
EV-Gait: Event-based Robust Gait Recognition using Dynamic Vision Sensors

Yanxiang Wang1∗, Bowen Du3∗, Yiran Shen1,2†, Kai Wu4,

Guangrong Zhao1, Jianguo Sun1, Hongkai Wen3†

1Harbin Engineering University, 2Data61 CSIRO, 3University of Warwick, 4Fudan University

Email: yiran.shen@csiro.au; hongkai.wen@dcs.warwick.ac.uk

Abstract

In this paper, we introduce a new type of sensing modal-

ity, the Dynamic Vision Sensors (Event Cameras), for the

task of gait recognition. Compared with the traditional

RGB sensors, the event cameras have many unique advan-

tages such as ultra low resources consumption, high tem-

poral resolution and much larger dynamic range. However,

those cameras only produce noisy and asynchronous events

of intensity changes rather than frames, where conventional

vision-based gait recognition algorithms can’t be directly

applied. To address this, we propose a new Event-based

Gait Recognition (EV-Gait) approach, which exploits mo-

tion consistency to effectively remove noise, and uses a deep

neural network to recognise gait from the event streams.

To evaluate the performance of EV-Gait, we collect two

event-based gait datasets, one from real-world experiments

and the other by converting the publicly available RGB

gait recognition benchmark CASIA-B. Extensive experi-

ments show that EV-Gait can get nearly 96% recognition

accuracy in the real-world settings, while on the CASIA-B

benchmark it achieves comparable performance with state-

of-the-art RGB-based gait recognition approaches.

1. Introduction

Inspired by the principles of biological vision, Dynamic

Vision Sensors (DVS) [27, 7, 35] are considered as a new

sensing modality for a number of tasks such as visual odom-

etry/SLAM [22, 19, 36], robotic perception [10, 31, 9, 8]

and object recognition [39, 24]. Unlike the RGB cameras

which produce synchronised frames at fixed rates, the pix-

els of DVS sensors are able to capture microseconds level

intensity change independently, and generate a stream of

asynchronous “events”. The design of DVS sensors enables

many unique benefits over the conventional RGB cameras.

Firstly, DVS sensors require much less resource including
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energy, bandwidth and computation as the events are sparse

and only triggered when intensity changes are detected. For

example, the DVS128 sensor platform only consumes 150

times less energy than a CMOS camera [27]. Secondly, the

temporal resolution of DVS sensors is tens of microseconds

which means the DVS sensors are able to capture detailed

motion phases or high speed movements without blur or

rolling shutter problems. Finally, DVS sensors have signif-

icantly larger dynamic range (up to 140dB [27]) than RGB

cameras (∼60dB), which allows them to work under more

challenging lighting conditions. These characteristics make

DVS sensors more appealing over RGB cameras for vision

tasks with special requirements on latency, resources con-

sumption and operation environments.

In this paper, we investigate the feasibility of using DVS

to tackle the classic gait recognition problem. Specifically,

it aims to determine human identities based on their walk-

ing patterns captured by the sensors. This is a fundamental

building block for many real-world applications such as ac-

tivity tracking, digital healthcare and security surveillance.

In those context, DVS sensors have unique advantages over

the standard RGB cameras because i) their low energy and

bandwidth footprint makes them ideal for always-on wire-

less monitoring; and ii) the high dynamic range allows them

to work under challenging lighting conditions without ded-

icated illumination control.

However as shown in Fig. 1 (a), DVS operates in a com-

pletely different way than the RGB cameras, which gen-

erates asynchronous and noisy events rather than frames

when capturing human motion. Therefore, the conven-

tional RGB-based image processing and gait recognition

approaches can’t be applied directly on the event data. In

this paper, we propose a new Event-based Gait Recognition

approach, EV-Gait, which is able to work with the noisy

event streams and accurately infer the identities based on

gait. Concretely, the technical contributions of this paper

are as follows:

• To the best of our knowledge, this is the first work in-

vestigating event-based gait recognition under practi-

cal settings.
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Figure 1. (a) DVS sensor generates asynchronous event stream when a subject is walking in front of it. The positive intensity changes (+1)

are denoted in red and negative intensity changes (-1) are in blue. (b) Noisy events stream caused by a rotating dot (adapted from [29]).

• We propose a novel event-based gait recognition ap-

proach EV-Gait, which is specifically designed for the

dynamic vision sensors. It is able to effectively remove

noise in the event streams by enforcing motion consis-

tency, and employs a deep neural network to recognise

gait from the asynchronous and sparse event data.

• We collect two event-based gait datasets DVS128-Gait

and EV-CASIA-B from both real-world experiments

and public gait benchmarks, which will be made avail-

able to the community.

• Evaluation on the two datasets shows that the proposed

EV-gait can recognise identities up to 96% accuracy

in real-world settings, and achieve comparable (even

better in some viewing angles) performance with the

state-of-the-art RGB-based approaches.

2. Related Work

Gait recognition has been intensively studied for decades

in computer vision community [14, 26, 42, 40] and deep

learning has been proven to provide state-of-the-art per-

formance on gait recognition without tedious feature en-

gineering [44, 38, 43, 3]. One classic approach for gait

recognition proposed in [42] was based on extracted silhou-

ette from background subtraction and modelled the struc-

tural and transitional characteristics of gait. Han et al. [15]

further improved the silhouette-based approach by extract-

ing scale-invariant features from the gait template. Though

template and feature based approaches were widely inves-

tigated [40, 30, 41], designing optimal features are still

difficult tasks. Deep learning became popular in recent

years to solve classification problems in an end-to-end and

featureless way. It had been introduced in solving gait

recognition problem and produced state-of-the-art perfor-

mance [44, 38, 43, 3]. Convolutional Neural Networks

(CNNs) are known to work well on extracting features from

images. Wu et al. [44] proposed different CNN-based archi-

tectures for gait recognition and produced state-of-the-art

recognition accuracy on CASIA-B dataset. The proposed

EV-Gait also uses CNNs, but our network is adapted to pro-

cess the event data instead of the standard RGB frames.

The excessive noise within the event data has been one

of the major challenges for event-based vision. Most of the

existing work considered the noise in event data as ad-hoc

and sparse. Liu et al [28] searched the eight neighbouring

pixels of an incoming event. If there was no other previous

events captured within a certain period, it would be marked

as noise. Kohoda et al [18] further improved the noise can-

cellation by recovering events that were mistakenly deter-

mined as noise. The work proposed by Padala et al [33]

considered a two layers filter. The first layer filtered ex-

ploited the fact that two events happened at the same place

can’t be too close in time domain. The second layer re-

moved the events that lacked spatio-temporal support which

was similar to Liu et al [28] approach. However, in this pa-

per, we propose a novel event noise cancellation technique

from a new perspective, i.e., the motion consistency in the

event stream caused by moving object and show that it out-

performs the existing methods by orders of magnitude.

We also review the related work of using DVS sensors

for recognition or classification tasks. In [4], the authors

applied CNN for identifying gestures, like hand-wave, cir-

cling and air-guitar actions. Lagorce at el. [24] proposed a

new representation for event data called time-surface then a

classification model was built to classify 36 characters(0-9,

A-Z). Park et al. [34] employed a shallow neural network

to extract the spatial pyramid kernel features for the hand

motion recognition using DVS sensor. In addition, Gao at

el.[11] used the DVS sensor to track the special markers

equipped on the ankle joints of the subjects for gait analy-

sis. However, unlike our approach it did not aim for recog-

nising the identities and required attaching special markers

to human bodies which was intrusive.
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3. Noise Cancellation for Event Streams

3.1. Dynamic Vision Sensors

Unlike the conventional CMOS/CCD cameras which

produce synchronised frames at fixed rate, dynamic vision

sensors (DVS) are a class of neuromorphic devices that

can capture microsecond level pixel intensity changes as

“events”, asynchronously at the time they occur. Therefore

they are often referred to as the “event cameras”, whose out-

put can be described as a stream of quadruplet, (t, x, y, p),
where t is the timestamp of an event happens, (x, y) is the

location of the event in the 2D pixel space, and p is the po-

larity. Without loss of generality, we often use p = +1 to

denote the increase in pixel intensity and -1 as decrease. In

practice, the DVS sensors only report such an event when

the intensity change at a pixel exceeds certain threshold, i.e.,

log (Ix,ynow)− log
(

I
x,y
previous

)

> θ (1)

where Ix,ynow and I
x,y
previous are the current and previous in-

tensity at the same pixel (x, y).

Fig. 1 shows an example of how the DVS sensors oper-

ate. When an object of interest is moving in the camera field

of view, e.g. the rotating dot as in Fig. 1, rather than image

frames, the DVS sensor generates an event stream, i.e. the

spiral-like shape in the spatial-temporal domain. The asyn-

chronous and differential nature of the DVS sensors brings

many unique benefits. For instance, they can have a very

high dynamic range (140dB vs. 60dB of standard cameras),

which allow them to work under more challenging lighting

conditions. The event streams produced by those sensors

are at microseconds temporal resolution, which effectively

avoids the motion blur and rolling shutter problems. In ad-

dition, they are extremely power efficient, consuming ap-

proximately 150 times less energy than standard cameras,

and have very low bandwidth requirement.

However, one of major challenges of the DVS sensors

is that the generated event streams are very noisy. In prac-

tice, those sensors are very sensitive to illumination changes

or perturbation in the background, and often report large

amount of events that are not relevant to the objects of in-

terest. For example, as we can see in Fig. 1, although there

is only a rotating dot in the scene, the resulting event stream

contains many ad-hoc events that are detached from the

desired spiral. This tends to have significant negative im-

pact on the performance of various applications (Sec. 5 will

show examples of such impact on gait recognition), which

hiders the wide adoption of the dynamic vision sensors. To

unlock the full potential of DVS sensors, in the next section

we present a novel noise cancellation algorithm, which ex-

ploits the spatio-temporal features within the event streams

to effectively remove such noise events.

3.2. Noise Cancellation via Motion Consistency

In the context of gait recognition, we are only interested

in the people walking (or generally objects moving) within

the camera field of view, while the other information cap-

tured are considered as noise. As we discussed above, for

DVS sensors such noise in the event streams often cause

by the subtle illumination changes in the background, or

the unstable nature of the electronic circuits. Therefore, the

key challenge of noise cancellation is how we can distin-

guish if an event is triggered by the moving people/objects

of interest or not. This is not a straightforward task, since

an event stream spans over both spatial and temporal axis

and noise can appear arbitrarily. Most of the existing ap-

proaches (e.g. [28, 18, 33]) rely on the simple assumption

that the noise in the event streams are ad-hoc and sparse,

i.e. they should appear in a random fashion and isolated

from the the events caused by object motion. However this

is not always true, because when the overall lighting condi-

tion is not stable, the amount of noise many dominate the

stream and bury the events of interest.

To overcome this problem, we consider a new noise

cancellation approach by exploiting the motion consistency

within the event streams. The intuition is that if an event is

caused by the genuine motion of the objects (human body in

our gait recognition case), in the near future there should be

another events appear at locations that are consistent with

the object motion. In other words, within a local region,

the events caused by object motion should be able to form a

consistent “moving plane” in the spatial-temporal domain,

while the noise event should not. Fig. 2 demonstrates an

example of this idea. We see that in Fig. 2(a), for a valid

event (the blue dot), there should be a number of previous

events that fired in its close vicinity (the yellow dots), since

they are triggered by the motion of object across both space

and time. Therefore, these events should be able to mod-

elled as a consistent plane Π with velocity (vx, vy). On the

other hand, as shown in Fig. 2(b), if an event is noise (the

red dot), the recently appeared events (the yellow dots) typi-

cally have no or little spatial correlation, i.e. they can not be

described as a consistent plane. In our approach, we exploit

this property by looking at the optical flow within the event

streams [6], which can naturally assess motion consistency.

Concretely, to compute the optical flow of an event ei,

we drop its polarity, and express it in the three dimensional

space as ei = (ti, xi, yi). Then the plane where ei is on can

be described as

axi + byi + cti + d = 0 (2)

where a unique (a, b, c, d) ∈ R
4 defines a unique plane Π.

The for those events that are within close proximity of

ei in both spatial and temporal axis, we fit a plane via least

squares:
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Figure 2. An example of our noise cancellation approach based

on motion consistency. (a) A valid event (blue) and its neigh-

bour events (yellow) should be able to co-locate on the same plane

in spatial-temporal domain with reasonable velocity. (b) A noise

event (red) can not be fitted on a plane of reasonable velocity with

its neighbour events.
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(3)

where Si is the event set including both ei and the events

appear within the 3×3 neighbourhood of (xi, yi), and the

time window [ti −∆t, ti +∆t]. In our experiments we set

∆t to 1ms.

Let us assume that a unique plane Π̂
(

â, b̂, ĉ, d̂
)

is ob-

tained. Then we calculate its velocity at the event ei as:

v =

[

vxi
v
y
i

]

= −ĉ

[

1

â
1

b̂

]

(4)

where vxi and v
y
i are the velocity of event ei along the x

and y axes respectively. Then we validate the motion con-

sistency by checking the velocity v. If 0 < |v| < Vmax,

we accept ei, since a valid event caused by genuine motion

should be moving, and the speed should be within certain

reasonable range. Otherwise, we declare ei as noise, and

remove it from the event stream. We do this iteratively for

each event until all the events in the stream are considered

as valid.

4. Event-based Gait Recognition

As shown in Figure 3, Ev-Gait starts from capturing

asynchronous raw event stream while the subject is walking

through the view. Then the raw event stream is preprocessed

through event noise cancellation and represented according

to the design of the input layer of the deep neural network

for gait recognition. At last, we train our deep network and

apply it to recognise the identities of the subjects based on

event streams.

4.1. Event Stream Representation

Different from conventional RGB camera, DVS sensors

produce asynchronous event streams which can’t be directly

fitted into state-of-the-art CNN-based structure. In this pa-

per, we adopt the same event stream representation pro-

posed in [46]. Event streams are converted to image-like

representation with four channels, termed as event image,

for our deep neural networks. The first two channels ac-

commodate the counts of positive or negative events at each

pixel respectively. These heatmap-like distributions can ef-

fectively describe the spatial characteristics of the event

stream. Then the other two channels hold the ratios describ-

ing the temporal characteristics. The ratio ri,j at pixel (i, j)
is defined as,

ri,j =
ti,j − tbegin

tend − tbegin
(5)

where ti,j is the timestamp of the last event at pixel (i,

j), tbegin is the timestamp of the first event and tend is the

last event of the whole stream. These ratios estimate the

lifetime of object of interest at different locations.

After the above processes, the event streams are repre-

sented as event images ready for training the deep neural

network.

4.2. Deep Recognition Network

Our deep neural network for event-based gait recognition

can be vastly divided into two major components: convolu-

tional layers with Residual Block (ResBlock) layers are re-

sponsible for feature extraction and fully-connected layers

with softmax associate the features to different identities.

The convolutional layers have been proved an effective way

to extract features and popularly applied in image classifica-

tion tasks [21, 37, 12]. The ResBlock layers [16] are able to

deal with the vanishing features problem when the network

goes deeper so that features extracted by convolutional lay-

ers can be better integrated. The fully-connected layers de-

code the features and pass them to the softmax functions to

execute classification tasks.

The detailed design of our network is shown in Figure 4.

It starts from a special input layer to accommodate the event

images presented in Sec. 4.1. The input image is passed

through four convolutional layers whose filter size is 3×3

and stride is 2. The number of channels of the four convo-

lutional layers are 64, 128, 256 and 512 respectively. Af-

ter the convolutional layers, the resultant activations of the

ReLu [32] functions are passed through two ResBlock lay-

ers to deal with the vanishing gradient problem and keep the

features extracted from lower layers when our network goes

deeper. The two ResBlock layers share the same parame-

ters: the filter size is 3×3, the stride is 1 and the number

of channels are 512. Then, two fully-connected layers with
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Figure 3. Workflow of the proposed EV-Gait.
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Figure 4. Network architecture of the proposed EV-Gait.

1024 and 512 nodes respectively are connected to the Res-

Block layers and softmax functions are stacked to finalise

the whole network. At last, the cross entropy loss function

and Adam optimizer [20] are adopted to train the network.

5. Evaluation

In this section, we evaluate EV-Gait with both data col-

lected in real-world experiments and converted from pub-

licly available RGB gait databases. In our experiments, we

use a DVS128 Dynamic Vision Sensor from iniVation [1]

operating at 128×128 pixel resolution. The event data is

streamed to and processed on a desktop machine running

Ubuntu 16.04, and the deep network (discussed in Sec. 4) is

trained on a single NVIDIA 1080Ti GPU. In the following,

we first evaluate the performance of event noise cancellation

of EV-Gait in Sec. 5.1, and then present the gait recognition

performance of our approach in Sec. 5.2.

5.1. Event Noise Cancellation

We compare the proposed noise cancellation technique

in EV-Gait against the following three state of the art ap-

proaches:

(1) Liu et al [28], which discards an event as noise if

there is no other event captured at its eight neighbour pixels

within a certain time period;

(2) Khoda et al [18], which improves Liu’s approach by

recovering events that are mistakenly classified as noise;

(3) Padala et al [33], which filters noise in the event

stream by exploiting the fact that two events fire at the same

location can’t be too close in time domain.

To fully investigate the noise cancellation performance

of EV-Gait, we consider two experiment scenarios, where

the DVS sensor is configured to capture: i) a static back-

ground with nothing moving; and ii) an artificial object

moving upon the background.

5.1.1 Noise Cancellation with Static Background

In this experiment setting, we configure the DVS128 cam-

era to face white walls and continuously capture the event

streams for fixed time intervals. The environments are con-

trolled and there is no moving object or shadow within the

camera field of view, so that the scene captured by the cam-

era is purely static background. We consider two different

lighting sources, i) the light-emitting diode (LED) and ii)

fluorescent tube light (FTL), both of which are AC pow-

ered. However, the flicker frequency of the fluorescent light

is relatively slow (100Hz or 120Hz), and thus can be easily

picked up by the DVS sensors, causing more noise in the

event streams. On the other hand, the LED lights used in

our experiments are more stable, since they use rectifiers to

convert the AC to DC and smooth the output with capaci-

tors. Fig. 6(a) and Fig. 5(a) show the the recorded events

accumulated within a 20ms window under the two different

lighting sources respectively. Clearly in this case, all the

events (white dots) should be noise, since the DVS sensor

is only capturing the static white wall. We then apply the
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event noise cancellation technique used in EV-Gait and the

competing approaches to the recorded event streams, and

Table 1 shows their performance in removing noise.

Firstly, we find that the amount of noise caused by fluo-

rescent tube light (FTL) is much more than that of the LED

light (1,082,840 vs. 19,009 noise events), which confirms

that DVS sensors are very sensitive to different lighting con-

ditions. On the other hand, we see that our technique can

effectively remove most of the noise in the event streams,

up to 97.79% and 99.73% under LED and FTL. This sig-

nificantly outperforms all the completing approaches (see

Fig. 5 and Fig. 6 for visualisation of the remaining noise

events), where the best one (Khoda [18]) keeps almost 78

times (21.06% v.s. 0.27%) more noise events than ours

under the unstable FTL lighting. This is expected as the

competing approaches only use spatial and temporal incon-

sistencies to filter out noise events, while the proposed EV-

Gait exploits moving surfaces based on optical flow, which

is inherently more robust.

# of Noise EV-Gait Liu [28] Khoda [18] Padala [33]

LED 19,009 2.21% 29.3% 5.13% 15.56%

FTL 1,082,840 0.27% 48.25% 21.06% 47.37%

Table 1. Noise cancellation performance of the proposed and com-

peting approaches under LED (1st row) and FTL lights (2nd row).

First column shows the total numbers of noise events under the two

lighting conditions, while the rest show the percentage of noise

events left after applying individual approaches.

(a) (b) (c) (d) (e)

Figure 5. Visualisation of events (400ms) captured for a static

background under FTL lighting by (a) no processing; (b) EV-Gait;

(c) Liu [28]; (d) Khoda [18] and (e) Padala [33].

(a) (b) (c) (d) (e)

Figure 6. Visualisation of events (400ms) captured for a static

background under FTL lighting by (a) no processing; (b) EV-Gait;

(c) Liu [28]; (d) Khoda [18] and (e) Padala [33].

5.1.2 Noise Cancellation with Moving Objects

The second set of experiments investigate the performance

of different noise cancellation approaches in the presence

(a) (b) (c) (d) (e)

Figure 7. Visualisation of events (400ms) captured for a moving

object under LED lighting by (a) no processing; (b) EV-Gait; (c)

Liu [28]; (d) Khoda [18] and (e) Padala [33].

(a) (b) (c) (d) (e)

Figure 8. Visualisation of events (400ms) captured for a moving

object under FTL lighting by (a) no processing; (b) EV-Gait; (c)

Liu [28]; (d) Khoda [18] and (e) Padala [33].

of moving objects. We again configure the DVS sensor to

face the white walls in both LED and FTL lighting condi-

tions, but rather than capturing the background in this case

we use a red laser pointer to generate a moving dot on the

wall. This moving dot can be captured by the DVS sen-

sor as series of events, as well as the noise. Intuitively,

an ideal noise cancellation approach should only extract

the events corresponding to that moving dot and discard

all the others, forming the complete and clean trajectories.

Fig. 7(a) and Fig. 8(a) show the visualisation of events cap-

tured by the DVS sensor under LED and FTL lighting.

We can see that although there are trajectories visible, the

noise events still occupy most of the scene, especially in

the FTL case where the lighting source is not very stable

(flickering). Fig. 7(b)-(e) and Fig. 8(b)-(e) show the visu-

alisation of events produced by EV-Gait and the competing

approaches under LED and FTL lighting respectively. We

see that clearly the proposed EV-Gait performs the best, in

the sense that it can reject most of the noise events spread

across the scene while retaining the positive events corre-

sponding to the moving dot, i.e. preserving the complete

and clean trajectories. On the other hand, the competing ap-

proaches performs significantly inferior: only Liu [28] and

Kohoda [18] could achieve acceptable results under the sta-

ble LED lighting (see Fig. 7(c)-(d)), but they immediately

fail under the unstable FTL condition (see Fig. 8(c)-(d)).

5.2. Gait Recognition

Now we are in a position to present the gait recognition

performance of the proposed EV-Gait approach. We eval-

uate our approach on two event-based gait datasets: i) the

DVS128-Gait dataset, which is collected in real-world set-

tings with a cohort of 21 volunteers over three weeks; and

ii) the EV-CASIA-B dataset, which is converted from the
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Figure 9. Visualisation of the event streams (accumulated over

20ms) of 10 different identities in the DVS128-Gait dataset.

state-of-the-art RGB camera-based gait recognition bench-

mark CASIA-B [45].

5.2.1 Performance on DVS128-Gait Dataset

Data Collection: We recruited a total number of 21 volun-

teers (15 males and 6 females) to contribute their data 1 in

two experiment sessions spanning over three weeks time. In

each session, the participants were asked to walk normally

in front of a DVS128 sensor mounted on a tripod, and re-

peat walking for 100 times. The sensor viewing angle is

set to approximately 90 degrees with respect to the walking

directions. The second experiment session was conducted

after a week since the end of first session to include po-

tential variances in the participants gait. Therefore, in total

we collected 4,200 samples of event streams capturing gait

of 21 different identities. Fig. 9 shows visualisation of the

data from 4 different identities (events accumulated within

20ms), where the colour of pixels indicate polarity (red for

+1, green for -1).

Implementation Details: We implement the proposed

deep network in EV-Gait (discussed in Sec. 4) with Ten-

sorFlow [2]. The data collected in the first session is used

for training, while for testing we use data from the second

session. During training we set the batch size as 64 and

learning rate as 3e-6. Both training and testing were per-

formed on a 12GB NVIDIA 1080Ti GPU.

Results: The first set of experiments investigate the recog-

nition accuracy of EV-Gait with respect to the amount of

training samples per identity. In particular, we use data from

all 21 participants, but randomly select different numbers of

training samples for each of them, varying from 1 to 100.

For each case, we retrain EV-Gait for 30 times and report

the averaged recognition accuracy. Fig. 5.2.1 (a) shows the

results, and we see that as more samples are used in training,

the recognition accuracy of EV-Gait increase immediately,

while after 25 samples per identity the accuracy tends to be

stable (approximately >94%). This indicates that EV-Gait

doesn’t require massive training data to converge, and the

recognition accuracy is reasonably good even with data col-

lected from practical settings. On the other hand, we also

1IRB approval for the experiments has been granted
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Figure 10. (a) recognition accuracy of EV-Gait (with and without

noise cancellation) vs. different training samples per identity. (b)

recognition accuracy of EV-Gait (with and without noise cancella-

tion) vs. different number of identities considered.

Figure 11. Examples from the original CASIA-B dataset (top row)

and visualisation of the corresponding event streams (accumulated

over 20ms) in our converted EV-CASIA-B dataset (bottom row).

observe that there is a significant performance gap between

using vs. not using the noise cancellation technique, e.g.

removing the noise in the event stream using our approach

can improve recognition accuracy up to 8%. This confirms

that the proposed noise cancellation approach in EV-Gait is

crucial, and have very positive knock-on effect on the over-

all gait recognition performance.

We then study the impact on recognition accuracy when

the number of identities considered vary. We randomly se-

lect a subset of identities (i.e. participants) in the dataset,

from 1 to 21 respectively, and use all samples of the selected

identities in the training set (data from the first session) to

train EV-Gait. We again retrain the model and report the

averaged recognition accuracy over 30 inference on the test

set, and Fig. 5.2.1 (b) shows the results. We see that as

the number of identities increases, the recognition accuracy

drops accordingly. This is expected because although we

have extra data for training, it is more challenging to distin-

guish more identities. However, we see that even with 20

identities, EV-Gait can still achieve almost 96% recognition

accuracy. In addition, similar with the previous case we ob-

serve that the noise cancellation technique in EV-Gait helps

a lot, e.g. increasing the accuracy up to 8%.

5.2.2 Performance on EV-CASIA-B Dataset

We have showed that EV-Gait performs well in data col-

lected from real-world settings, and now we show that it
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Methods 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ mean

EV-Gait 77.3% 89.3% 94.0% 91.8% 92.3% 96.2% 91.8% 91.8% 91.4% 87.8% 85.7% 89.9%

3D-CNN 87.1% 93.2% 97.0% 94.6% 90.2% 88.3% 91.1% 93.8% 96.5% 96% 85.7% 92.1%

Ensemble-CNN 88.7% 95.1% 98.2% 96.4% 94.1% 91.5% 93.9% 97.5% 98.4% 95.8% 85.6% 94.1%

Table 2. Gait recognition accuracy of EV-Gait (evaluated on EV-CASIA-B dataset) and two competing RGB based approaches (evaluated

on CASIA-B dataset). Note that for viewing angles 72◦, 90◦ and 108◦, EV-Gait even performs better than the RGB based approaches.

could also achieve comparable performance with the state-

of-the-art gait recognition approaches that are designed for

RGB images. Since those approaches do not work on

event streams, for fair comparison, we convert the widely

used CASIA-B [45] benchmark into its event version EV-

CASIA-B. Then we run EV-Gait on the converted EV-

CASIA-B dataset, and compare the resulting recognition

accuracy with that of the state-of-the-art approaches on the

original CASIA-B dataset.

Data Collection: CASIA-B is one of the most popular

benchmark for RGB camera-based gait recognition meth-

ods [25, 13, 5, 23]. It contains data from 124 subjects, each

of which has 66 video clips recorded by RGB camera from

11 different view angles (0◦ to 180◦), i.e., 6 clips for each

angle. The view angle is the relative angle between the view

of the camera and walking direction of the subjects. To con-

vert the CASIA-B dataset to event format, we use a similar

approach as in [17] and use a DVS128 sensor to record the

playbacks of the video clips on screen. In particular, we use

a Dell 23 inch monitor with resolution 1920×1080 at 60Hz.

Fig. 11 shows some examples from the original CASIA-B

dataset (top row) and the visualisation of the corresponding

event streams in our converted EV-CASIA-B dataset.

Implementation Details: We consider the same deep

network structure as in the previous experiments on the

DVS128-Gait dataset. For training, we use the data of the

first 74 subjects to pre-train the network. Then for the other

50 subjects, for each viewing angle we use the first 4 out of

6 clips to fine-tune the network, and the rest 2 clips are used

for testing. We implement two competing approaches that

work on RGB images: i) 3D-CNN [44] and ii) Ensemble-

CNN [44], which can achieve state-of-the-art gait recogni-

tion performance on the original CASIA-B benchmark.

Results: Table 2 shows the gait recognition accuracy of the

proposed EV-Gait with the competing approaches 3D-CNN

and Ensemble-CNN. It is worth pointing out that the frame

rate of the video clips in CASIA-B dataset is only 25 FPS,

with a low resolution at 320×240. As a result when convert-

ing such data into event format via playback on the screen,

the DVS sensor will inevitably pick up lots of noise. In ad-

dition, unlike the original RGB data, the event streams in-

herently contain much less information (see Fig. 11). How-

ever, as we can see from Table 2, the proposed EV-Gait can

still achieve comparable gait recognition accuracy (89.9%)

with the competing RGB camera based approaches over-

all (94.1%). For some viewing angles, especially when the

walking directions of the subjects are perpendicular with

the camera optical axis (e.g. around 90◦), the proposed

EV-Gait even outperforms the state-of-the-art 3D-CNN and

Ensemble-CNN (96.2% vs. 88.3% and 91.5%). This is

because in such settings the event streams captured by the

DVS sensor can preserve most of the motion features, while

removing the gait irrelevant information in RGB images

such as cloth texture. On the other hand, for the viewing

angles that the subjects walk towards/away from the camera

(e.g. 0◦ or 162◦), the accuracy of EV-Gait is slightly infe-

rior to the RGB-based approaches. This is expected, since

in those cases compared to RGB images, the event streams

contain fewer informative features on the subjects’ motion

patterns, and thus struggle to extract their identities.

6. Conclusion

In this paper, we propose EV-Gait, a new approach for

gait recognition using DVS sensors. EV-Gait features a new

event noise cancellation technique exploiting motion con-

sistency of the moving objects to clean up event streams

and can be generally applied on a wide range of applica-

tions on tracking, localisation, activities recognition using

DVS sensors. Then a deep neural network in EV-Gait is

designed for recognising gait from event streams. We col-

lect two event-based gait datasets from both real-world ex-

periments and RGB-based benchmark and will make them

available to the community. According to the evaluations

on the datasets, EV-Gait achieves up to 96% accuracy in

real-world settings and comparable performance with state-

of-the-art RGB-based approaches on the benchmark.
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