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Abstract

A 3D point cloud describes the real scene precisely and

intuitively. To date how to segment diversified elements

in such an informative 3D scene is rarely discussed. In

this paper, we first introduce a simple and flexible frame-

work to segment instances and semantics in point clouds

simultaneously. Then, we propose two approaches which

make the two tasks take advantage of each other, lead-

ing to a win-win situation. Specifically, we make instance

segmentation benefit from semantic segmentation through

learning semantic-aware point-level instance embedding.

Meanwhile, semantic features of the points belonging to

the same instance are fused together to make more accu-

rate per-point semantic predictions. Our method largely

outperforms the state-of-the-art method in 3D instance seg-

mentation along with a significant improvement in 3D se-

mantic segmentation. Code has been made available at:

https://github.com/WXinlong/ASIS.

1. Introduction

Both instance segmentation and semantic segmentation

aim to detect specific informative region represented by

sets of smallest units in the scenes. For example, a point

cloud can be parsed into groups of points, where each

group corresponds to a class of stuff or an individual in-

stance. The two tasks are related and both have wide ap-

plications in real scenarios, e.g., autonomous driving and

augmented reality. Though great progress has been made in

recent years [10, 6, 21, 34, 16] for each single task, no prior

method tackles these two tasks associatively.

In fact, instance segmentation and semantic segmenta-

tion conflict with each other in some respects. The for-

mer one distinguishes different instances of the same class

clearly, while the latter one wants them to have the same la-

bel. However, the two tasks could cooperate with each other

through seeking common grounds. Semantic segmentation

distinguishes points of different classes, which is also one

of the purposes of instance segmentation, as points of differ-

ent classes must belong to different instances. Furthermore,
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Figure 1: Instance segmentation and semantic segmentation re-

sults using ASIS. Our method takes raw point clouds as inputs and

outputs instance labels and semantic labels for each point.

instance segmentation assigns the same label to points be-

longing to the same instance, which is also consistent with

semantic segmentation, as points of the same instance must

belong to the same category. This observation makes one

wonder how the two tasks could be associated together to

lead to a win-win solution?

There may be two straightforward approaches. The first

one is that, given the semantic labels, we could run instance

segmentation independently on every semantic class to bet-

ter distinguish individual instances. Thus, different class

instances are separated simply but naively.

However, the instance segmentation would greatly de-

pend on performance of semantic segmentation as incor-

rect semantic predictions would inevitably result in incor-

rect instance predictions. Otherwise, given the instance la-

bels, one could classify each instance and assign the pre-

dicted class label to each point of this instance. Thus, the

problem is transformed to an easier instance recognition

problem. However, inaccurate instance predictions would

deeply confuse the downstream object classifiers. Both

these two approaches are in step-wise paradigm, which can

be sub-optimal and inefficient. In this work, we integrate

the two tasks altogether into an end-to-end parallel train-

ing framework, which shares the same benefits in a soft and

learnable fashion.

We first introduce a simple baseline to segment instances

14096



and semantics simultaneously. It is similar to the method

in [6] for 2D images, but we tailor it for 3D point cloud.

The network of the baseline has two parallel branches: one

for per-point semantic predictions; the other outputs point-

level instance embeddings, where the embeddings of points

belonging to the same instance stay close while those of dif-

ferent instances are apart. Our baseline method can already

achieve better performance than the recent state-of-the-art

method, SGPN [35], as well as faster training and inference.

Based on this flexible baseline, a novel technique is further

proposed to associate instance segmentation and semantic

segmentation closely together, termed ASIS (Associatively

Segmenting Instances and Semantics).

With the proposed ASIS method, we are able to learn

semantic-aware instance embeddings, where the embed-

dings of points belonging to different semantic classes are

further separated automatically through feature fusion. As

shown in Figure 2, the boundaries between different class

points are clearer (chair & table, window & wall). More-

over, the semantic features of points belonging to the same

instance are exploited and fused together to make more ac-

curate per-point semantic predictions. The intuition behind

it is that during semantic segmentation a point being as-

signed to one of the categories is because the instance con-

taining that point belongs to that category. Thus, the two

tasks can take advantage of each other to further boost their

performance. Our method is demonstrated to be effective

and general on different backbone networks, e.g., the Point-

Net [26] and hierarchical architecture PointNet++ [28]. The

method can also be used to tackle the panoptic segmenta-

tion [14] task, which unifies the semantic and instance seg-

mentation. To summarize, our main contributions are as

follows.

• We propose a fast and efficient simple baseline for si-

multaneous instance segmentation and semantic seg-

mentation on 3D point clouds.

• We propose a new framework, termed ASIS, to asso-

ciate instance segmentation and semantic segmenta-

tion closely together. Specifically, two types of part-

nerships are proposed—semantics awareness for in-

stance segmentation and instance fusion for semantic

segmentation—to make these two tasks cooperate with

each other.

• With the proposed ASIS, the model containing

semantics-aware instance segmentation and instance-

fused semantic segmentation are trained end-to-end,

which outperforms state-of-the-art 3D instance seg-

mentation methods on the S3DIS dataset [1] along

with a significant improvement on the 3D semantic

segmentation task. Furthermore, our experiments on

the ShapeNet dataset [39] show that ASIS is also ben-

eficial for the task of part segmentation.

21

3

Figure 2: 1D embeddings of learned point-level instance embed-

dings. t-SNE [22] technique is used to visualize the learned in-

stance embeddings for the points on S3DIS test data. Three close-

up pairs are shown. Of each pair the left patch is from our baseline

method, while the right one is from ASIS. Differences in color

shade represent distances in instance embedding space.

2. Related Work

Instance Segmentation. 2D instance segmentation has at-

tracted much research attention recently, leading to various

top-performing methods. Inspired by the effectiveness of

region-based CNN (R-CNN) [8] in object detection prob-

lem, [25, 4] learn to segment instances by proposing seg-

ment candidates. The mask proposals are further classified

to obtain the final instance masks. Dai et al. [5] predict

segment proposals based on bounding box proposals. He

et al. [10] propose the simpler and flexible Mask R-CNN

which predicts masks and class labels simultaneously. Dif-

ferent from the top-down detector-based approaches above,

bottom-up methods learn to associate per-pixel predictions

to object instances. Newell et al. [24] group pixels into in-

stances using the learned associative embedding. Braban-

dere et al. [6] propose a discriminative loss function which

enables to learn pixel-level instance embedding efficiently.

Liu et al. [20] decompose the instance segmentation prob-

lem into a sequence of sub-grouping problems. However,

3D instance segmentation is rarely researched. Wang et

al. [35] learn the similarity matrix of a point cloud to get

instance proposals. In this work, we introduce a simple

and flexible method that learns effective point-level instance

embedding with the help of semantic features in 3D point

clouds.

Semantic Segmentation. With the recent development of

convolutional neural networks (CNNs) [15, 32], tremen-

dous progress has been made in semantic segmentation.

Approaches [18, 2, 19] based on fully convolutional net-

works (FCN) [21] dominate the semantic segmentation on

2D images. As for 3D segmentation, Huang et al. [11] pro-

pose 3D-FCNN which predict coarse voxel-level semantic

label. PointNet [26] and following works [7, 38] use multi-

layer perceptron (MLP) to produce fine-grained point-level
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segmentation. Very recently, Landrieu et al. [16] introduce

superpoint graph (SPG) to segment large-scale point clouds.

In fact, few of previous works segment semantics taking ad-

vantages of the instance embedding, either in 2D images or

3D point clouds.

Deep Learning on Point Clouds. To take advantage of

the strong representation capability of classic CNNs, a 3D

point cloud is first projected into multiview rendering im-

ages in [33, 31, 27, 9], on which the well-designed CNNs

for 2D images can be applied. But part of contextual infor-

mation in point cloud is left behind during the projection

process. Another popular representation for point cloud

data is voxelized volumes. The works of [37, 23, 12, 30]

convert point cloud data into regular volumetric occupancy

grids, then train 3D CNNs or the varieties to perform voxel-

level predictions. A drawback of volumetric representations

is being both computationally and memory intensive, due

to the sparsity of point clouds and the heavy computation

of 3D convolutions. Therefore those methods are limited

to deal with large-scale 3D scenes. To process raw point

cloud directly, PointNet [26] is proposed to yield point-level

predictions, achieving strong performance on 3D classifica-

tion and segmentation tasks. The following works Point-

Net++ [28], RSNet [13], DGCNN [36] and PointCNN [17]

further focus on exploring the local context and hierarchi-

cal learning architectures. In this work, we build a novel

framework to associatively segment instances and seman-

tics in point clouds, and demonstrate that it is effective and

general on different backbone networks.

3. Our Method

3.1. A Simple Baseline

Here we introduce a simple yet effective framework. It

is composed of a shared encoder and two parallel decoders.

One of the decoders is for point-level semantic predictions,

while the other one aims to handle the instance segmenta-

tion problem. Specifically, a point cloud of size Np is first

extracted and encoded into a feature matrix through the fea-

ture encoder (e.g., stacked PointNet layers). This shared

feature matrix refers to the concatenation of local features

and global features in PointNet architecture, or the output of

the last set abstraction module for the PointNet++ architec-

ture. The two parallel branches then fetch the feature ma-

trix and proceed with their following predictions separately.

The semantic segmentation branch decodes the shared fea-

ture matrix into NP × NF shaped semantic feature matrix

FSEM, and then outputs the semantic predictions PSEM with

shape of NP × NC where NC is the number of semantic

categories. The instance segmentation branch has the same

architecture except the last output layer. The NP × NF

instance feature matrix FINS is used to predict per-point in-

stance embedding EINS with shape of NP ×NE where NE

is the dimension of the embedding. The embeddings of a

point cloud represent the the instance relationship between

points in it: the points belonging to the same instance are

close to each other in embedding space, while those points

of different instances are apart.

At training time, the semantic segmentation branch is

supervised by the classical cross entropy loss. As for the

instance segmentation, the discriminative loss function for

2D image in [6] is adopted to supervise the instance em-

bedding learning. We modify it and make it suitable for

point clouds. The loss used in [6] is class-specific: the in-

stance embeddings of different semantic class are learned

separately, which means the semantic class should be given

first. This step-wise paradigm is highly dependent on the

quality of semantic prediction, as incorrect semantic pre-

diction would inevitably result in incorrect instance recog-

nition. Thus, we adopt the class-agnostic instance embed-

ding learning strategy, where embeddings are in charge of

distinguishing different instances and are blind to their cat-

egories. The loss function is formulated as follows:

L = Lvar + Ldist + α · Lreg, (1)

where Lvar aims to pull embeddings towards the mean em-

bedding of the instance, i.e. the instance center, Ldist make

instances repel each other, and Lreg is a regularization term

to keep the embedding values bounded. α is set to 0.001 in

our experiments. Specifically, each term can be written as

follows:

Lvar =
1

I

I
∑

i=1

1

Ni

Ni
∑

j=1

[

‖µi − ej‖1 − δv

]2

+
, (2)

Ldist =
1

I(I − 1)

I
∑

iA=1

I
∑

iB=1

iA 6=iB

[2δd − ‖µiA − µiB‖1]
2

+
, (3)

Lreg =
1

I

I
∑

i=1

‖µi‖1, (4)

where I is the number of ground-truth instances; Ni is the

number of points in instance i; µi is the mean embedding of

instance i; ‖·‖
1

is the ℓ1 distance; ej is an embedding of a

point; δv and δd are margins; [x]+ = max(0, x) means the

hinge.

During the test, final instance labels are obtained using

mean-shift clustering [3] on instance embeddings. We as-

sign the mode of the semantic labels of the points within

the same instance as its final category. The pipeline is illus-

trated in Figure 3(a).

3.2. Mutual Aid

As depicted in Figure 3(b), benefiting from the simple

and flexible framework described above, we are able to
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Figure 3: Illustration of our method for point cloud instance segmentation and semantic segmentation. (a) Full pipeline of the system. (b)

Illustration of the ASIS module.

build upon it the novel ASIS module and achieve semantic-

aware instance segmentation and instance-fused semantic

segmentation.

Semantic-aware Instance Segmentation. Semantic fea-

tures of a point cloud construct a new and high-level feature

space, where points are naturally positioned according to

their categories. In that space, points of the same semantic

class lie close together while different classes are separated.

We abstract the semantic awareness (SA) from semantic

features and integrate it into the instance features, produc-

ing semantic-aware instance features. Firstly, the semantic

feature matrix FSEM is adapted to instance feature space

as F ′
SEM through a point independent fully connected layer

(FC) with batch normalization and ReLU activation func-

tion. F ′
SEM has the same shape with FSEM. Then, We add

the adapted semantic feature matrix F ′
SEM to instance fea-

ture matrix FINS element-wise, producing semantic-aware

instance feature matrix FSINS . The procedure can be for-

mulated as:

FSINS = FINS + FC(FSEM). (5)

In this soft and learnable way, points belonging to different

category instances are further repelled in instance feature

space, whereas same category instances are rarely affected.

The feature matrix FSINS is used to generate final instance

embeddings.

Instance-fused Semantic Segmentation. Given the in-

stance embeddings, we use K nearest neighbor (kNN)

search to find a fixed number of neighboring points for

each point (including itself) in instance embedding space.

To make sure the K sampled points belonging to the same

instance, we filter the outliers according to the margin δv
used in Equation 2. As described in Section 3.1, the hinged

loss term Lvar supervises the instance embedding learn-

ing through drawing each point embedding close to the

the mean embedding within a distance of δv . The out-

put of the kNN search is an index matrix with shape of

NP ×K. According to the index matrix, the semantic fea-

tures (FSEM) of those points are grouped to a NP ×K×NF

shaped feature tensor, which is groups of semantic feature

matrix where each group corresponds to a local region in

instance embedding space neighboring its centroid point.

Inspired by the effectiveness of channel-wise max aggre-

gation in [26, 36, 38], semantic features of each group

are fused together through a channel-wise max aggregation

operation, as the refined semantic feature of the centroid

point. The instance fusion (IF) can be formulated as be-

low. For the NP × NF shaped semantic feature matrix

FSEM = {x1, ..., xNP
} ⊆ R

NF , instance-fused semantic

features are calculated as:

x′
i = Max(xi1, xi2, ..., xik), (6)

where {xi1, ..., xik} represent the semantic features of K

neighboring points centered point i in instance embedding

space, and Max is an element-wise maximum operator

which takes K vectors as input and output a new vector.

After the instance fusion, the output is a NP × NF feature

matrix FISEM, the final semantic features to be fed into the

last semantic classifier.

4. Experiments

4.1. Experiment Settings

Datasets. We carry out experiments on two public datasets:

Stanford 3D Indoor Semantics Dataset (S3DIS) [1] and

ShapeNet [39]. S3DIS contains 3D scans from Matterport

Scanners in 6 areas that in total have 272 rooms. Each point
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in the scene point cloud is associated with an instance label

and one of the semantic labels from 13 categories. Besides

the large real scene benchmark S3DIS, we also evaluate our

methods on the ShapeNet part dataset. This dataset contains

16, 881 3D shapes from 16 categories. Each point sampled

from the shapes is assigned with one of the 50 different

parts. The instance annotations from [35] are used as the

instance ground-truth labels.

Evaluation Metrics. Our experiments involved S3DIS are

conducted following the same k-fold cross validation with

micro-averaging as in [26]. We also report the performance

on the fifth fold following [34], as Area 5 is not present in

other folds. For evaluation of semantic segmentation, over-

all accuracy (oAcc), mean accuracy (mAcc) and mean IoU

(mIoU) across all the categories are calculated along with

the detailed scores of per class IoU. As for instance segmen-

tation, (weighted) coverage (Cov, WCov) [29, 20, 40] are

adopted. Cov is the average instance-wise IoU of prediction

matched with ground-truth. The score is further weighted

by the size of the ground-truth instances to get WCov. For

ground-truth regions G and predicted regions O, these val-

ues are defined as

Cov(G,O) =

|G|
∑

i=1

1

|G|
max

j
IoU(rGi , r

O
j ), (7)

WCov(G,O) =

|G|
∑

i=1

wi max
j

IoU(rGi , r
O
j ), (8)

wi =
|rGi |

∑

k |r
G
k |

, (9)

where |rGi | is the number of points in ground-truth region

i. Besides, the classical metrics mean precision (mPrec)

and mean recall (mRec) with IoU threshold 0.5 are also re-

ported.

Training and Inference Details. For the S3DIS dataset,

each point is represented by a 9-dim feature vector (XYZ,

RGB and normalized coordinates as to the room). Dur-

ing training, we follow the procedure in [26] and split the

rooms into 1m×1m overlapped blocks on the ground plane,

each containing 4096 points. For the instance segmentation

branch, we train the network with σv = 0.5, σd = 1.5,

and 5 output embedding dimensions. For the kNN search

in instance fusion, K is set to 30. We train the network for

50 epochs and 100 epochs for PointNet and PointNet++ re-

spectively, with batch size 24, base learning rate set to 0.001
and divided by 2 every 300k iterations. The Adam solver is

adopted to optimize the network on a single GPU. Momen-

tum is set to 0.9. At test time, bandwidth is set to 0.6 for

mean-shift clustering. BlockMerging algorithm [35] is used

to merge instances from different blocks. For ShapeNet

dataset, each shape is represented by a point cloud with

2048 points, as in [26]. Each point is represented by a 3-

dim vector (XY Z).

Backbone Method mCov mWCov mPrec mRec

Test on Area 5

PN

SGPN [35] 32.7 35.5 36.0 28.7

ASIS (vanilla) 38.0 40.6 42.3 34.9

ASIS 40.4 43.3 44.5 37.4

PN++
ASIS (vanilla) 42.6 45.7 53.4 40.6

ASIS 44.6 47.8 55.3 42.4

Test on 6-fold CV

PN

SGPN [35] 37.9 40.8 38.2 31.2

ASIS (vanilla) 43.0 46.3 50.6 39.2

ASIS 44.7 48.2 53.2 40.7

PN++
ASIS (vanilla) 49.6 53.4 62.7 45.8

ASIS 51.2 55.1 63.6 47.5

Table 1: Instance segmentation results on S3DIS dataset.

Backbone Method mAcc mIoU oAcc

Test on Area 5

PN

PN (RePr) 52.1 43.4 83.5

ASIS (vanilla) 52.9 44.7 83.7

ASIS 55.7 46.4 84.5

PN++
ASIS (vanilla) 58.3 50.8 86.7

ASIS 60.9 53.4 86.9

Test on 6-fold CV

PN

PN [26] - 47.7 78.6

PN (RePr) 60.3 48.9 80.3

ASIS (vanilla) 60.7 49.5 80.4

ASIS 62.3 51.1 81.7

PN++
ASIS (vanilla) 69.0 58.2 85.9

ASIS 70.1 59.3 86.2

Table 2: Semantic segmentation results on S3DIS dataset.

4.2. S3DIS Results

We conduct experiments on S3DIS dataset using Point-

Net and PointNet++ (single-scale grouping) as our back-

bone networks. If no extra notes, our main analyses are

based on PointNet.

4.2.1 Baseline Method

We report instance segmentation results of our baseline

method in Table 1. Based on PointNet backbone, our

method achieves 46.3 mWCov when evaluate by 6-fold

cross validation, which shows an absolute 5.5-point im-
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provement over the state-of-the-art method SGPN1. The su-

periority is consistent across the four evaluation metrics.

Semantic segmentation results are shown in Table 2. The

mIoU of training without instance segmentation branch is

48.9, which can be regarded as the result of pure backbone

PointNet. Equipped with instance segmentation training,

our semantic segmentation baseline result achieves 49.5
mIoU, which is slightly better. It indicates that the su-

pervision of instance segmentation helps learn more gen-

eral shared feature representation. As for the training time,

SGPN needs 16 ∼ 17 hours (excluding pre-training) to con-

verge, while it only takes 4 ∼ 5 hours for our method to

train from scratch, both on a single GPU. More computation

time comparisons can be referred to Table 5. Our baseline

method is demonstrated to be effective and efficient.

4.2.2 ASIS

Semantic Segmentation. In Table 1, we report the results

of ASIS on instance segmentation task. ASIS yields 48.2
mWCov, which outperforms our baseline by 1.9-point. In

terms of another metric mean precision, a larger 2.6-point

gain is observed. When evaluated on Area 5, the improve-

ments are more significant: 2.7 mWCov and 2.2 mPrec.

Through visualizations in Figure 4, our baseline method

tends to group two nearby different class instances together

into one instance (e.g., board & wall). With ASIS, they

are well distinguished as semantic awareness helps repel

them in instance embedding space. Per class performance

changes are in accordance with our observations. Shown

in Table 4, ASIS yields 5.0 WCov and 2.4 WCov gains on

class “board” and class “wall” on instance segmentation.

Instance Segmentation. Table 2 reports the results of ASIS

on semantic segmentation task. ASIS improves the mIoU

by 1.6-point. We obseve more significant improvements of

2.8 mAcc and 1.7 mIoU when evaluating on Area 5. In Fig-

ure 5 we show some comparison examples on semantic seg-

mentation. ASIS performs better on complicated categories

(e.g., bookcase) and is aware of instance integrity (e.g., ta-

ble, window) as instance fusion aggregates points belong-

ing to the same instance to produce more accurate predic-

tions. Table 4 shows that ASIS outperforms the baseline by

3.5 IoU and 2.2 IoU on class “table” and class “bookcase”,

which are in line with our analysis.

Stronger Backbone. Both the two tasks benefit largely

from our novel method. When adopt the stronger archi-

tecture PointNet++ as our backbone network, we observe

consistent improvements: 2.1 mWCov and 2.6 mIoU gains

on Area 5; 1.7 mWCov and 1.1 mIoU gains for 6-fold

cross validation. The results on PointNet++ indicate that

1We reproduced the results of SGPN using the code at github, published

by the authors.

Method +IF +SA mIoU mWCov

Baseline 49.5 46.3

X 50.0 47.0

X 49.8 47.4

X X 51.1 48.2

Table 3: Ablation study on the S3DIS dataset. IF refers to instance

fusion; SA refers to semantic awareness.

Real Scene Baseline ASIS Ground Truth

2

3

4

1

Figure 4: Comparison of our baseline method and ASIS on

instance segmentation. Different colors represent different in-

stances.

1

3

4

2

Real Scene Baseline ASIS Ground Truth

Figure 5: Comparison of our baseline method and ASIS on se-

mantic segmentation.

our ASIS is a general framework and can be built upon dif-

ferent backbone networks.

4.2.3 Analysis

Ablative Analysis. Equipped with only instance fusion

for semantic segmentation, our method achieves 50.0 mIoU

and 47.0 mWCov. Compared to the baseline, there is a 0.5-

point gain on mIoU. Furthermore, better semantic predic-

tions assign more correct class labels to instances, improv-

ing the instance segmentation performance. When adopt

semantic awareness alone, we achieve an improvement of

1.1 mWCov (from 46.3 to 47.4). The improvement of one

task also helps the other one, as better shared features are

learned. Applying instance fusion and semantic awareness

together, the performance boost is larger than using only
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(a) Input (b) Ins. (c) Ins. GT (d) Sem. (e) Sem. GT

Figure 6: Qualitative results of ASIS on the S3DIS test fold.

one of them. On the basis of instance fusion, semantic

awareness could bring additional 1.1 mIoU and 1.2 mWCov

gains. The semantic awareness strengthens the instance seg-

mentation, as well as improving the semantic segmentation.

It is because that the improved instance embedding predic-

tions could amplify the improvements brought by instance

fusion, thus leading to a further 1.1 mIoU gain. The sim-

ilar results can also be observed when add instance fusion

on semantic awareness. To conclude, the two components

not only perform their own duty well, but also enlarge the

function of the other one.

-1 0 1 2 3 4 5 6 7

beam
board

window
column

wall
door
chair

bookcase
ceiling
clutter

table
sofa

floor

Change in WCov →  

(a)

-1 0 1 2 3 4

beam
table
chair

bookcase
floor

window
clutter
ceiling

column
wall
door
sofa

board

Change in IoU →  

(b)

Figure 7: Per class performance changes. (a) Changes of instance

segmentation performance compared to our baseline method. (b)

Changes of semantic segmentation performance compared to our

baseline method.

Category-based Analysis. We show how the performance

of each category changes in Figure 7. Interestingly the

categories being helped by ASIS module are different for

instance segmentation and semantic segmentation. On in-

stance segmentation, our ASIS module largely helps the cat-

egories in which instances often surround with instances of

other classes (e.g., beam, board and window). For example,

board is hung on the wall. The board is easily being ignored

during instance segmentation, as the body of the board has

similar color and shape with the wall. Our semantic aware-

ness in ASIS module shows great superiority on these cases:

5.0 WCov and 2.4 WCov improvements on class “board”

and class “wall”. Some visualization examples of the com-

parison are illustrated in Figure 4. On semantic segmenta-

tion, ASIS module significantly boosts the performance of

the categories in which instances have complicated shapes

(e.g., table, chair and bookcase), because they benefit much

from instance fusion.

4.2.4 Qualitative Results

Figure 6 shows some visualization examples of ASIS. For

instance segmentation, different colors represent different

instances, while the color itself does not mean anything.

Either same class instances or different class instances are

distinguished properly. For example, the points of the ta-

bles and the surrounding chairs are grouped into distinct in-

stances. As for semantic segmentation, specific color refers

to particular class (e.g., yellow for wall, purple for window).

We also show some failure cases in Figure 6. In the scenes
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63.7

66.1

47.6

53.4

6.6

9.2

55.6

58.8

47.5

49.8

50.5

50.6

57.3

59.4

9.9

9.9

31.3

32.3

33.7

38.7

41.5

42.0

Sem IoU
49.5

51.1

90.1

91.3

87.8

89.7

69.2

69.8

42.3

45.8

26.0

27.0

50.4

51.9

54.9

55.1

57.5

61.0

45.8

49.3

8.9

9.1

38.0

40.2

33.4

33.5

39.2

40.7

Table 4: Per class results on the S3DIS dataset.

Method
Inference Time (ms)

mWCov
Overall Network Grouping

SGPN 726 18 708 35.5

ASIS (vanilla) 212 11 201 41.4

ASIS 205 20 185 43.6

ASIS (vanilla.PN++) 150 35 115 45.7

ASIS (PN++) 179 54 125 47.8

Table 5: Comparisons of computation speed and performance. In-

ference time is estimated and averaged on Area 5, which is the

time to process a point cloud with size 4096 × 9. The instance

segmentation results on Area 5 are reported.

of the second and third row, two nearby chairs are mistak-

enly segmented together as a single instance. Though our

method does not draw the point embeddings of the same

class instances close, we yet do not contribute on better dis-

tinguishing this kind of cases. We leave it to future works

to explore better solutions.

4.2.5 Computation Time

In Table 5, we report computation time measured on a sin-

gle Tesla P40 GPU. The inference procedure can be divided

in to two steps: the network inference, and point grouping

which groups points into individual instances. For SGPN,

the grouping step refers to their GroupMerge algorithm. In

our ASIS, it is the mean-shift clustering. We achieve com-

parable speed with SGPN on network inference, while our

grouping step is much faster. Overall, it takes 205ms for

ASIS to process an input point cloud with size 4096×9 and

output the final labels, which is 3.5× faster than SGPN.

4.3. ShapeNet Results

We conduct experiments on ShapeNet dataset using in-

stance segmentation annotations generated by [35], which

are not “real” ground truths. Following [35], only qualita-

tive results of part instance segmentation are provided. As

shown in Figure 8, tires of the car and legs of the chair are

well grouped into individual instances. Semantic segmen-

tation results are reported in Table 6. Using PointNet as

backbone, we achieve a 0.6-point improvement. Based on

PointNet++, ASIS outperforms the baseline by 0.7 mIoU.

These results demonstrate that our method is also beneficial

for part segmentation problem.

(a) Ins. (b) Ins. GT (c) Sem. (d) Sem. GT

Figure 8: Qualitative results of ASIS on ShapeNet test split. (a)

Instance segmentation results of ASIS. (b) Generated ground truth

for instance segmentation. (c) Semantic segmentation results of

ASIS. (d) Semantic segmentation ground truth.

Method mIoU

PointNet [26] 83.7

PointNet (RePr) 83.4

PointNet++ [28]* 84.3

ASIS (PN) 84.0

ASIS (PN++) 85.0

Table 6: Semantic segmentation results on ShapeNet datasets.

RePr is our reproduced PointNet. PointNet++* denotes the Point-

Net++ trained by us without extra normal information.

5. Conclusion

In this paper, a novel segmentation framework, namely

ASIS, is proposed for associating instance segmentation

and semantic segmentation on point clouds. The relation-

ships between the two tasks are explicitly explored and di-

rectly guide our method design. Our experiments on S3DIS

dataset and ShapeNet part dataset demonstrate the effec-

tiveness and efficiency of ASIS. We expect wide applica-

tion of the proposed method in 3D instance segmentation

and 3D semantic segmentation, as well as hoping the novel

design provides insights to future works on segmentation

tasks, e.g., panoptic segmentation, and beyond.

4103



References

[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-

tic parsing of large-scale indoor spaces. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., 2016. 2, 4

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic

image segmentation. arXiv: Comp. Res. Repository, 2017. 2

[3] Dorin Comaniciu and Peter Meer. Mean shift: A robust ap-

proach toward feature space analysis. IEEE Trans. Pattern

Anal. Mach. Intell., 2002. 3

[4] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun.

Instance-sensitive fully convolutional networks. In Proc.

Eur. Conf. Comp. Vis., 2016. 2

[5] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-

mantic segmentation via multi-task network cascades. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2016. 2

[6] Bert De Brabandere, Davy Neven, and Luc Van Gool.

Semantic instance segmentation with a discriminative loss

function. arXiv: Comp. Res. Repository, 2017. 1, 2, 3

[7] Engelmann Francis, Kontogianni Theodora, Hermans

Alexander, and Leibe Bastian. Exploring spatial context for

3d semantic segmentation of point clouds. In Proc. 3DRMS

Workshop of Int. Conf. Computer Vision, 2017. 2

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proc. IEEE Conf. Comp. Vis.

Patt. Recogn., 2014. 2

[9] Joris Guerry, Alexandre Boulch, Bertrand Le Saux, Julien
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