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Figure 1. Deep network interpolation is capable of generating continuous imagery effect transitions. (1st row) from MSE effect to GAN

effect in super-resolution; (2nd row) from Van Gogh style to Ukiyo-e style; (3rd row) from day photo to night one; (4th row) from deep

depth of field (DoF) to shallow one. More applications are provided in Sec. 4. (Zoom in for best view)

Abstract

Deep convolutional neural network has demonstrated its

capability of learning a deterministic mapping for the de-

sired imagery effect. However, the large variety of user

flavors motivates the possibility of continuous transition

among different output effects. Unlike existing methods that

require a specific design to achieve one particular transition

(e.g., style transfer), we propose a simple yet universal ap-

proach to attain a smooth control of diverse imagery effects

in many low-level vision tasks, including image restoration,

image-to-image translation, and style transfer. Specifically,

our method, namely Deep Network Interpolation (DNI), ap-

plies linear interpolation in the parameter space of two or

more correlated networks. A smooth control of imagery

effects can be achieved by tweaking the interpolation co-

efficients. In addition to DNI and its broad applications,

we also investigate the mechanism of network interpolation

from the perspective of learned filters.

Project page: https://xinntao.github.io/projects/DNI/.

1. Introduction

Deep convolutional neural (CNN) network has achieved

a great success in many low-level vision tasks, such as im-

age restoration [3, 18, 20, 1, 44, 2, 28], image-to-image

translation [15, 37, 26, 47] and image style transfer [8, 17,

6]. For each specific task, the deep network learns a deter-

ministic mapping and outputs a fixed image for the same

inputs. However, one determined output is unable to satisfy

diverse user flavors and meet the needs in various scenarios,

limiting the applicability for practical use.

In many real-world applications, it is desired to have a

smooth control for continuous transition among different

output effects. For instance, 1) in super-resolution, mod-

els trained with the mean-square-error (MSE) loss [34] tend

to produce over-smooth images while those with the gen-

erative adversarial network (GAN) [20] generate vivid de-

tails but with some unpleasant noise (e.g., Fig 1, 1st row).

A balanced result between these two different effects would

be more visual-pleasing with reduced artifacts. 2) Many im-

age restoration tasks deal with multiple degradation levels,

such as different noise levels and blur kernels. Most ex-
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isting methods can only handle limited degradation levels.

It is costly to train lots of models for continuous degrada-

tion levels in practice. Thus, a model with the flexibility of

adjusting the restoration strength would expand the appli-

cation coverage. 3) In artistic manipulation like image-to-

image translation and image style transfer, different users

have different aesthetic flavors. Achieving a smooth control

for diverse effects with a sliding bar are appealing in these

applications.

Several approaches have been proposed to improve the

CNN’s flexibility for producing continuous transitions in

different tasks. Take image style transfer as an example,

adaptive scaling and shifting parameters are used in instance

normalization layers [6, 12] for modeling different styles.

Interpolating these normalization parameters for different

styles produces the combination of various artistic styles. In

order to further control the stroke size in the stylized results,

a carefully-designed pyramid structure consisting of several

stroke branches are proposed [16]. Though these methods

are able to realize continuous transition, there are several

drawbacks: 1) These careful designs are problem-specific

solutions, lacking the generalizability to other tasks. 2)

Modifications to existing networks are needed, thus com-

plicate the training process. 3) There is still no effective

and general way to solve the smooth control in tasks like

balancing MSE and GAN effects in super-resolution.

In this paper, we address these drawbacks by introduc-

ing a more general, simple but effective approach, known

as Deep Network Interpolation (DNI). Continuous imagery

effect transition is achieved via linear interpolation in the

parameter space of existing trained networks. Specifically,

provided with a model for a particular effect A, we fine-tune

it to realize another relevant effect B. DNI applies linear

interpolation for all the corresponding parameters of these

two deep networks. Various interpolated models can then be

derived by a controllable interpolation coefficient. Perform-

ing feed-forward operations on these interpolated models

using the same input allows us to outputs with a continuous

transition between the different effects A and B.

Despite its simplicity, the proposed DNI can be applied

to many low-level vision tasks. Some examples are pre-

sented in Fig 1. Extensive applications showcased in Sec. 4

demonstrate that deep network interpolation is generic for

many problems. DNI also enjoys the following merits. 1)

The transition effect is smooth without abrupt changes dur-

ing interpolation. The transition can be easily controlled by

an interpolation coefficient. 2) The linear interpolation op-

eration is simple. No network training is needed for each

transition and the computation for DNI is negligible. 3)

DNI is compatible with popular network structures, such

as VGG [31], ResNet [10] and DenseNet [11].

Our main contribution in this work is the novel notion

of interpolation in parameter space, and its application in

low-level vision tasks. We demonstrate that interpolation in

the parameter space could achieve much better results than

mere pixel interpolation. We further contribute a system-

atic study that investigates the mechanism and effectiveness

of parameter interpolation through carefully analyzing the

filters learned.

2. Related Work

Image Restoration. CNN-based approaches have led to a

series of breakthroughs for several image restoration tasks

including super-resolution [3, 18, 25, 19, 33, 20, 43], de-

noising [1, 44], de-blocking [40, 7] and deblurring [42, 32,

28]. While most of the previous works focus on address-

ing one type of distortion without the flexibility of adjusting

the restoration strength, there are several pioneering works

aiming to handle various practical scenarios with control-

lable “hyper-parameters”. Zhang et al. [45] adopt CNN

denoisers to solve image restoration tasks by manually se-

lecting the hyper-parameters in a model-based optimiza-

tion framework. However, a bank of discriminative CNN

denoisers are required and the hyper-parameter selection

in optimization is not a trivial task [4]. SRMD [46] pro-

poses an effective super-resolution network handling mul-

tiple degradations by taking an degradation map as extra

inputs. However, the employed dimensionality stretching

strategy is problem-specific, lacking the generalizability to

other tasks.

Image Style Transfer. Gatys et al. [8] propose the neural

style transfer algorithm for artistic stylization. A number of

methods are developed to further improve its performance

and speed [35, 17, 21]. In order to model various/arbitrary

styles in one model, several techniques are developed, in-

cluding conditional instance normalization [6], adaptive in-

stance normalization [12, 9] and whitening and coloring

transforms [23]. These carefully-designed approaches are

also able to achieve user control. For example, interpolating

the normalization parameters of different styles produces

the combination of various artistic styles. The balance of

content and style can be realized by adjusting the weights

of their corresponding features during mixing. In order to

control the stroke size, a specially designed pyramid struc-

ture consisting of several stroke branches are further pro-

posed [16]. In these studies, different controllable factors

require specific structures and strategies.

Image-to-image Translation. Image-to-image transla-

tion [15, 37, 26, 47, 13] aims at learning to translate an

image from one domain to another. For instance, from

landscape photos to Monet paintings, and from smartphone

snaps to professional DSLR photographs. These methods

can only transfer an input image to a specific target mani-

fold and they are unable to produce continuous translations.

The controllable methods proposed in image restoration and

image style transfer are problem-specific and cannot be di-
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rectly applied to the different image-to-image translation

task. On the contrary, the proposed DNI is capable of deal-

ing with all these problems in a general way, regardless of

the specific characteristics of each task.

Interpolation. Instead of performing parameter interpola-

tion, one can also interpolate in the pixel space or feature

space. However, it is well known that interpolating images

pixel by pixel introduces ghosting artifacts since natural im-

ages lie on a non-linear manifold [41]. Upchurch et al. [36]

propose a linear interpolation of pre-trained deep convo-

lutional features to achieve image content changes. This

method requires an optimization process when inverting the

features back to the pixel space. Moreover, it is mainly de-

signed for transferring facial attributes and not suitable for

generating continuous transition effects for low-level vision

tasks. More broadly, several CNN operations in the in-

put and feature space have been proposed to increase the

model’s flexibility. Concatenating extra conditions to in-

puts [46] or to middle features [22] alters the network be-

havior in various scenes. Modulating features with an affine

transformation [29, 5, 38] is able to effectively incorporate

other information. Different from these works, we make

an attempt to investigate the manipulation in the parameter

space. A very preliminary study for network interpolation

is presented by ESRGAN [39], focusing to enhance compe-

tition results. DNI provides more comprehensive investiga-

tions and extends to more applications.

3. Methodology

3.1. Deep Network Interpolation

Many low-level vision tasks, e.g., image restoration,

image style transfer, and image-to-image translation, aim

at mapping a corrupted image or conditioned image x to

the desired one y. Deep convolutional neural networks

are applied to directly learn this mapping function Gθ

parametrized by θ as y = Gθ(x).

Consider two networks GA and GB with the same struc-

ture, achieving different effects A and B, respectively. The

networks consist of common operations such as convolu-

tion, up/down-sampling and non-linear activation. The pa-

rameters in CNNs are mainly the weights of convolutional

layers, called filters, filtering the input image or the prece-

dent features. We assume that their parameters θA and θB
have a “strong correlation” with each other, i.e., the filter or-

ders and filter patterns in the same position of GA and GB

are similar. This could be realized by some constraints like

fine-tuning, as will be analyzed in Sec. 3.2. This assumption

provides the possibility for meaningful interpolation.

Our aim is to achieve a continuous transition between the

effects A and B. We do so by the proposed Deep Network

Interpolation (DNI). DNI interpolates all the corresponding

parameters of these two models to derive a new interpolated

model Ginterp, whose parameters are:

θinterp = α θA + (1− α) θB , (1)

where α ∈ [0, 1] is the interpolation coefficient. Indeed,

it is a linear interpolation of the two parameter vectors θA
and θB . The interpolation coefficient α controls a balance

of the effect A and B. By smoothly sliding α, we achieve

continuous transition effects without abrupt changes.

Generally, DNI can be extended for N models, denoted

by G1, G2, ..., GN , whose parameters have a “close corre-

lation” with each other. The DNI is then formulated as:

θinterp = α1θ1 + α2θ2 + ...+ αNθN , (2)

where αi satisfy αi ≥ 0 and α1 + α2 + · · · + αN = 1.

In other words, it is a convex combination of the param-

eter vectors θ1, θ2, ..., θN . By adjusting (α1, α2, ..., αN ), a

rich and diverse effects with continuous transitions could be

realized.

The interpolation is performed on all the layers with pa-

rameters in the networks, including convolutional layers

and normalization layers. Convolutional layers have two

parameters, namely weights (filters) and biases. The biases

are added to the results after filtering operation with filters.

Apart from the weights, DNI also operates on the biases,

since the added biases influence the successive non-linear

activation.

Batch normalization (BN) layers [14] have two kinds of

parameters. 1) The statistics running mean and running var

track the mean and variance of the whole dataset during

training and are then used for normalization during eval-

uation. 2) the learned parameters γ and β are for a fur-

ther affine transformation. During inference, all these four

parameters actually could be absorbed into the precedent

or successive convolutional layers. Thus, DNI also per-

forms on normalization parameters. Instance normalization

(IN) has a similar behavior as BN, except that IN uses in-

stance statistics computed from input data in both training

and evaluation. We take the same action as that for BN.

In practice, the interpolation is performed on not only the

weights but also the biases and further normalization lay-

ers. We believe a better interpolation scheme considering

the property of different kinds of parameters is worthy of

exploiting.

It is worth noticing that the choice of the network struc-

ture for DNI is flexible, as long as the structures of mod-

els to be interpolated are kept the same. Our experiments

on different architectures show that DNI is compatible with

popular network structures such as VGG [31], ResNet [10]

and DenseNet [11]. We also note that the computation of

DNI is negligible. The computation is only proportional to

the number of parameters.
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Figure 2. Filter correlations. The first two rows are the filters of

different runs (both from scratch) for the denoising (N20) task.

The filter orders and filter patterns in the same position are differ-

ent. The fine-tuned model (N60) (3rd row) has a “strong correla-

tion” to the pre-trained one (1st row).

3.2. Understanding Network Interpolation

We attempt to gain more understanding on network in-

terpolation from some empirical studies. From our experi-

ments, we observe that: 1) Fine-tuning facilitates high cor-

relation between parameters of different networks, provid-

ing the possibility for meaningful interpolation. 2) Fine-

tuned filters for a series of related tasks present continu-

ous changes. 3) Our analyses show that interpolated filters

could fit the actual learned filters well. Note that our anal-

yses mainly focus on filters since most of the parameters in

CNNs are in the form of filters.

We present our main observations with a representative

denoising task and focus on increasing noise levels with

N20, N30, N40, N50, and N60, where N20 denotes the

Gaussian noise with zero mean and variance 20. In order

to better visualize and analyze the filters, we adopt a three-

layer network similar to SRCNN [3], where the first and last

convolutional layers have 9×9 filter size. Following the no-

tion of [3], the first and last layer layers can be viewed as a

feature extraction and reconstruction layer, respectively.

Fine-tuning for inter-network correlation. Even for the

same task like denoising with the N20 level, if we simply

train two models from scratch, the filter orders among chan-

nels and filter patterns in the corresponding positions could

be very different (Fig. 2). However, a core representation

is shared between these two networks [24]. For instance, in

Fig. 2, filer c is identical to filter f ; filter a and filter e have a

similar pattern but with different colors; filter b is a inverted

and rotated counterpart of filter d.

Fine-tuning, however, can help to maintain the filters’s

order and pattern. To show this, we fine-tune a pre-trained

network (N20) to a relevant task (N60). It is observed that

the filter orders and filter patterns are maintained (Fig. 2).

The “high correlation” between the parameters of these two

networks provides the possibility for meaningful interpo-

lation. We note that besides fine-tuning, other constraints

such as joint training with regularization may also achieve

such inter-network correlation.

Learned filters for related tasks exhibit continuous

changes. When we fine-tune several models for relevant

N20 N30 N40 N50 N60
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ar
n
ed
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te
rp

N20 N30 N40 N50 N60
feature extraction layer reconstruction layer
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interp
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Figure 3. Filters with gradual changes. We show one representa-

tive filter for each layer. 1st row: The fine-tuned filters for differ-

ent noise level show gradual changes. 2nd row: The interpolated

filters (with red frames) from the N20 and N60 filters could visu-

ally fit those learned filters well. 3rd row: The correlation curves

for learned and interpolated filters are also very close.

tasks (N30, N40, N50, and N60) from a pre-trained one

(N20), the correspondingly learned filters have intrinsic re-

lations with a smooth transition. As shown in Fig. 3 (1st
row), the trained filters show gradual changes as the noise

level increases. Apart from visualization, we also calculate

a correlation index ρij to measure the correlations of filters

Fi and Fj :

ρij =
(Fi − Fi) · (Fj − Fj)

√

‖Fi − Fi‖2

√

‖Fj − Fj‖2

. (3)

We choose this form (similar to the Pearson correlation)

since it ignores the scale and shift influences and focus on

the filter pattern itself. We calculate the correlation index

for each filter with the first N20 filter and plot the curve

(blue curve in Fig. 3). The results suggest a close relation-

ship among the learned filters, exhibiting a gradual change

as the noise level increases.

The interpolated filters fit the learned filters well. The

continuous changes of learned filters suggest that it it pos-

sible to obtain the intermediate filters by interpolating the

two ends. To further verify this observation, we perform lin-

ear interpolation between the filters from the N20 and N60

models. With optimal coefficients α, the interpolated fil-

ters could visually fit those learned filters (2nd row with red

frames, Fig. 3). We further calculate the correlation index

for each interpolated filter with the first N20 filter. The cor-

relation curves for learned and interpolated filters are also

very close.

The optimal α is obtained through the final performance

of the interpolated network. Specifically, we perform DNI

with α from 0 to 1 with an interval of 0.05. The best α for

each noise level is selected based on which that makes the

interpolated network to produce the highest PSNR on the

test dataset.

Discussion. It is noteworthy that similar observations could

also be found in several other tasks, such as super-resolution

with different kernels and JPEG artifacts removal with dif-
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ferent compression levels. We provide the details in the sup-

plementary material.

The analysis above is by no means complete, but it gives

a preliminary explanation behind the DNI from the filter

perspective. As the network goes deeper, the non-linearity

increases and the network behaviors become more compli-

cated. However, we still observe a similar phenomenon

for deeper networks. Since filter visualization is difficult

in deep networks, which typically designed with a stack of

convolutional layers of 3 × 3 kernels, we adopt the corre-

lation index (Eq. 3) to analyze the filter correlations among

models for a series of noise levels. We employ DnCNN [44]

with 17 layers and analyze the 5th (the front) and 12th (the

back) convolutional layers. In Fig. 4, the correlation curves

show the median of correlation indexes w.r.t. the first N20

model and the correlation distribution are also plotted. Be-

sides the high correlation among these models, we can also

observe gradual changes as the noise level increases. Fur-

thermore, the front and the back convolution layers present

a similar transition trend, even their distributions highly co-

incide.
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Figure 4. Filter correlation for deeper denoising networks. We

show a front (5th) and a back (12th) layer. The curves present

the median of correlation indexes and the correlation distribution

are also plotted. Note that the two distributions highly coincide.

Zoom in for subtle differences.

4. Applications

We experimentally show that the proposed DNI can

be applied to extensive low-level vision tasks, e.g., image

restoration (Sec. 4.1), image-to-image translation (Sec. 4.2)

and image style transfer (Sec. 4.3). Another example

of smooth transitions on face attributes are presented in

Sec. 4.4, indicating its potential for semantic changes. Due

to space limitations, more examples and analyses are pro-

vided in the supplementary material and the project page1.

4.1. Image Restoration

Balance MSE and GAN effects in super-resolution. The

aim of super-resolution is to estimate a high-resolution im-

1https://xinntao.github.io/projects/DNI

age from its low-resolution counterpart. A super-resolution

model trained with MSE loss [34] tends to produce over-

smooth images. We fine-tune it with GAN loss and percep-

tual loss [20], obtaining results with vivid details but always

together with unpleasant artifacts (e.g., the eaves and water

waves in Fig. 5). We use dense blocks [11, 39] in the net-

work architecture and the MATLAB bicubic kernel with a

scaling factor of 4 is adopted as the down-sampling kernel.

As presented in Fig. 5, DNI is able to smoothly alter

the outputs from the MSE effect to the GAN effect. With

appropriate interpolation coefficient, it produces visually-

pleasing results with largely reduced artifacts while main-

taining the textures. We also compare it with pixel interpo-

lation, i.e., interpolating the output images pixel by pixel.

However, the pixel interpolation is incapable of separating

the artifacts and details. Taking the water waves for exam-

ple (Fig. 5), the water wave texture and artifacts simulta-

neously appear and enhance during the transition. Instead,

DNI first enhances the vivid water waves without artifacts

and then finer textures and undesirable noise appears suc-

cessively. The effective separation helps to remove the dis-

pleasing artifacts while keeping the favorable textures, su-

perior to the pixel interpolation. This property could also be

observed in the transition of animal fur in Fig. 5, where the

main structure of fur first appears followed by finer struc-

tures and subtle textures.

One can also obtain several models for different mixture

effects, by tuning the weights of MSE loss and GAN loss

during training. However, this approach requires tuning on

the loss weights and training many networks for various bal-

ances, and thus it is too costly to achieve continuous control.

Adjust denoising strength. The goal of denoising is to

recover a clean image from a noisy observation. In order

to satisfy various user demands, most popular image edit-

ing softwares (e.g., Photoshop) have controllable options

for each tool. For example, the noise reduction tool comes

with sliding bars for controlling the denoising strength and

the percentage of preserving or sharpening details.

We show an example to illustrate the importance of ad-

justable denoising strength. We are provided with a de-

noising model specialized in addressing a specific Gaussian

noise level N40. We use DnCNN [44] as our implementa-

tion. As shown in Fig. 6, however, the determined outputs

(with yellow frames) are not satisfactory due to the differ-

ent imagery contents. In particular, the denoising strength

for the grass is too strong, producing over-smooth results,

while in the smooth sky region, it requires a larger strength

to remove the undesired artifacts.

Existing deep-learning based approaches fail to meet this

user requirements since they are trained to generate deter-

ministic results without the flexibility to control the denois-

ing strength. On the contrary, our proposed DNI is able to

achieve adjustable denoising strength by simply tweaking
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compare with 

pixel interpolation

MSE effect GAN effect

Figure 5. Balancing the MSE and GAN effects with DNI in super-resolution. The MSE effect is over-smooth while the GAN effect is

always accompanied with unpleasant artifacts (e.g., the eaves and water waves). DNI allows smooth transition from one effect to the other

and produces visually-pleasing results with largely reduced artifacts while maintaining the textures. In contrast, the pixel interpolation

strategy fails to separate the artifacts and textures. (Zoom in for best view)

grass

DnCNN base
weaker denosing strength stronger denosing strength

corrupted

sky

Figure 6. Adjustable denoising strength with DNI. One model without adjustment (with yellow frames) is unable to balance the noise

removal and detail preservation. For the grass, a weaker denoising strength could preserve more textures while for the sky, the stronger

denoising strength could obtain an artifact-free result, improving the visual quality (with red frames). (Zoom in for best view)

the interpolation coefficient α of different denoising models

for N20, N40 and N60. For the grass, a weaker denoising

strength could preserve more details while in the sky region,

the stronger denoising strength could obtain an artifact-free

result (red frames in Fig. 6). This example demonstrates the

flexibility of DNI to customize restoration results based on

the task at hand and the specific user preference.

4.2. Image­to­image Translation

Image-to-image translation aims at learning to translate

an image from one domain to another. Most existing ap-

proaches [15, 37, 26, 47] can only transfer one input image

to several discrete outputs, lacking continuous translation

for diverse user flavors. For example, one model may be

able to mimic the style of Van Gogh or Cézanne, but trans-

lating a landscape photo into a mixed style of these two

painters is still challenging.

The desired continuous transition between two painters’

styles can be easily realized by DNI. The popular Cycle-

GAN [47] is used as our implementation. We first train

a network capturing characteristics of Van Gogh, and then

fine-tune it to produce paintings of Cézanne’s style. DNI is

capable of generating various mixtures of these two styles

given a landscape photo, by adjusting the interpolation co-

efficient. Fig. 7a presents a smooth transition from Van

Gogh’s style to Cézanne’s style both in the palette and brush

strokes. We note that DNI can be further employed to mix

styles of more than two painters using Eq. 2. Results are

provided in the supplementary material.

In addition to the translation between painting styles of

a whole image, DNI can also achieve smooth and natural

translation for a particular image region. Fig. 7b shows

an example of photo enhancement to generate photos with

shallower depth of field (DoF). We train one model to gen-

erate flower photos with shallow DoF and then fine-tune it

with identity mapping. DNI is then able to produce con-
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Van Gogh Cézannephoto
(a) Photos to paintings. DNI produces a smooth transition from Van Gogh’s style to Cézanne’s style both in the palette and brush strokes.

DNI (ours)

pixel interpolation

depth of field shallowdeep
(b) Smooth transition on depth of field with DNI. However, pixel interpolation generates ghosting artifacts. (Zoom in for best view)

day night
(c) Day photos to night ones. As the night approaches, it is getting darker and the lights are gradually lit up, reflected on the water.

Figure 7. Several applications for image-to-image translation. (Zoom in for best view)

tinuous transitions of DoF by interpolating these two mod-

els. We also compare DNI with pixel interpolation, where

the results look unnatural due to the ghosting artifacts, e.g.,

translucent details appearing at the edge of blurry leaves.

DNI can be further applied to achieve continuous im-

agery translations in other dimensions such as light changes,

i.e., transforming the day photos to night ones. Only trained

with day and night photos, DNI is capable of generating

a series of images, simulating the coming of nights. In

Fig. 7c, as the night approaches, it is getting darker and the

lights are gradually lit up, reflected on the water.

4.3. Style Transfer

There are several controllable factors when transferring

the styles of one or many pieces of art to an input image,

e.g., style mixture, stroke adjustment and the balance of

content and style. Some existing approaches design spe-

cific structures to achieve a continuous control of these fac-

tors [16]. On the contrary, DNI offers a general way to at-

tain the same goals without specific solutions. As shown in

Fig. 8, DNI is capable of generating smooth transitions be-

tween different styles, from large to small strokes, together

with balancing the content and style. Furthermore, DNI can

be applied among multiple models to achieve a continuous

control of various factors simultaneously. For instance, the

stroke and style can be adjusted at the same time based on

user flavors, as shown in Fig. 8.

Another branch of existing methods achieves a combina-

tion of various artistic styles by interpolating the parameters

of instance normalization (IN) [6, 12]. These approaches

can be viewed as a special case of DNI, where only IN

parameters are fine-tuned and interpolated. To clarify the

difference between DNI and IN interpolation, we conduct

experiments with 3 settings: 1) fine-tune IN; 2) fine-tune

convolutional layers and 3) fine-tune both IN and convo-

lutional layers. Specifically, as shown in Fig. 9, we try a

challenging task to fine-tune the model from generating im-

ages with mosaic styles to the one with fire styles, where

the two styles look very different in both color and texture.

It is observed that fine-tuning only IN is effective in color

transformation, however, it is unable to transfer the fire tex-

ture effectively compared with the other two settings. This

observation suggests that convolutional layers also play an

important role in style modeling, especially for the textures,

since IN parameters may not be effective for capturing spa-

tial information. However, we do not claim that DNI is con-

sistently better than IN interpolation, since IN is also effec-

tive in most cases. A more thorough study is left for future

work.

4.4. Semantic Transition

Apart from low-level vision tasks, we show that DNI can

also be applied for smooth transitions on face attributes,

suggesting its potential for semantic adjustment. We first
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balance of content and style
Figure 8. In image style transfer, without specific structures and strategies, DNI is capable of generating smooth transitions between

different styles, from large strokes to small strokes, together with balancing the content and style. (Zoom in for best view)

only fine-tune IN only fine-tune conv fine-tune conv and IN

Figure 9. Fine-tuning only IN is effective in color transformation,

however, it is unable to transfer the fire texture effectively.

male female

young old

Figure 10. Smooth transitions on face attributes with DNI.

train a DCGAN model [30] using the CelebA [27] dataset

with one attribute (e.g., young or male). After that, we fine-

tune it to generate faces with another attribute (e.g., old or

female). DNI is then able to produce a series of faces with

smoothly transformed attributes by interpolating these mod-

els (Fig. 10). Although neither of the interpolated models

observes any data with middle attributes, the faces in mid-

dle states has an intermediate attribute and looks natural.

4.5. Limitations

We have shown that DNI offers a simple yet general ap-

proach for transition manipulation. However, DNI also has

limitations - 1) it needs fine-tuning or jointly training, oth-

erwise the interpolated model is meaningless; 2) if the two

(or several) tasks have little relation (i.e., DNNs trained for

different tasks), the interpolated model could not produce

meaningful results. We examine the correlation indexes of

successfully interpolated models, which are in [0.689, 1).

But for those failure cases, the correlation indexes are ex-

tremely small (<0.1). Future work will investigate how to

quantify the network ‘distance’ and task ‘distance’ for DNI.

5. Conclusion

In this paper, we propose a novel notion of interpola-

tion in the parameter space, i.e., applying linear interpola-

tion among the corresponding parameters of multiple corre-

lated networks. The imagery effects change smoothly while

adjusting the interpolation coefficients. With extensive ex-

periments on super-resolution, denoising, image-to-image

translation and style transfer, we demonstrate that the pro-

posed method is applicable for a wide range of low-level

vision tasks despite its simplicity. Compared with existing

methods that achieve continuous transition by task-specific

designs, our method is easy to generalize with negligible

computational overhead. Future work will investigate the

effects of network interpolation on high-level tasks.
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