its representational

power is slightly weaker than ACNet according to our current
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Table 5: Detection and segmentation ablation studies on

COCO2017 using Mask RCNN.

backbone APbbox APmask

CNN 38.0↑0.0 34.6↑0.0

NLN 39.0↑1.0 35.5↑0.9

ACNet 39.5↑1.5 35.2↑0.6

evaluation. The inferiority of NLN is attributed to the over-

globalization. Specifically, the redundant global context may

hurt but NOT help the model learning. This phenomenon

has also been observed experimentally by [58] and theoret-

ically by [28], confirming that the over-globalization is a

shortcoming of NLN.

4.4. CUHK03 Person Re­identification

To demonstrate the good generalization performance of

our proposed ACNet on the other recognition tasks, we

have conducted the extensive experiments on the person

re-identification challenge, which refers to the problem of

re-identifying individuals across cameras. Though quite

challenging, person re-identification is fundamental and

beneficial from many applications in video surveillance

for keeping the security of safety of the whole society

[43, 60, 42, 24, 44, 6, 45, 26, 23, 22].

Dataset. We conduct experiments on the CUHK03

dataset [20], which is one of the largest databases for person

re-identification. This database contains 14,096 images of

1,467 pedestrians. Each person is observed by two disjoint

camera views and is shown in 4.8 images on average in each

view. We follow the new standard setting of using CUHK03

[56], where 767 individuals are regarded as the training set

and another 700 individuals are considered as the testing set

without sharing the same individuals.

Evaluation metric. For the evaluation, the testing set is

further divided into a gallery set of images and a probe set.

We use the standard rank-1 as the evaluation metric.

Result Analysis. In Table 6, we compare with the current

best models. A total of 11 representative state-of-the-art

methods, BOW+XQDA [53], PUL [7], LOMO+XQDA [25],

IDE [54], IDE+DaF [51], IDE+XQ.+Re-ranking [55], PAN,

DPFL [4], and the newly proposed methods SVDNet [39],

TriNet + Era. [56], and TriNet + Era. + Reranking [56] , are

used as the competing methods. All the settings of the above

methods are consistent with the common training settings as

[56]. ACNet has achieved a new state-of-the-art performance.

Specifically, ACNet achieves a rank-1 accuracy of 64.8%.

We can also observe that ACNet surpasses its baseline by a

clear margin ( 3.6%, Table 6). This verifies the effectiveness

of ACNet on the person re-identification task.

Table 6: Comparison on a Person Re-identification task

(CUHK03, where ‘bs’ denotes batch size.)

Rank-1

BOW+XQDA [53] 6.4

PUL [7] 9.1

LOMO+XQDA [25] 12.8

IDE [54] 21.3

IDE+DaF [51] 26.4

IDE+XQ.+Re-ranking [55] 34.7

PAN 36.3

DPFL [4] 40.7

SVDNet [39] 41.5

TriNet + Era. [56] 55.5

TriNet + Era.(Our reproduction) 62.0↑0.0

TriNet + Era. + ACNet 64.3↑2.3

TriNet + Era. + reranking(bs = 32) 61.2↑0.0

TriNet + Era. + reranking + ACNet(bs = 32) 64.8↑3.6

4.5. Analysis on Cora : a Non­Euclidean Domain

A common form of graph-structured data is a network of

documents. For example, scientific documents in a database

are related to each other through citations and references.

Administrators of such large networks may desire to automat-

ically label documents according to their relationships to the

remainder of the literature. To demonstrate the compatibility

of ACNet for non-Euclidean data, we adapt our proposed

ACNet to tackle such a vertex classification task on the Cora

benchmark [37], which is a large network of scientific publi-

cations connected through citations. The vertex features, in

this case, are binary word vectors that indicate the presence

of a word from a dictionary of 1,433 unique words. There

are 2708 publications classified under 7 different categories

- case-based, genetic algorithms, neural networks, proba-

bilistic methods, reinforcement learning, rule learning, and

theory. There is an edge connection from a cited article to

a citing article and another edge connection from a citing

article to a cited article. These edge features are also binary

representations. We use a quite simple architecture following

[15], which only contains two graph convolutional layers.

The first layer is used for feature learning, and the second

layer is used for classifier learning. We replace the first graph

convolutional layer in [15] with our ACNet layer. Note that

in our ACNet α, β, γ is defined by using Eqn. 3. Consider-

ing the Cora dataset is quite small-scale, we let α = 0, β = 1
and only learn γ to avoid overfitting. We perform 10-fold

cross validations to form the training and test set for a fair

comparison as the majority of methods [1, 15] did.

Comparisons with the state-of-the-art methods. We

first compare with the current best models. A total of 11

representative state-of-the-art methods, i.e., ManiReg [1],

SemiEmb [49], LP [57], DeepWalk [32], ICA [29], Plan-

etoid [50], the newly proposed methods Graph-CNN [15],
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Table 7: Comparison with state-of-the-art on Cora document

classification dataset.

Method Accuracy (%)

ManiReg [1] 59.5

SemiEmb [49] 59.0

LP [57] 68.0

DeepWalk [32] 67.2

ICA [29] 75.1

Planetoid* [50] 75.7

Graph-CNN [15] 81.5

MoNet [30] 81.7

GAT [41] 83.0

LGCN [8] 83.3

Dual GCN [59] 83.5

ACNet 83.5

Table 8: Ablation studies on Cora document classification dataset.

Method Accuracy (%)

Standard ACNet 83.5↓0.0

w/o global inference 82.1↓1.4

w/o local inference 76.3↓7.2

w/o position encoding 83.0↓0.5

Fixed global+local 82.7↓0.8

MoNet [30], GAT [41], LGCN [8], and Dual GCN [59] are

used as competing methods. Table. 7 shows that ACNet

achieves comparable performance to the best of all competi-

tive methods, e.g., Dual GCN [59] (83.5%). This comparison

once again verifies the generalization performance of ACNet.

Next, we investigate which component of ACNet contributes

to the non-Euclidean data to shed light on future researches.

The role of global inference. We first evaluate the effec-

tiveness of global inference by constructing two different

networks, i.e. with and without the third term
∑

∀j qij(xjw)
in Eqn.5. As shown in Table 8, without global inference,

ACNet has a performance degradation of 1.4%. This is rea-

sonable for a document categorization problem like Cora. A

document categorization problem is slightly different from a

conventional image classification one because each article is

not isolated. All the articles are connected with each other in

the form of citations. In this sense, a document categoriza-

tion problem is more like a semantic image segmentation

problem in computer vision. Therefore global inference in

ACNet is essential for Cora.

The role of local inference. Next, we investigate the

necessity of local inference. In Table 8, we compare two

operations, i.e. with and without local inference. Table 8

shows that equipped with local inference, ACNet obtains a

gain of 7.2%, verifying the contribution of local inference.

The lack of local inference leads to neglecting some critical

information. Specifically, each article in Cora cites several

other articles, as well as being cited by other articles. Actu-

ally, the citing articles and the cited articles may share the

same category with the given article. Without local infer-

ence, ACNet cannot capture the citation information. The

performance degradation of “w/o local inference” may be

due to ignoring this knowledge.

Adaptively global+local vs fixed global+local. We

fixed the importance degrees α, β and γ as constant variable,

forming the fixed global+local version of ACNet. Similar

to the CIFAR10 case, the results in Table 8 confirms the

effectiveness of adaptively global and local inference, with a

gain of 0.8%. The reason can be attributed to the property

of the document. Some article can be easier to categorize

when considered in local range than in wide range. For

example, at first, we can easily categorize the reinforcement-

learning-based article into the “reinforcement learning” area.

But after reading more and more article, we may confuse

it with “neural networks” area with the emergence of deep

reinforcement learning.

The role of position encoding. At last, we investigate

the impact of position encoding. We remove the position

encoding in Eqn.5 to obtain the counterpart. Table 8 shows

that without the position encoding, ACNet suffers a perfor-

mance drop of 0.5%. This is because the non-Euclidean data

is unstructured compared with the Euclidean data. With-

out a position encoding, the non-Euclidean data is with too

many degrees of freedom (i.e., the same graph data may have

different representations because theoretically, a graph has

endless isomorphic graphs). This freedom leads to lower

learning efficiency. By introducing the position encoding the

training inefficiency has been alleviated

5. Conclusion

This paper presented a concise ACNet to be a promis-

ing substitute for overcoming the limitations of widely used

deep CNNs without losing their strengths in feature learn-

ing. Specifically, ACNet advances in adaptively switching

between global and local inference in a flexible and pure

data-driven manner. We further applied our proposed AC-

Net for the recognition tasks of both Euclidean data and

non-Euclidean data. Extensive experimental analyses from a

variety of aspects justify the superiority of ACNet. In the fu-

ture, we will extend our work to be suitable for more general

tasks to demonstrate its superiority.

Acknowledgement

This work was supported in part by the National Key Re-

search and Development Program of China under Grant

No. 2018YFC0830103 and 2016YFB1001004, in part by

National High Level Talents Special Support Plan (Ten

Thousand Talents Program), and in part by National Nat-

ural Science Foundation of China (NSFC) under Grant No.

61622214, 61836012, and 61876224.

43281788



References

[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Mani-

fold regularization: A geometric framework for learning from

labeled and unlabeled examples. Journal of machine learning

research, 7(Nov):2399–2434, 2006.

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic

image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[3] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng

Yan, Jiashi Feng, and Yannis Kalantidis. Graph-based global

reasoning networks. arXiv preprint arXiv:1811.12814, 2018.

[4] Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Person re-

identification by deep learning multi-scale representations. In

CVPR, pages 2590–2600, 2017.

[5] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,

Han Hu, and Yichen Wei. Deformable convolutional networks.

In ICCV, 2017.

[6] Shengyong Ding, Liang Lin, Guangrun Wang, and Hongyang

Chao. Deep feature learning with relative distance com-

parison for person re-identification. Pattern Recognition,

48(10):2993–3003, 2015.

[7] Hehe Fan, Liang Zheng, and Yi Yang. Unsupervised person

re-identification: Clustering and fine-tuning. arXiv preprint

arXiv:1705.10444, 2017.

[8] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-

scale learnable graph convolutional networks. In Proceed-

ings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 1416–1424.

ACM, 2018.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE

International Conference on, pages 2980–2988. IEEE, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[12] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix

capsules with em routing. In ICLR, 2018.

[13] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens

van der Maaten. Densely connected convolutional networks.

In CVPR, volume 1, page 3, 2017.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learning,

pages 448–456, 2015.

[15] Thomas N Kipf and Max Welling. Semi-supervised classifi-

cation with graph convolutional networks. ICLR, 2017.

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. 2009.

[17] Yann Lecun. PhD thesis: Modeles connexionnistes de

l’apprentissage (connectionist learning models). Universite P.

et M. Curie (Paris 6), 6 1987.

[18] Yann LeCun, Bernhard E Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne E Hubbard, and

Lawrence D Jackel. Handwritten digit recognition with a

back-propagation network. In Advances in neural informa-

tion processing systems, pages 396–404, 1990.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 11(6):2278–2324, 1998.

[20] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deepreid:

Deep filter pairing neural network for person re-identification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 152–159, 2014.

[21] Xilai Li, Tianfu Wu, Xi Song, and Hamid Krim. Aognets:

Deep and-or grammar networks for visual recognition. arXiv

preprint arXiv:1711.05847, 2017.

[22] Ya Li, Guangrun Wang, Liang Lin, and Huiyou Chang. A

deep joint learning approach for age invariant face verification.

In CCF Chinese Conference on Computer Vision, pages 296–

305. Springer, 2015.

[23] Ya Li, Guangrun Wang, Lin Nie, Qing Wang, and Wenwei

Tan. Distance metric optimization driven convolutional neural

network for age invariant face recognition. Pattern Recogni-

tion, 75:51–62, 2018.

[24] Wenqi Liang, Guangcong Wang, Jianhuang Lai, and Juny-

ong Zhu. M2m-gan: Many-to-many generative adversarial

transfer learning for person re-identification. arXiv preprint

arXiv:1811.03768, 2018.

[25] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z Li. Person

re-identification by local maximal occurrence representation

and metric learning. In CVPR, pages 2197–2206, 2015.

[26] Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng,

and Lei Zhang. Cross-domain visual matching via generalized

similarity measure and feature learning. IEEE transactions on

pattern analysis and machine intelligence, 39(6):1089–1102,

2017.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[28] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bern-

hard Scholkopf, and Léon Bottou. Discovering causal sig-

nals in images. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 6979–6987,

2017.

[29] Qing Lu and Lise Getoor. Link-based classification. In

Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 496–503, 2003.

[30] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele

Rodola, Jan Svoboda, and Michael M Bronstein. Geometric

deep learning on graphs and manifolds using mixture model

cnns. In Proc. CVPR, volume 1, page 3, 2017.

[31] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and

Jian Sun. Large kernel matters—improve semantic segmen-

tation by global convolutional network. In Computer Vision

and Pattern Recognition (CVPR), 2017 IEEE Conference on,

pages 1743–1751. IEEE, 2017.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:

Online learning of social representations. In Proceedings of

43291789



the 20th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 701–710. ACM, 2014.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing

and computer-assisted intervention, pages 234–241. Springer,

2015.

[34] D. Rumelhart, G. Hinton, and R. Williams. Learning in-

ternal representations by backpropagating errors. Parallel

distributed processing: Explorations in the microstructure of

cognition, 1986.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[36] Sara Sabour, Nicholas Frosst, and Geoffrey Hinton. Dynamic

routing between capsules. In NIPS, 2017.

[37] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,

Brian Galligher, and Tina Eliassi-Rad. Collective classifica-

tion in network data. AI magazine, 29(3):93, 2008.

[38] Felipe Petroski Such, Shagan Sah, Miguel Domínguez, Suhas

Pillai, Chao Zhang, Andrew Michael, Nathan D. Cahill, and

Raymond W. Ptucha. Robust spatial filtering with graph con-

volutional neural networks. J. Sel. Topics Signal Processing,

11(6):884–896, 2017.

[39] Yifan Sun, Liang Zheng, Weijian Deng, and Shengjin

Wang. Svdnet for pedestrian retrieval. arXiv preprint

arXiv:1703.05693, 2017.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all

you need. In NIPS, 2017.

[41] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adri-

ana Romero, Pietro Lio, and Yoshua Bengio. Graph attention

networks. arXiv preprint arXiv:1710.10903, 1(2), 2017.

[42] Guangcong Wang, Jianhuang Lai, Peigen Huang, and Xiao-

hua Xie. Spatial-temporal person re-identification. arXiv

preprint arXiv:1812.03282, 2018.

[43] Guangcong Wang, Jianhuang Lai, and Xiaohua Xie. P2snet:

Can an image match a video for person re-identification in an

end-to-end way? IEEE Transactions on Circuits and Systems

for Video Technology, 28(10):2777–2787, 2018.

[44] Guangcong Wang, Jianhuang Lai, Zhenyu Xie, and Xiaohua

Xie. Discovering underlying person structure pattern with

relative local distance for person re-identification. arXiv

preprint arXiv:1901.10100, 2019.

[45] Guangrun Wang, Liang Lin, Shengyong Ding, Ya Li, and

Qing Wang. Dari: Distance metric and representation integra-

tion for person verification. In Thirtieth AAAI Conference on

Artificial Intelligence, 2016.

[46] Guangrun Wang, Ping Luo, Xinjiang Wang, Liang Lin, et al.

Kalman normalization: Normalizing internal representations

across network layers. In Advances in Neural Information

Processing Systems, pages 21–31, 2018.

[47] Guangrun Wang, Jiefeng Peng, Ping Luo, Xinjiang Wang, and

Liang Lin. Batch kalman normalization: Towards training

deep neural networks with micro-batches. arXiv preprint

arXiv:1802.03133, 2018.

[48] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming

He. Non-local neural networks. In arXiv:1711.07971 [cs.LG],

2017.

[49] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan

Collobert. Deep learning via semi-supervised embedding.

In Neural Networks: Tricks of the Trade, pages 639–655.

Springer, 2012.

[50] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov.

Revisiting semi-supervised learning with graph embeddings.

arXiv preprint arXiv:1603.08861, 2016.

[51] Rui Yu, Zhichao Zhou, Song Bai, and Xiang Bai. Divide

and fuse: A re-ranking approach for person re-identification.

arXiv preprint arXiv:1708.04169, 2017.

[52] Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi, Chen

Change Loy, Dahua Lin, and Jiaya Jia. Psanet: Point-wise

spatial attention network for scene parsing. In Proceedings of

the European Conference on Computer Vision (ECCV), pages

267–283, 2018.

[53] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong

Wang, and Qi Tian. Scalable person re-identification: A

benchmark. In ICCV, 2015.

[54] Liang Zheng, Yi Yang, and Alexander G Hauptmann. Person

re-identification: Past, present and future. arXiv preprint

arXiv:1610.02984, 2016.

[55] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-

ranking person re-identification with k-reciprocal encoding.

arXiv preprint arXiv:1701.08398, 2017.

[56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. arXiv preprint

arXiv:1708.04896, 2017.

[57] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-

supervised learning using gaussian fields and harmonic func-

tions. In Proceedings of the 20th International conference on

Machine learning (ICML-03), pages 912–919, 2003.

[58] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-

formable convnets v2: More deformable, better results. arXiv

preprint arXiv:1811.11168, 2018.

[59] Chenyi Zhuang and Qiang Ma. Dual graph convolutional

networks for graph-based semi-supervised classification. In

Proceedings of the 2018 World Wide Web Conference on

World Wide Web, pages 499–508. International World Wide

Web Conferences Steering Committee, 2018.

[60] Jiaxuan Zhuo, Zeyu Chen, Jianhuang Lai, and Guangcong

Wang. Occluded person re-identification. In 2018 IEEE

International Conference on Multimedia and Expo (ICME),

pages 1–6. IEEE, 2018.

43301790


