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Abstract

Curvilinear structures are frequently observed in various

images in different forms, such as blood vessels or neuronal

boundaries in biomedical images. In this paper, we pro-

pose a novel curvilinear structure segmentation approach

using context-aware spatio-recurrent networks. Instead of

directly segmenting the whole image or densely segmenting

fixed-sized local patches, our method recurrently samples

patches with varied scales from the target image with

learned policy and processes them locally, which is similar

to the behavior of changing retinal fixations in the human

visual system and it is beneficial for capturing the multi-

scale or hierarchical modality of the complex curvilinear

structures. In specific, the policy of choosing local patches

is attentively learned based on the contextual information

of the image and the historical sampling experience. In

this way, with more patches sampled and refined, the

segmentation of the whole image can be progressively

improved. To validate our approach, comparison exper-

iments on different types of image data are conducted

and the sampling procedures for exemplar images are

illustrated. We demonstrate that our method achieves the

state-of-the-art performance in public datasets.

1. Introduction

Due to the advances of deep learning techniques, image

segmentation has been rapidly developed in recent years,

with its main focus on semantically segmenting everyday

objects from natural images. On the other hand, there

are many other segmentation tasks about extracting objects

with special shapes, which requires prior domain knowl-

edge about the target objects. Some typical examples

include the cell or organ segmentation from biomedical

images [7, 53] and the aerial images semantic segmenta-

tion [32, 21, 29]. In the microscopic image data, objects

with curvilinear structures, such as blood vessels, are the

targets for segmentation, which have not attracted enough

attention in previous works.

Prior methods for addressing the task of the curvilinear

structure segmentation usually involved hand-crafted fea-
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Figure 1. Our proposed approach sequentially and adaptively samples

local patches from the input image, e.g. an retinal image as shown, and

then the segmentation in these patches are enhanced. The green boxes

represent the patches sampled at different time-steps (with 1
st, 24th, and

69
th as examples). The second row shows the zoomed-in results for the

first row’s segmentation results within red regions and compares with a

manual annotation as reference. The golden arrows highlight the major

changes in the zoomed-in region. Whenever the red and green boxes

overlap, the segmentation within red regions will be refined by taking into

account the image contexts. The segmentation of the entire image will be

progressively improved with more patches being sampled and refined.

tures [49], which cannot robustly handle a wide variety

of complex curvilinear structures and could be sensitive to

image noises. The recent success of Deep Convolutional

Neural Networks (DCNN) has greatly improved the perfor-

mance of image segmentation, and the standard DCNNs

have also been applied to segmentation tasks involving

curvilinear structures, such as blood vessel [24, 31] and

neurons [4, 42, 35, 10].However, the fixed receptive fields

of convolutional layers in DCNN models have difficulty

to identify the curvilinear structures in biomedical images,

because the curvilinear structures are complex, entangled,

and multi-scaled but may take up a small portion in the local

patches of the image. In addition, existing segmentation

methods [39, 7] need to randomly crop small patches

from the image using a fixed window size, in order to

collect adequate amount of training samples. In the testing

phase, these approaches have to sample patches with the

same window size as in training and to produce the final

segmentation result using the overlapped tiling strategy.

Such a random sampling process does not take into account

the context dependency in the image, which is important

for identifying a complex network of multi-scale curvilinear
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structures.

To handle the above limitations, we propose a novel

curvilinear structure segmentation approach, which is

inspired by the human visual system. According to [23],

it is widely believed that biological vision systems have

a sequential process with changing retinal fixations that

gradually accumulate evidence of certainty. Intuitively, to

examine an object or an image, we may first glance over it

and then watch attentively on the local regions to observe

the details. For the task of detecting curvilinear structures

that often exhibit multi-scale or hierarchical modality,

such kind of visual models can be applied. Hence, we

propose a spatio-recurrent segmentation approach that

sequentially processes patches sampled from the target

image. As shown in Fig. 1, the locations and sizes of the

selected patches are adaptively determined based on the

image context and the segmentation of these patches are

locally refined, which is similar to the behavior of changing

retinal fixations. By performing the sampling and the

local segmentation recursively, the multi-scale curvilinear

structures in the target image will be gradually extracted

and refined, making our method attractive for tasks like

segmenting blood vessels or cell boundaries from images.

Specifically, we adopt the Actor-Critic framework [22]

to learn the sampling policy that automatically decides

where to crop the patches and how large the patches shall

be. To incorporate the context dependency cues, the

sampling policy not only considers the contextual infor-

mation based on the holistic feature of the image, but

also considers the previous segmentation results via Long

Short-Term Memory (LSTM). Hence, in each step of our

proposed algorithm, the policy model infers the optimal

action for sampling the patch given the latest segmentation

mask. We also present an attentive feature extraction

module to guide the policy to focus in the region where

the segmentation decision is uncertain, in order to drive

the sampling process more effectively by following the

topology of the curvilinear structure networks. Finally,

for validation and evaluation, we experiment our approach

on datasets involving two types of curvilinear structures,

including two retinal image datasets (i.e., DRIVE [47] and

STARE [19]) and the Electron Microscopy dataset [2]. We

also illustrate the sampling procedures on exemplar images.

The contribution of this paper is threefold:

• We propose a novel spatio-recurrent segmentation

approach that sequentially segments proper-sized

local patches and progressively refines the curvilinear

structures of a target image.

• The patch sampling policy is learned by incorporating

the spatial attention, the contextual dependency cues

of the image, and the historical sampling experience.

• It accomplishes state-of-the-art performance in the

retinal image datasets and the Electron Microscopy

dataset.

2. Related Works

In this section, we survey related literatures on semantic

segmentation, curvilinear structure segmentation, and deep

reinforcement learning based vision works.

Semantic segmentation is one of the most challenging

tasks in computer vision, which attempts to predict pixel-

level semantic labels of a given image or video frame.

Inspired by the recent advance of Fully Convolutional Net-

works (FCN) [30], several techniques have been proposed

which incorporate multi-scale feature ensemble and context

information preservation, such as Dilated Convolution [52],

DeepLab [8], RefineNet [26], PSPNet [56], and RAN [55].

The DCNN-based image segmentation techniques have

also been used for segmenting special types of biological

structures, including the liver [27, 28], the lungs [11], the

kidney [25], the cells [7, 15], the pancreas [53], or the

hippocampus [12, 48]. In contrast, our work focuses on

extracting curvilinear structures from biomedical images.

Curvilinear structure segmentation has been studied

for decades [45, 38, 3, 36], because these structures are

ubiquitous in biological images, with typical examples as

blood vessels, bronchial networks, and dendritic arbors.

The segmentation of these structures is important for the

medical analysis, but the accurate automated delineation of

all curvilinear structures from an image is still challenging.

There are literatures related to this problem in the com-

munity of biomedical image analysis [39, 24, 31, 49] and

remote-sensing image analysis [33, 1, 57, 13, 50]. Among

these works, the blood vessel segmentation [3, 36, 31] and

the neuronal boundary detection [4, 42, 10] are extensively

studied. In recent years, DCNNs have been used for

curvilinear structure segmentation as well [39, 31, 42]. In

particular, U-Net [39] is presented as an encoder-decoder

architecture with skip connections, which demonstrates

excellent performance for detecting the boundaries of neu-

rons. Maninis et al. [31] fuse multi-scale deep features to

extract blood vessels from retina images. In [42], a multi-

stage fully convolutional neural network is presented for

boundary detection. Mosinska et al. [35] propose a pixel-

wise topology loss and a recursive refinement algorithm

to perform delineation. Compared with prior methods

that performs segmentation with fixed receptive fields, our

approach recurrently samples and segments the proper-

sized local patches incorporating with the contextual infor-

mation of the image.

Deep reinforcement learning (DRL) is first introduced

in [34], which applies a deep neural network as a func-

tion approximator to estimate the action-value function for

reinforcement learning. Recently, there are some works

attempting to apply DRL to computer vision tasks [5,
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Figure 2. Our proposed approach consists of three modules. Attentive feature extraction first performs the feature extraction for the target image I , i.e., the

holistic feature of I is masked by an attention map inferred from the latest segmentation Mt−1 to obtain the feature ft. Next, given the attentive holistic

feature, the policy network will sample an action to select a proper patch Ît from the target image. In this figure, the sampled action is to enlarge the cropping

window to obtain the new patch. Finally, in local segmentation, the selected patch is applied to generate a local segmentation M̂ and then update the global

segmentation Mt that will be recursively used for sampling the next action.

54, 6, 20, 17]. Caicedo et al. [5] introduced a sequen-

tial algorithm that attentively localizes the objects in an

image. Cao et al. [6] applied DRL for face hallucination,

which sequentially discovers image patches that should be

attached more attention and enhanced. Yun et al. [54] casted

the problem of visual object tracking to a decision making

process and applied DRL method to sequentially move the

bounding box, achieving accurate tracking results. Han et

al. [17] presented a Deep Q-learning based approach that

simultaneously localizes and segments the target object in a

video. There are also several methods attempting to apply

RL techniques to the image segmentation problem [40, 37,

46, 16, 17], but they are limited to natural images or videos.

In contrast to these previous works, the focus of this paper is

about the progressive and adaptive refinement of curvilinear

structure segmentation of particular biomedical images.

3. Proposed Approach

In this work, we formulate the image segmentation as a

sequential decision-making process, in which an agent takes

a sequence of actions to accomplish a global optimization

task. Particularly, given an initial coarse segmentation, we

introduce a segmentation agent that sequentially samples

proper-sized patches from the target image for local seg-

mentation and finally obtain the optimal global segmenta-

tion result. As visualized in Fig. 2, our proposed pipeline

can be briefly formulated as:

ft ← Fe(I,Mt−1), (1)

at ← Fπ(ft, ht−1), (2)

Ît ← Fa(I, Ît−1, at), (3)

Mt ← Merge(Fs(Ît),Mt−1). (4)

Specifically, at each step t, the segmentation agent receives

observations from the target image I , the latest segmenta-

tion maskMt−1, and the historical experience ht. Accord-

ing to these observations, the attentive feature extraction

module Fe extracts an attentive holistic feature ft for

representing the current state of the segmentation task, as

shown in Eq. 1. Next, the policy network module uses the

learned policy Fπ in Eq. 2 to sample an action at from

the action space A, given the extracted feature ft. The

execution of this action (i.e., Fa(·) in Eq. 3) will crop a new

patch Ît from the image based on previously selected local

patch Ît−1. After that, the local segmentation model Fs

will perform segmentation on the local patch Ît and merge

it into the global segmentation maskMt that will be used

in the next time-step. After the execution of each action, the

agent will receive a reward according to the pixel-wise error

between the updated segmentation mask and the ground-

truth. To sum up, the goal of the agent is to find an optimal

patch that maximizes the accumulated reward, by iteratively

performing Eq. 1, 2, 3 and 4.
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3.1. Policy network

As the core of our framework, the policy network per-

forms the sequential local patch mining. In the following

part, we introduce our state and action formulation.

State: In our formulation, the state consists of two parts:

the current segmentation mask and the historical experi-

ence, i.e. st = {Mt, ht}, where Mt indicates the global

segmentation mask at the current time step t, and ht is one

LSTM latent layer which encodes the historical experience

by incorporating all previous actions and is computed by

forwarding the encoded history action vector ht−1. In

this way, the state of the decision making procedure not

only considers the current observation but also involves the

historical experience, which enables the segmentation agent

to perceive the complete contextual information in a human-

k’z’m’blike manner.

Actions: Given the input image I with size W × H , the

agent first selects one patch Ît = (x, y, w, h) where (x, y)
refers to the top-left position of the patch and (w, h) refers

to its width and height, and then updates the segmentation

mask in the patch. We define the action space A as a

group of transformation selections for adapting the size and

the position of Ît, including the translation actions, the

scaling actions, and a termination action. In particular,

the translation refers to the four actions which move Ît
leftward, rightward, upward, and downward by 16 pixels,

respectively. The four scaling actions will scale the width

and the height of the patch window size by ×1, ×0.5,

×0.375, and ×0.25, respectively. In practice, we use a

square patch, i.e,. w ≡ h, and both w and h are assigned

with the default 512 pixels. Thus, the scaled patch sizes

could be 512 × 512, 256 × 256, 192 × 192, or 128 × 128.

The termination action will stop the segmentation procedure

whenever it is chosen. In total, we have 9 actions, and each

of them is then represented as a dim-9 one-hot action vector

at ∈ {0, 1}
9.

3.2. Network architectures

Global segmentation. At the beginning, our model is given

a coarse initial segmentation. This initial global segmenta-

tion maskM0 is produced using a U-Net architecture [39]

that has been widely used in many vision tasks. This U-Net

is trained using the complete images from training datasets.

Attentive feature extraction. To incorporate holistic cues

for encoding the contextual dependency, we extract the

holistic feature of the image using the network Fglobal,

which is the Conv1-5 layers of the pretrained VGG

model [43] as shown in Fig. 2. Since the extracted global

feature of the image does not vary over time, we need to

incorporate it with the latest global segmentation mask

Mt in order to extract a feature that is sensitive to the

temporal variations of the segmentation mask in the image.

However, sometimes, the update difference between Mt

Figure 3. Visualization of the segmentation, the attention map, and the

attentive regions of the segmentation. As shown, the entangled and the

thin structures are highlighted.

and Mt−1 can be small, which slows the progress of the

reinforcement learning. To extract the temporal-varying

feature more effectively, we learn a binary mask to attend

the feature extraction, where the attention module Fatt

consists two fully-connected layers as shown in Fig. 2. The

attention module produces a binary attention map with the

same spatial size as the holistic feature. In practice, the

dimension of the holistic feature is 16 × 16 × 512. The

output dimension of the second FC layers in Fatt is 256,

which is reshaped into 16 × 16 as the attention map. As

illustrated in Fig. 2, the holistic feature and the attention

map are multiplied to compute the feature as:

ft = Fe(I,Mt−1) = Fatt(Mt−1)⊙Fglobal(I), (5)

where ⊙ indicates the element-wise multiplication. The

attention map tends to focus on the regions where the

segmentation decision is still uncertain, as shown in Fig. 3.

Policy sampling. Next, the feature ft is passed forward

to the recurrent module, which encodes or memorizes the

historical experience ht. The recurrent module is composed

of three fully-connected layers and an LSTM layer, as

shown in Fig. 2. It outputs a transformation action at in

the form of a one-hot vector. The action will then be used

to crop a patch Ît from the image I .

Local segmentation. Finally, the selected patch Ît is

fed into a local segmentation model to obtain a new seg-

mentation mask Mt. In practice, we set up the local

segmentation model as the same U-Net architecture as the

global segmentation model, except that it is trained using

multi-scale patches randomly sampled from the training

images. Generally, the local segmentation model does not

have to be a U-Net, and it could be replaced with any

encoder-decoder architectures. After the patch Ît is fed to

the local segmentation model, a local segmentation mask

M̂ is computed, which is of the same size as Ît and is used

to update the segmentation mask by Merge(·). In particular,

the Merge(·) in Eq. 4 is implemented as follows. Within the

region of Ît, the segmentation maskMt is computed as the

linear fusion of the local segmentation M̂ and the last step

segmentation maskMt−1:

Mt|Ît= γMt−1|Ît+(1− γ)M̂, (6)

while for the region outside Ît,Mt just copy from the last

step result: Mt|I\Ît=Mt−1|I\Ît . In this way, the current

local segmentation will not completely replace the previous
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one in a single step and thus the smooth structures may be

preserved.

Reward. The reward is defined as the improvement of

the local segmentation from time-step t − 1 to t, which

encourages the agent to locate a patch that brings the

maximum improvement. In the training stage, since the

process is a trial-and-error learning, the segmentation may

not be improved in each step. But the learned policy will

eventually let the segmentation reaches the global optimal

state. We adopt L1 distance to measure the error of the

segmentation. In particular, when the L1 distance between

the segmentation and its ground-truth decreases from t−1 to

t, a positive reward will be obtained. Otherwise, the reward

will be negative. Hence, the reward function R is designed

as:

R = λ(||M̂gt
t−1
− M̂t−1||1−||M̂

gt
t − M̂t||1), (7)

where M̂t = Mt|Ît is the restriction of the segmentation

mask Mt in the patch region defined by Ît, M̂
gt
t denotes

the ground-truth of the local segmentation for M̂t. λ is set

to 3 and ǫ is set to 10.

3.3. Actor­Critic based learning

We use Temporal Difference based Actor-Critic algo-

rithm [22] to learn a policy to sample patches from target

images for optimally improving the segmentation perfor-

mance. In the training stage, the algorithm experiences lots

of training examples of high rewards from good actions and

negative rewards from bad actions, by selecting an action

from the existing policy network using a softmax output

layer. When the training progresses, the algorithm can iter-

atively update the policy network, which is called the Actor

in the Actor-Critic framework, and a value function referred

as the Critic module, which guides the gradient update of

the Actor module according to a Temporal Difference (TD)

error signal. The TD signal is an approximation to the

advantage function, i.e., how good the action is compared

to the average of all the actions in terms of the segmentation

quality. After convergence, the Actor-Critic algorithm can

provide a high-quality policy for performing high-quality

patch sampling of a given target image.

4. Experiments

4.1. Datasets and implementation details

Datasets. We evaluate our approach on two types of

biomedical image data featuring different linear structures.

• Blood vessel images. We experiment on DRIVE [47]

and STARE [19], containing 40 and 20 images, respec-

tively. Both contain manual segmentations of the

blood vessels by expert annotators. Following [31],

for DRIVE, we use the standard train/test split. For

STARE, we use the first 10 images as the training set

and the last 10 as the test set.

• Electron Microscopy images (EM). The task of the

EM dataset [2] is to detect neuronal boundaries. There

are 30 training images with ground truth annotations

and 30 test images for which the ground-truth is

withheld by the organizers. Following the practice of

[35], we split the training set into 15 training and 15

test images.

Implementation details. We have built our networks with

Tensorflow and trained on a single NVIDIA GTX 1080Ti.

Particularly, in the attention learning module, the output

sizes of the two FC layers are 512 and 256. In the

FC layers of the policy network, the output sizes are 30,

30, and 10, while the output dimension of LSTM is 64.

Besides, we deploy the same U-Net architecture for global

and local segmentation, which consists of 5 convolutional

layers for downsampling and 5 deconvolutional layers for

upsampling. As mentioned, the global segmentation model

is trained on the complete images only, while the local seg-

mentation model is trained on multi-scale patches cropped

from the training image. Their input spatial resolution is

512 × 512, and thus all training samples are resized to

512× 512 before being fed into the network. Furthermore,

we perform data augmentation by mirroring and rotating the

training images. Additionally, in the EM dataset, we apply

elastic deformations as suggested in [39] to compensate for

the small amount of training data.

In the training phase, we iteratively train over all images

for each training dataset. We treat each image as a unique

training scenario for the Actor-Critic framework. It runs

for maximally 500 steps for each image to collect adequate

observations. We choose Adam as the optimization solver

in the training stage and the learning rates of the Actor and

the Critic are set to 10−4 and 10−3 respectively.

Metrics. For evaluating the comparison results on DRIVE,

we use F1-measure, which is often applied for evaluating

the segmentation results. We also compute the pixel-wise

precision-recall for reference. For the EM and STARE

dataset, we follow the metrics used in [35] that adopts F1-

measure along with correctness, completeness, and qual-

ity [18]. They are metrics designed specifically for linear

structures, which measure the similarity between predicted

structures and ground truth. All metrics are computed at the

optimal point of comparison methods.

4.2. Results analysis

Learning progress analysis. To analyze the learning

progress, we evaluate the our model at different training

stages on the DRIVE dataset. We use the global seg-

mentation model as the baseline model without learning

any policy sampling, denoted as Global. We compare
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Original image Manual annotation Ours DRIU CRFs

Figure 4. Our approach is compared against DRIU and CRFs on three exemplar images from the DRIVE dataset. The first two columns refer to the target

image and the manual annotation. The third to fifth columns refer to the segmentation results of ours, DRIU, and CRFs, respectively. In addition, we

highlight several local patches for a more detailed comparison. The zoomed-in patches on the 1
st and 2

nd row are shown at the bottom-left corner of each

image, while the ones on the 3
rd row are at the bottom-right corner.

Original image Ground-truth Ours Topology U-Net Reg-AC

Figure 5. Comparison with Topology, U-Net, and Reg-AC based on two images in the EM dataset. Results are from the original work of [35].

the models with policy sampling trained for 1, 2, and 3
iterations over all of the 40 training images, respectively.

They are denoted as Ours-iter1, Ours-iter2, and Ours-iter3.

Results in Tab. 1 demonstrate that our model with policy

sampling obviously improves the performance of the global

model, since Ours-iter1 and Ours-iter2 outperform it in

all metrics. However, the model can hardly be improved

for more than 3 iterations, since Ours-iter3 degrades the

precision with little gain in other metrics.

Quantitative results. We evaluate our proposed approach

in the tasks of blood vessel segmentation in DRIVE and

STARE as well as the neuron boundary detection in the

EM dataset. For the EM dataset, we compare against the

methods: CHM-LDNN [41], Reg-AC [44], U-Net [39],

and [35] (denoted as Topology for convenience), according

to the original results published in the latest work [35].
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Original image Manual annotation 1 Manual annotation 2 Ours DRIU

Figure 6. Comparison against DRIU with reference to two manual annotations based on an image from STARE dataset.

Original image (1) Global segmentation M0 (2) M37 (3) M142

(4) M238 (5) M309 (6) M409 Manual annotation

Figure 7. An example of how our approach progressively refines the segmentation from (1) to (6). We highlight the changes from the previous segmentation

using colors of red and blue. The red color indicates the enhanced regions, while the blue color indicates the opposite.

Model F1 Prec. Recall

Global 0.7691 0.8652 0.7003

Ours-iter1 0.8074 0.8802 0.7297

Ours-iter2 0.8195 0.8914 0.7674

Ours-iter3 0.8203 0.8783 0.7729

Table 1. The comparison of the performances for models with different

training configurations on the DRIVE dataset.

For the blood vessel segmentation, our model is compared

with the state-of-the-art approaches including DRIU [31],

N4 fields [14], Kernel Boost [3], HED [51], CRFs [36],

Wavelets [45], and SE [9]. Note that these state-of-the-art

results are provided in the public benchmark 1.

In Tab. 2, we first conduct comparison experiments on

the EM dataset and the STARE dataset. We not only

measure the F1 score of methods, but also evaluate the

correctness, the completeness, and the quality of extracted

curvilinear structures by thinning the segmentation. As

illustrated, our approach outperforms other approaches,

thanks to our context-aware segmentation’s capability in

preserving smooth and continuous structures.

1http://www.vision.ee.ethz.ch/ cvlsegmentation/driu/index.html

Dataset Methods F1 Corr. Comp. Quality

STARE

HED 0.8050 0.3801 0.5021 0.2749

Wavelets 0.7733 0.3761 0.4529 0.2590

DRIU 0.8307 0.4725 0.5227 0.3306

Ours 0.8415 0.5473 0.5563 0.3810

EM

HED 0.7227 - - -

CHM-LDNN 0.8072 - - -

Reg-AC - 0.7110 0.6647 0.5233

U-Net 0.7952 0.6911 0.7128 0.5406

Topology 0.8230 0.7227 0.7358 0.5722

Ours 0.8345 0.7671 0.9152 0.7160

Table 2. Experimental results on the STARE and the EM dataset.

The comparison metrics include F1-measure and three line structure

assessment metrics: correctness (Corr.), completeness (Comp.), and

quality.

In addition, in Tab. 3, we compare our approach with

several state-of-the-art approaches on the DRIVE dataset,

including the DCNN-based approach DRIU [31] incorpo-

rated with the technique of deep feature fusion, which

achieves the top performance in their public benchmark.

It is demonstrated that our approach outperforms others in

terms of F1-measure and the balanced precision and recall,
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Original image (1) M0 (2) M41 (3) M56 (3) M58 Ground-truth

Figure 8. From (1) to (4), an examplar image from the EM dataset shows how our approach progressively refines the segmentation.

Methods F1 Prec. Recall Corr. Comp. Quality

Wavelets 0.7618 0.7479 0.7763 0.4918 0.2134 0.1782

SE 0.6584 0.6784 0.6396 0.3794 0.1603 0.1259

HED 0.7959 0.7981 0.7938 0.4383 0.4157 0.2703

Kernel Boost 0.8003 0.8098 0.7929 0.4689 0.4201 0.2840

N
4 Fields 0.8052 0.8081 0.8024 0.5650 0.3646 0.2843

CRFs 0.7812 0.7783 0.7842 0.4939 0.4031 0.2856

DRIU 0.8221 0.8179 0.8264 0.4734 0.4725 0.3137

Ours 0.8353 0.8288 0.8419 0.5768 0.4639 0.3432

Table 3. Experimental results on the DRIVE dataset. The comparison

metrics include F1-measure, precision, recall, correctness, completeness,

and quality.

Figure 9. Illustration of the per-pixel L1 loss in the process of our

segmentation for the examples in Fig. 7 (left) and Fig. 8 (right).

since our model can provide more consistent segmentation

in blood vessels.

Qualitative results. We illustrate some typical results from

these datasets. First, in Fig. 4, provided three retinal images

of the DRIVE dataset, our approach is compared against

DRIU and CRFs. Generally, DRIU produces noisy results

with false positive predictions, while the ones created by

CRFs have a lot of missed detections. As highlighted in

the zoomed-in red boxes, the vessel structures are well

preserved and smooth with very few noise. Next, in

Fig. 5, we use the two examples from [35] for comparison.

Generally, our produced results show higher quality than

others. Since the test image is challenging, although there

are some mis-detections observed in our results, our results

have generated clearer boundaries and fewer noises than

other methods. Lastly, we experiment on the image from

the STARE dataset. Note that the training data is labeled

by two persons. Our model is trained on data from the first

annotator, but we observe in Fig. 6 that our model manages

to extract thin structures similar to the second annotation.

Context-aware sampling. We first experiment on an exam-

ple from DRIVE to demonstrate our sampling procedure.

Our approach runs for 450 steps on this image and its

performance is illustrated as the curve of per-pixel L1
loss of Fig. 9 (left). In Fig. 7, we select several key

frames to show how our approach recurrently refines the

segmentation at the 37th, 142nd, 238th, 309th, and 409th

steps. The improvements for the segmentation between

frames are highlighted in colors. We observe that the agent

first enhances the thin structures in the image center, but it

also leaves discontinuity in the segmentation mask. Then,

the agent moves around to remove the discontinuity and

tries to filter out noises in the empty space. In the last few

steps, the agent moves to image boundary to enhance the

segmentation of the main branches. In Fig. 5, we illustrate

the procedure of our segmentation on another image from

the EM dataset. We run for 60 steps in this image, shown

in Fig. 9 (right). In 41st step, small circles are closed, but

some of the neuronal boundaries are distorted. Then, the

boundaries are refined, while noises inside the neuron are

removed at the 56th and 58th steps.

5. Conclusion

In this paper, we propose a curvilinear structure segmen-

tation algorithm using context-aware recurrent networks.

Rather than segmenting the entire image or fixed-sized

local patches, our method sequentially attends to segment

a local patch from the target image with a proper size,

where the strategy of choosing local patches is learned

based on the contextual information of the image. Hence,

the segmentation result can be progressively refined.

Due to the limited training data, we only adopt a small

discrete set of actions, which may increase the number of

sampled actions for each image. Additionally, since we

apply the naive U-Net as the segmentation model, it is

difficult to accurately identify all of those thin structures.

As the future work, a richer set of actions may be applied

and an advanced segmentation network could be applied to

improve the performance and the versatility of our model

for more vision tasks.
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