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Abstract

Scale variation has been a challenge from traditional to

modern approaches in computer vision. Most solutions to

scale issues have a similar theme: a set of intuitive and

manually designed policies that are generic and fixed (e.g.

SIFT or feature pyramid). We argue that the scaling pol-

icy should be learned from data. In this paper, we intro-

duce ELASTIC, a simple, efficient and yet very effective ap-

proach to learn a dynamic scale policy from data. We for-

mulate the scaling policy as a non-linear function inside

the network’s structure that (a) is learned from data, (b) is

instance specific, (c) does not add extra computation, and

(d) can be applied on any network architecture. We applied

ELASTIC to several state-of-the-art network architectures

and showed consistent improvement without extra (some-

times even lower) computation on ImageNet classification,

MSCOCO multi-label classification, and PASCAL VOC se-

mantic segmentation. Our results show major improvement

for images with scale challenges. Our code is available

here: https://github.com/allenai/elastic

1. Introduction

Scale variation has been one of the main challenges in

computer vision. There is a rich literature on different ap-

proaches to encoding scale variations in computer vision

algorithms [20]. In feature engineering, there have been

manually prescribed solutions that offer scale robustness.

For example, the idea of searching for scale first and then

extracting features based on a known scale used in SIFT or

the idea of using feature pyramids are examples of these

prescribed solutions. Some of these ideas have also been

migrated to feature learning using deep learning in modern

recognition solutions.

The majority of the solutions in old-school and even

modern approaches to encode scale are manually designed

and fixed solutions. For example, most state-of-the-art im-
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Figure 1: Dynamic scale policy. Scaling policies in CNNs

are typically integrated into the network architecture man-

ually in a pyramidal fashion. The color bar in this figure

(second row) shows the scales at different blocks of the

ResNext50 architecture. The early layers receive eXtra-

large resolutions and in the following layers resolutions de-

crease as Large, Medium, and Small. We argue that scaling

policies in CNNs should be instance-specific. Our Elastic

model (the third row) allows different scaling policies for

different input images and it learns from the training data

how to pick the best policy. For scale challenging images

e.g. images with lots of small(or diverse scale) objects, it

is crucial that network can adapt its scale policy based on

the input. As it can be seen in this figure, Elastic gives a

better prediction for these scale challenging images. (See

section 4.1.1 for more details)

age classification networks [16, 31, 10, 14, 38, 42] use the

feature pyramid policy where a network looks at the larger

resolution first and then goes to smaller ones as it proceeds

through the layers. Despite the fact that this common prac-

tice seems to be a natural and intuitive choice, we argue that

this scale policy is not necessarily the best one for all possi-

ble scale variations in images. We claim that an ideal scale

policy should (1) be learned from the data; (2) be instance

specific; (3) not add extra computational burden; and (4) be
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applicable to any network architecture.

For example, instead of looking at the scales according to

the feature pyramid policy if we process the images in Fig-

ure 1 based on a learned and instance specific policy we see

an improved performance. In images with scale challenges

like the golf ball image in Figure 1 the learned scale policy

might differ dramatically from a pyramid policy, resulting

in correct classification of that instance. The learned pol-

icy for this instance starts from looking at the image from a

large scale (dark blue color), and then goes immediately to

a smaller scale, and then goes back to a large scale followed

by a small scale and so on.

In this paper, we introduce ELASTIC, an approach to

learn instance-specific and not-necessarily-pyramidal scale

policies with no extra(or lower) computational cost. Our so-

lution is simple, efficient, and very effective on a wide range

of network architectures for image classification and seg-

mentation. Our Elastic model can be applied on any CNN

architectures simply by adding downsamplings and upsam-

plings in parallel branches at each layer and let the network

learn from data a scaling policy in which inputs being pro-

cessed at different resolutions in each layer. We named our

model ELASTIC because each layer in the network is flexi-

ble in terms of choosing the best scale by a soft policy.

Our experimental evaluations show improvements in

image classification on ImageNet[29], multi-label clas-

sification on MSCOCO[19], and semantic segmentation

on PASCAL VOC for ResNeXt[35], SE-ResNeXt[12],

DenseNet[14], and Deep Layer Aggregation (DLA)[38] ar-

chitectures. Furthermore, our results show major improve-

ments (about 4%) on images with scale challenges (lots

of small objects or large variation across scales within the

same image) and lower improvements for images without

scale challenges. Our qualitative analysis shows that images

with similar scaling policies (over the layers of the network)

are sharing similar complexity pattern in terms of scales of

the objects appearing in the image.

2. Related Work

The idea behind Elastic is conceptually simple and there

are several approaches in the literature using similar con-

cepts. Therefore, we study all the categories of related CNN

models and clarify the differences and similarities to our

model. There are several approaches to fusing information

at different visual resolutions. The majority of them are

classified into four categories (depicted in Figure 2(b-e)).

Image pyramid: An input image is passed through a

model multiple times at different resolutions and predic-

tions are made independently at all levels. The final output

is computed as an ensemble of outputs from all resolutions.

This approach has been a common practice in [5, 6, 30].

Loss pyramid: This method enforces multiple loss func-

tions at different resolutions. [33] uses this approach to im-

prove the utilization of computing resources inside the net-

work. SSD [21] and MS-CNN [2] also use losses at multiple

layers of the feature hierarchy.

Filter pyramid: Each layer is divided into multiple

branches with different filter sizes (typically referred to as

the split-transform-merge architecture). The variation in fil-

ter sizes results in capturing different scales but with addi-

tional parameters and operations. The inception family of

networks [33, 34, 32] use this approach. To further reduce

the complexity of the filter pyramid [25, 36, 37] use dilated

convolutions to cover a larger receptive field with the same

number of FLOPs. In addition, [4] used 2 CNNs to deal

with high and low frequencies, and [40] proposed to adap-

tively choose from 2 CNNs with different capacity.

Feature pyramid: This is the most common approach to

incorporate multiple scales in a CNN architecture. Features

from different resolutions are fused in a network by either

concatenation or summation. Fully convolutional networks

[23] add up the scores from multiple scales to compute the

final class score. Hypercolumns [8] use earlier layers in

the network to capture low-level information and describe a

pixel in a vector. Several other approaches (HyperNet [15],

ParseNet [22], and ION [1]) concatenate the outputs from

multiple layers to compute the final output. Several recent

methods including SharpMask [27] and U-Net [28] for seg-

mentation, Stacked Hourglass networks [26] for keypoint

estimation and Recombinator networks [11] for face detec-

tion, have used skip connections to incorporate low-level

feature maps on multiple resolutions and semantic levels.

[13] extends DenseNet[14] to fuse features across different

resolution blocks. Feature pyramid networks (FPNs) [18]

are designed to normalize resolution and equalize seman-

tics across the levels of a pyramidal feature resolution hier-

archy through top-down and lateral connections. Likewise,

DLA [38] proposes an iterative and hierarchical deep aggre-

gation that fuses features from different resolutions.

Elastic resembles models from the Filter pyramid family

as well as the Feature pyramid family, in that it introduces

parallel branches of computation (a la Filter pyramid) and

also fuses information from different scales (a la Feature

pyramid). The major difference to the feature pyramid mod-

els is that in Elastic every layer in the network considers

information at multiple scales uniquely whereas in feature

pyramid the information for higher or lower resolution is

injected from the other layers. Elastic provides an exponen-

tial number of scaling paths across the layers and yet keeps

the computational complexity the same (or even lower) as

the base model. The major difference to the filter pyramid is

that the number of FLOPs to cover a higher receptive field

in Elastic is proportionally lower, due to the downsampling

whereas in the filter pyramid the FLOPs is higher or the

same as the original convolution.
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3. Model

In this section, we elaborate the structure of our proposed

Elastic and illustrate standard CNN architectures being aug-

mented with our Elastic. We also contrast our model with

other multi-scale approaches.

3.1. Scale policy in CNN blocks

Formally, a layer in a CNN can be expressed as

F(x) = σ
(

q
∑

i=1

Ti(x)
)

(1)

where q is the number of branches to be aggregated, Ti(x)
can be an arbitrary function (normally it is a combination of

convolution, batch normalization and activation), and σ are

nonlinearities. A few F(x) are stacked into a stage to pro-

cess information in one spatial resolution. Stages with de-

creasing spatial resolutions are stacked to integrate a pyra-

mid scale policy in the network architecture. A network

example of 3 stages with 2 layers in each stage is

N = F32 ◦ F31 ◦ Dr2 ◦ F22 ◦ F21 ◦ Dr1 ◦ F12 ◦ F11 (2)

where Dri indicates the resolution decrease by ratio ri > 1
after a few layers. Dri can be simply implemented by in-

creasing the stride in the convolution right after. For ex-

ample, ResNeXt[35] stacks bottleneck layers in each res-

olution and use convolution with stride 2 to reduce spatial

resolution. This leads to a fixed scaling policy that enforces

a linear relationship between number of layers and the ef-

fective receptive field of those layers. Parameters of Ti(x)
and the elements in input tenors x are all of the tangible

ingredients in a CNN that define computational capacity of

the model. Under a fixed computational capacity measured

by FLOPs, to improve the accuracy of such a model, we

can either increase number of parameters in Ti(x) and de-

crease the resolution of x or increase the resolution of x

and decrease number of parameters in Ti(x). By adjusting

the input resolutions at each layer and number of param-

eters, we can define a scaling policy across the network.

We argue that finding the optimal scaling policy (a trade-off

between the resolution and number of parameters in each

layer) is not trivial. There are several model designs toward

increasing the accuracy and manually injecting variations of

feature pyramid but most of them are at the cost of higher

FLOPs and more parameters in the network. In the next

section, we explain our solution that can learn an optimal

scaling policy and maintain or reduce number of parame-

ters and FLOPs while improving the accuracy.

3.2. The ELASTIC structure

In order to learn image features at different scales, we

propose to add down-samplings and up-samplings in paral-

lel branches at each layer and let the network make deci-

sion on adjusting its process toward various resolutions at

each layer. Networks can learn this policy from training

data. We add down-samplings and up-samplings in parallel

branches at each layer and divide all the parameters across

these branches as follows:

F(x) = σ
(

q
∑

i=1

Uri(Ti(Dri(x)))
)

(3)

N = F32 ◦ F31 ◦ F22 ◦ F21 ◦ F12 ◦ F11 (4)

where Dri(x) and Uri(x) are respectively downsampling

and upsampling functions which change spatial resolutions

of features in a layer. Unlike in equation 2, a few F are ap-

plied sequentially without downsampling the main stream,

and N (x) has exactly the same resolution as original x.

Note that the learned scaling policy in this formulation

will be instance-specific i.e. for different image instances,

the network may activate branches in different resolutions at

each layer. In section 4 we show that this instance-specific

scaling policy improves prediction on images with scale

challenges e.g. images consist of lots of small objects or

highly diverse object sizes.

Conceptually, we propose a new structure where infor-

mation is always kept at a high spatial resolution, and each

layer or branch processes information at a lower or equal

resolution. In this way we decouple feature processing res-

olution (Ti processes information at different resolutions)

from feature storage resolution (the main stream resolu-

tion of the network). This encourages the model to pro-

cess different scales separately at different branches in a

layer and thus capture cross-scale information. More in-

terestingly, since we apply Elastic to almost all blocks, the

dynamic combination of multiple scaling options at each

layer leads to exponentially many different scaling paths.

They interpolate between the largest and the smallest possi-

ble scale and collectively capture various scales. In fact,

this intuition is aligned with our experiments, where we

have observed different categories of images adopt different

scaling paths (see section 4.1.1). For example, categories

with clean and uniform background images mostly choose

the low-resolution paths across the network and categories

with complex and cluttered objects and background mostly

choose the high-resolution paths across the network.

The computational cost of our Elastic model is equal to

or lower than the base model, because at each layer the max-

imum resolution is the original resolution of the input ten-

sor. Low resolution branches reduce the computation and

give us extra room for adding more layers to match the com-

putation of the original model.

This simple add-on of downsamplings and upsamplings

(Elastic) can be applied to any CNN layers Ti(x) in any ar-

chitecture to improve accuracy of a model. Our applications

are introduced in the next section.
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Figure 2: Multi-scaling model structures. This figure illustrates different approaches to multi-scaling in CNN models and

our Elastic model. The solid-line rectangles show the input size and the dashed-line rectangles shows the filter size.
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Figure 3: Left: ResNeXt bottleneck vs. Elastic bottleneck. Right: DenseNet block vs. its equivalent form vs. Elastic block.

Elastic blocks spend half of the paths processing downsampled inputs in a low resolution, then the processed features are

upsampled and added back to features with the original resolution. Elastic blocks have the same number of parameters and

less FLOPs than original blocks

3.3. Augmenting models with Elastic

Now, we show how to apply Elastic on different net-

work architecture. To showcase the power of Elastic, we

apply Elastic on some state-of-the-art network architec-

tures: ResNeXt[35], Deep Layer Aggregation (DLA)[38],

and DenseNet[14]. A natural way of applying Elastic on

current classification models is to augment bottleneck lay-

ers with multiple branches. This makes our modification on

ResNeXt and DLA almost identical. At each layer we ap-

ply downsampling and bilinear upsampling to a portion of

branches, as shown in Figure 3-left. In DenseNet we com-

pile an equivalent version by parallelizing a single branch

into two branches and then apply downsampling and up-

sampling on some of the branches, as shown in Figure 3-

right. Note that applying Elastic reduces FLOPs in each

layer. To match the original FLOPs we increase number

of layers in the network while dividing similar number of

FLOPs across resolutions.

Relation to other multi-scaling approaches As dis-

cussed in section 2, most of current multi-scaling ap-

proaches can be categorized into four different categories

(1) image pyramid, (2) loss pyramid (3) filter pyramid, and

(4) feature pyramid. Figure 2(b-e) demonstrates the struc-

ture of these categories. All of these models can improve

the accuracy usually under a higher computational budget.

Elastic (Figure 2) guarantees no extra computational cost

while achieving better accuracy. Filter pyramid is the most

similar model to Elastic. The major difference to the filter

pyramid is that the number of FLOPs to cover a higher re-

ceptive field in Elastic is proportionally lower due to the

downsampling whereas in the filter pyramid the FLOPs

is higher or the same as the original convolution depend-

ing of filter size or dilation parameters. Table 1 compares

the FLOPs and number of parameters between Elastic and

feature/filter pyramid for a single convolutional operation.

Note that the FLOPs and parameters in Elastic is always

(under any branching q and scaling ratio r) lower or equal

to the original model whereas in filter/feature pyramid this

is higher or equal. Feature pyramid methods are usually

applied on top of an existing classification model, by con-

catenating features from different resolutions. It is capable

of merging features from different scales in the backbone

model and shows improvements on various tasks, but it

does not intrinsically change the scaling policy. Our Elastic

structure can be viewed as a feature pyramid inside a layer,
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Multi-Scaling Method FLOPs Parameters

Single Scale n2ck2 ck2

Feature Pyramid (concat) n2(qc)k2 (qc)k2

Feature Pyramid (add) n2ck2 ck2

Filter Pyramid (standard)
∑q

i=1
n2c(kri)

2

bi

∑q
i=1

c(kri)
2

bi

Filter Pyramid (dilated) n2ck2 ck2

Elastic
∑q

i=1

( n

ri
)2ck2

bi
ck2

Table 1: Computation in multi-scaling models. This table

compares the FLOPs and number of parameters between

Elastic and feature/filter pyramid for a single convolutional

operation, where the input tensor is n× n× c and the filter

size is k× k. q denotes the number of branches in the layer,

where
∑q

1

1

bi
= 1 and bi > 1 and ri > 1 denote the branch-

ing and scaling ratio respectively. Note that the FLOPs and

parameters in Elastic is always (under any branching q and

scaling ratio r) lower than or equal to the original model

whereas in feature/filter pyramid is higher or equal.

which is able to model different scaling policies. Spatial

pyramid pooling or Atrous(dilated) spatial pyramid shares

the same limitation as feature pyramid methods.

4. Experiments

In this section, we present experiments on applying Elas-

tic to current strong classification models. We evaluate their

performances on ImageNet classification, and we show con-

sistent improvements over current models. Furthermore, in

order to show the generality of our approach, we transfer

our pre-trained Elastic models to multi-label image classi-

fication and semantic segmentation. We use ResNeXt [35],

DenseNet[14] and DLA [38] as our base models to be aug-

mented with Elastic.

Implementation details. We use the official PyTorch Im-

ageNet codebase with random crop augmentation but with-

out color or lighting augmentation, and we report stan-

dard 224×224 single crop error on the validation set. We

train our model with 8 workers (GPUs) and 32 samples per

worker. Following DLA [38], all models are trained for 120

epochs with learning rate 0.1 and divided by 10 at epoch

30, 60, 90. We initialize our models using normal He ini-

tialization [9]. Stride-2 average poolings are adopted as our

downsamplings unless otherwise notified since most of our

downsamplings are 2× downsamplings, in which case bi-

linear downsampling is equivalent to average pooling. Also,

Elastic add-on is applied to all blocks except stride-2 ones

or high-level blocks operating at resolution 7.

4.1. ImageNet classification

We evaluate Elastic on ImageNet[29] 1000 way classifi-

cation task (ILSVRC2012). The ILSVRC 2012 dataset con-
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Figure 4: Imagenet Accuracy vs. FLOPS and Parameters This

figure shows our Elastic model can achieve a lower error without

any extra (or with lower) computational cost.

tains 1.2 million training images and 50 thousand validation

images. In this experiment, we show that our Elastic add-

on consistently improves the accuracy of the state-of-the-art

models without introducing extra computation or parame-

ters. Table 2 compares the top-1 and top-5 error rates of

all of the base models with the Elastic augmentation (indi-

cated by ’+Elastic’) and shows the number of parameters

and FLOPs used for a single inference. Besides DenseNet,

ResNeXt, DLA, SE-ResNeXt50+Elastic is also reported. In

all the tables ”*” denotes our implementation of the model.

It shows that our improvement is almost orthogonal to the

channel calibration proposed in [12]. In addition, we in-

clude ResNeXt50x2+Elastic to show that our improvement

does not come from more depth added to ResNeXt101. In

Figure 4 we project the numbers in the Table 2 into two

plots: accuracy vs. number of parameters (Figure 4-left)

and accuracy vs. FLOPs (Figure 4-right). This plot shows

that our Elastic model can reach to a higher accuracy with-

out any extra (or with lower) computational cost.

4.1.1 Scale policy analysis

To analyze the learned scale policy of our Elastic model, we

define a simple score that shows at each block what was the

resolution level (high or low) that the input tensor was pro-

cessed. We formally define this scale policy score at each

block by differences of mean activations in high-resolution

and low-resolution branches.

S =
1

4HWC

2H∑

h=1

2W∑

w=1

C∑

c=1

x
high
hwc

−

1

HWC

H∑

h=1

W∑

w=1

C∑

c=1

xlow
hwc (5)

where H , W , C are the height, width and number of chan-

nels in low resolution branches. xhigh and xlow are the acti-

vations after 3×3 convolutions, fixed batch normalizations,

and ReLU in high-resolution and low-resolution branches

respectively. Figure 5 shows all of the categories in Im-

ageNet validation sorted by the mean scale policy score S

(average over all layers for all images within a category).

As it can be seen, categories with more complex images

appear to have a larger S i.e. they mostly go through high-

resolution branches in each block and images with simpler
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Model # Params FLOPs Top-1 Top-5

DenseNet201* 20.0M 4.4B 22.25 6.26

DenseNet201+Elastic 19.5M 4.3B 22.07 6.00

ResNeXt50 25.0M 4.2B 22.2 -

ResNeXt50* 25.0M 4.2B 22.23 6.25

ResNeXt50+Elastic 25.2M 4.2B 21.56 5.83

SE-ResNeXt50* 27.6M 4.2B 21.87 5.93

SE-ResNeXt50+Elastic 27.8M 4.2B 21.38 5.86

ResNeXt101 44.2M 8.0B 21.2 5.6

ResNeXt101* 44.2M 8.0B 21.18 5.83

ResNeXt101+Elastic 44.3M 7.9B 20.83 5.41

ResNeXt50x2+Elastic 45.6M 7.9B 20.86 5.52

DLA-X60 17.6M 3.6B 21.8 -

DLA-X60* 17.6M 3.6B 21.92 6.03

DLA-X60+Elastic 17.6M 3.2B 21.25 5.71

DLA-X102 26.8M 6.0B 21.5 -

DLA-X102+Elastic 25.0M 6.0B 20.71 5.38

Table 2: State-of-the-art model comparisons on ImageNet val-

idation set. Base models (DenseNet, ResNeXt, and DLA) are

augmented by Elastic (indicated by ’+Elastic’). * indicates our

implementation of these models. Note that augmenting with Elas-

tic always improves accuracy across the board.
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Figure 5: Scale policy for complex vs. simple image categories.

This figure shows the overall block scale policy score on the entire

ImageNet categories. It shows that categories with complex im-

age patterns mostly go through the high-resolution branches in the

network and categories with simpler image pattern go through the

low-resolution branches.

patterns appear to have smaller S which means they mostly

go through the low-resolution branches in each block.

To analyze the impact of the scale policy on the accuracy

of the Elastic, we represent each image (in the ImageNet

validation set) by a 17-dimensional vector such that the val-

ues of the 17 elements are the scale policy score S for the

17 Elastic blocks in a ResNeXt50+Elastic model. Then we

apply tsne[24] on all these vectors to get a two-dimensional

visualization. In figure 6-(left) we draw all the images in

the tsne coordinates. It can be seen that images are clus-

tered based on their complexity pattern. In figure 6-(middle)

for all of the images we show the 17 scale policy scores

S in 17 blocks. As it can be seen most of the images go

through the high-resolution branches on the early layers and

low-resolution branches at the later layers but some images

break this pattern. For examples, images pointed by the

green circle are activating high-resolution branches in the

13th block of the network. These images usually contain a

complex pattern that the network needs to extract features in

high-resolution to classify correctly. Images pointed by the

purple circle are activating low-resolution branches at early

layers, the 4th block of the network. These images usually

contain a simple pattern that the network can classify at low-

resolution early on. In Figure 6-(right) we show the density

of all validation images in the tsne space in the bottom row,

and in the top row, we show the density of images that are

correctly classified by our Elastic model and miss-classified

by the base ResNeXt model. This comparison shows that

most of the images that Elastic can improve predictions on

are the ones with more challenging scale properties. Some

of them are pointed out by the yellow circle.

4.2. MS COCO multi­label classification

To further investigate the generality of our model, we

finetune our ImageNet pre-trained model and evaluate on

MS COCO multi-label classification task. The MSCOCO

images are far more complicated in that there exist multiple

objects from different categories and scales in each image.

Implementation details. All models that we report are

finetuned from ImageNet pre-trained model for 36 epochs

with learning rate starting at 0.001 and being divided by

10 at epoch 24, 30. We train on 4 workers and 24 im-

ages per worker with SGD and weight decay of 0.0005.

We train our models with binary cross entropy (BCE) loss,

which is usually used as a baseline for domain-specific

works that explicitly model spatial or semantic relations.

We use the same data augmentations as our ImageNet train-

ing, and adopt standard multi-label testing on images re-

sized to 224× 224.

Evaluation metrics. Following the literature of multi-

label classification[41, 7, 39, 17], results are evaluated us-

ing macro/micro evaluations. After training the models with

BCE loss, labels with greater than 0.5 probability are con-

sidered positive. Then, macro and micro F1-scores are cal-

culated to measure overall performance and the average of

per-class performances respectively.

Results. Table 3 shows that elastic consistently improves

per-class F1 and overall F1. In the case of DLA, Elastic

augmentation even reduces the FLOPs and number of pa-

rameters by a large margin.
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Figure 6: Scale policy analysis. This figure shows the impact of the scale policy on the accuracy of our Elastic model. (left) shows all the

ImageNet validation set clustered using tsne by their scale policy pattern in the ResNeXt50+Elastic as discussed in section 4.1.1. (middle)

shows the the scale policy score of all the images at 17 blocks of the network. Most of the images use high-resolution features at early

layers and low-resolution features at later layers but some images break this pattern. Images pointed in the green circle use high-resolution

features in the 13
th block. Images pointed in the purple circle use low-resolution features in the 4

th block. These images usually contain

a simpler pattern. (right)-bottom shows the density of images in the tsne space and (right)-top shows the density of the images that got

correctly classified by Elastic model but miss-classified by the base ResNeXt model. This shows that Elastic can improve prediction when

images are challenging in terms of their scale information. Some samples are pointed by the yellow circle. Best viewed in color.

Model F1-PerClass F1-Overall

ResNet101* 69.98 74.58

DenseNet201* 69.95 74.50

DenseNet201+Elastic 70.40 74.99

DLA-X60* 70.79 75.41

DLA-X60+Elastic 71.35 75.77

ResNeXt50* 70.12 74.52

ResNeXt50+Elastic 71.08 75.37

ResNeXt101* 70.95 75.21

ResNeXt101+Elastic 71.83 75.93

Table 3: MSCOCO multi-class classification. This table shows

the generality of our Elastic model by finetuning pre-trained Ima-

geNet models on MSCOCO multi-class images with binary cross

entropy loss. Elastic improves F1 scores all across the board.

Scale challenging images. We claimed that Elastic is

very effective on scale challenging images. Now, we em-

pirically show that a large portion of the accuracy improve-

ment of our Elastic model is rooted in a better scale pol-

icy learning. We follow MSCOCO official split of small,

medium, and large objects. Per-class and overall F1, on

small, medium and large objects, are computed. Since we

don’t have per-scale predictions, false positives are shared

and re-defined as cases where none of small, medium, large

object appears, but the model predicts positive. Results in

Table 4 show that ResNeXt50 + Elastic provides the largest

gains on small objects. Elastic allows large objects to be

dynamically captured by low resolution paths, so filters in

high resolution branches do not waste capacity dealing with

parts of large objects. Elastic blocks also merge various

scales and feed scale-invariant features into the next block,

so it shares computation in all higher blocks, and thus al-

lows more capacity for small objects, at high resolution.

This proves our hypothesis that Elastic understands scale

challenging images better through scale policy learning.

Scale stress test. Besides standard testing where images

are resized to 224×224, we also perform a stress test on the

validation set. MSCOCO images’ resolutions are ~640 ×

480. Given a DLA-X60 model trained with 224 × 224 im-

ages, we also test it with images from different resolutions:

96 × 96, 448 × 448, 896 × 896 and change the last aver-

age pooling layer accordingly. Figure 7 shows that Elas-

tic does not only perform well on trained scale, but also

shows greater improvement on higher resolution images at

test time. In addition, we do not observe an accuracy drop

on 96 × 96 test, though the total computation assigned to

low level is reduced in DLA-X60+Elastic.

4.3. PASCAL VOC semantic segmentation

To show the strength of our Elastic model on a pixel level

classification task, we report experiments on PASCAL VOC

semantic segmentation. ResNeXt models use weight decay

5e-4 instead of 1e-4 in ResNet. All models are trained for 50

epochs and we report mean intersection-over-union (IOU)

on the val set. Other implementation details follow [3], with

MG(1, 2, 4), ASPP(6, 12, 18), image pooling, OS=16, batch

Model Sm-C Md-C Lg-C Sm-O Md-O Lg-O

ResNeXt50 45.57 61.99 65.88 58.51 68.51 77.53

+Elastic 46.67 63.05 66.46 59.47 69.47 78.03

Relative 2.43% 1.72% 0.88% 1.64% 1.40% 0.65%

Table 4: F1 scores on small, medium, and large objects respec-

tively. C means per-class F1 and O means overall F1. ResNeXt50

+ Elastic improves the most on small objects.
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Figure 7: Scale stress test on MSCOCO multi-label classifica-

tion. This bar chart shows the relative F1 improvement of DLA-

x60 being augmented Elastic over different image resolutions. Al-

though both models are trained on 224×224 images, Elastic shows

larger improvement when tested on high-resolution images.

Model Original Elastic

ResNeXt50* 75.29 77.70

ResNeXt101* 77.47 78.51

DLA-X60* 69.96 73.59

Table 5: PASCAL VOC semantic segmentation. This table

compares the accuracy of semantic image segmentation (mIOU%)

using Elastic models vs. the original model. Elastic models out-

perform original models by a large margin. This supports that

Elastic learns a scale policy that allows processing high-level se-

mantic information and low-level boundary information together.

size of 16, for both training and validation, without bells and

whistles. Our ResNet101 reproduces the mIOU of 77.21%

reported in [3]. Our DLA models use the original iterative

deep aggregation as a decoder and are trained with the same

scheduling as [3]. In Table. 5, Elastic shows a large margin

of improvement. This verifies that Elastic finds the scale

policy that allows processing high-level semantic informa-

tion and low-level boundary information together, which is

critical in the task of semantic segmentation.

4.4. Ablation study

In this section, we study the effect of different elements

in Elastic models. We chose DLA-X60 as our baseline and

applied Elastic to perform the ablation experiments.

Upsampling/Downsampling methods. We carried our

experiments with bilinear up(down)sampling on DLA-

X60+Elastic. In Table 6 we show the accuracy of Ima-

geNet classification using Elastic by different choices of

up(down)sampling methods: Bilinear, Nearest, Trained fil-

ters and Trained Dilated filters with and without average

pooling (indicated by w/ AP). Our experiment shows Elas-

tic with the bilinear up(down)sampling is the best choice.

High/low-resolution branching rate. We sweep over

different choices of dividing parallel branches in the blocks

into the high and low-resolutions. In table 7 we compare

the variations of the percentage of branches allocated to

high and low-resolutions at each block. This experiment

Method # FLOPs Top-1 error

Original (no Elastic) 3.6B 21.92

Bilinear w/ AP 3.2B 21.25

Nearest w/ AP 3.2B 21.49

Trained Dilated Filter w/ AP 3.6B 21.20

Trained Dilated Filter 3.6B 21.60

Trained Filter 3.2B 21.52

Table 6: Ablation study of up(down)sampling methods. In

this table, we show the accuracy of ImageNet classification using

Elastic by different choices of up(down)sampling methods. w/ AP

indicates average pooling. Our experiment shows Elastic with bi-

linear up(down)sampling is the best choice with reduced FLOPs.

High-Res Low-Res FLOPs Top-1 error

100% 0% 3.6B 21.92

50% 50% 3.2B 21.25

75% 25% 3.4B 21.35

25% 75% 2.9B 21.44

Table 7: Ablation study of high(low) resolution branching

rates. In this table, we evaluate different branching rate across

high and low-resolutions at each block. We observe that the best

trade-off is when we equally divide the branches into high and

low-resolutions. Independent of the ratio, all variations of branch-

ing are better than the base model.

shows that the best trade-off is when we equally divide the

branches into high and low-resolutions. Interestingly, all of

the branching options are outperforming the vanilla model

(without Elastic). This shows that our Elastic model is quite

robust to this parameter.

5. Conclusion

We proposed Elastic, a model that captures scale varia-

tions in images by learning the scale policy from data. Our

Elastic model is simple, efficient and very effective. Our

model can easily be applied to any CNN architectures and

improve accuracy while maintaining the same computation

(or lower) as the original model. We applied Elastic to sev-

eral state-of-the-art network architectures and showed con-

sistent improvement on ImageNet classification, MSCOCO

multi-class classification, and PASCAL VOC semantic seg-

mentation. Our results show major improvement for images

with scale challenges e.g. images consist of several small

objects or objects with large scale variations.
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