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Abstract

In this paper we illustrate how to perform both visual object

tracking and semi-supervised video object segmentation,

in real-time, with a single simple approach. Our method,

dubbed SiamMask, improves the offline training procedure

of popular fully-convolutional Siamese approaches for ob-

ject tracking by augmenting their loss with a binary seg-

mentation task. Once trained, SiamMask solely relies on a

single bounding box initialisation and operates online, pro-

ducing class-agnostic object segmentation masks and ro-

tated bounding boxes at 55 frames per second. Despite its

simplicity, versatility and fast speed, our strategy allows us

to establish a new state-of-the-art among real-time track-

ers on VOT-2018, while at the same time demonstrating

competitive performance and the best speed for the semi-

supervised video object segmentation task on DAVIS-2016

and DAVIS-2017. The project website is http://www.

robots.ox.ac.uk/˜qwang/SiamMask.

1. Introduction

Tracking is a fundamental task in any video applica-

tion requiring some degree of reasoning about objects of

interest, as it allows to establish object correspondences be-

tween frames [38]. It finds use in a wide range of scenarios

such as automatic surveillance, vehicle navigation, video la-

belling, human-computer interaction and activity recogni-

tion. Given the location of an arbitrary target of interest in

the first frame of a video, the aim of visual object tracking

is to estimate its position in all the subsequent frames with

the best possible accuracy [69, 65, 55].

For many applications, it is important that tracking can

be performed online, while the video is streaming. In other

words, the tracker should not make use of future frames to
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Figure 1. Our method aims at the intersection between the tasks

of visual tracking and video object segmentation to achieve high

practical convenience. Like conventional object trackers, it relies

on a simple bounding box initialisation (blue) and operates online.

Differently from state-of-the-art trackers such as ECO [14] (red),

SiamMask (green) is able to produce binary segmentation masks,

which can more accurately describe the target object.

reason about the current position of the object [30]. This

is the scenario portrayed by visual object tracking bench-

marks, which represent the target object with a simple axis-

aligned [62, 34, 42, 59, 43] or rotated [30] bounding box.

Such a simple annotation helps to keep the cost of data la-

belling low; what is more, it allows a user to perform a quick

and simple initialisation of the target.

Similar to object tracking, the task of semi-supervised

video object segmentation (VOS) requires estimating the

position of an arbitrary target specified in the first frame

of a video. However, in this case the object represen-

tation consists of a binary segmentation mask which ex-

presses whether or not a pixel belongs to the target [46].

Such a detailed representation is more desirable for appli-

cations that require pixel-level information, like video edit-

ing [44] and rotoscoping [41]. Understandably, produc-

ing pixel-level estimates requires more computational re-
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sources than a simple bounding box. As a consequence,

VOS methods have been traditionally slow, often requir-

ing several seconds per frame (e.g. [61, 57, 45, 2]). Very

recently, there has been a surge of interest in faster ap-

proaches [66, 40, 63, 10, 9, 24, 23]. However, even the

fastest still cannot operate in real-time.

In this paper, we aim at narrowing the gap between ar-

bitrary object tracking and VOS by proposing SiamMask,

a simple multi-task learning approach that can be used

to address both problems. Our method is motivated by

the success of fast tracking approaches based on fully-

convolutional Siamese networks [4] trained offline on mil-

lions of pairs of video frames (e.g. [31, 71, 17, 67]) and by

the very recent availability of YouTube-VOS [64], a large

video dataset with pixel-wise annotations. We aim at retain-

ing the offline trainability and online speed of these meth-

ods while at the same time significantly refining their rep-

resentation of the target object, which is limited to a simple

axis-aligned bounding box.

To achieve this goal, we simultaneously train a Siamese

network on three tasks, each corresponding to a different

strategy to establish correspondances between the target ob-

ject and candidate regions in the new frames. As in the

fully-convolutional approach of Bertinetto et al. [4], one

task is to learn a measure of similarity between the target

object and multiple candidates in a sliding window fashion.

The output is a dense response map which only indicates the

location of the object, without providing any information

about its spatial extent. To refine this information, we si-

multaneously learn two further tasks: bounding box regres-

sion using a Region Proposal Network [53, 31] and class-

agnostic binary segmentation [49]. Notably, binary labels

are only required during offline training to compute the seg-

mentation loss and not online during segmentation/tracking.

In our proposed architecture, each task is represented by

a different branch departing from a shared CNN and con-

tributes towards a final loss, which sums the three outputs

together.

Once trained, SiamMask solely relies on a single bound-

ing box initialisation, operates online without updates and

produces object segmentation masks and rotated bound-

ing boxes at 55 frames per second. Despite its simplicity

and fast speed, SiamMask establishes a new state-of-the-art

on VOT-2018 for the problem of real-time object tracking.

Moreover, the same method is also very competitive against

recent semi-supervised VOS approaches on DAVIS-2016

and DAVIS-2017, while being the fastest by a large mar-

gin. This result is achieved with a simple bounding box

initialisation (as opposed to a mask) and without adopting

costly techniques often used by VOS approaches such as

fine-tuning [39, 45, 2, 60], data augmentation [25, 33] and

optical flow [57, 2, 45, 33, 10].

The rest of this paper is organised as follows. Section 2

briefly outlines some of the most relevant prior work in vi-

sual object tracking and semi-supervised VOS; Section 3

describes our proposal; Section 4 evaluates it on four bench-

marks and illustrates several ablative studies; Section 5 con-

cludes the paper.

2. Related Work

In this section, we briefly cover the most representative

techniques for the two problems tackled in this paper.

Visual object tracking. Arguably, until very recently,

the most popular paradigm for tracking arbitrary objects

has been to train online a discriminative classifier exclu-

sively from the ground-truth information provided in the

first frame of a video (and then update it online). This

strategy has often been referred to as tracking-by-detection

(e.g. [1, 55]). In the past few years, the Correlation Fil-

ter, a simple algorithm that allows to discriminate between

the template of an arbitrary target and its 2D translations,

rose to prominence as particularly fast and effective strategy

for tracking-by-detection thanks to the pioneering work of

Bolme et al. [6]. Performance of Correlation Filter-based

trackers has then been notably improved with the adop-

tion of multi-channel formulations [26, 22], spatial con-

straints [27, 15, 37, 32] and deep features (e.g. [14, 58]).

Recently, a radically different approach has been intro-

duced [4, 21, 56]. Instead of learning a discrimative clas-

sifier online, these methods train offline a similarity func-

tion on pairs of video frames. At test time, this function

can be simply evaluated on a new video, once per frame.

In particular, evolutions of the fully-convolutional Siamese

approach [4] considerably improved tracking performance

by making use of region proposals [31], hard negative min-

ing [71], ensembling [17] and memory networks [67].

Most modern trackers, including all the ones mentioned

above, use a rectangular bounding box both to initialise the

target and to estimate its position in the subsequent frames.

Despite its convenience, a simple rectangle often fails to

properly represent an object, as it is evident in the examples

of Figure 1. This motivated us to propose a tracker able to

produce binary segmentation masks while still only relying

on a bounding box initialisation.

Interestingly, in the past it was not uncommon for track-

ers to produce a coarse binary mask of the target object

(e.g. [13, 48, 5]). However, to the best of our knowledge,

the only recent tracker that, like ours, is able to operate on-

line and produce a binary mask starting from a bounding

box initialisation is the superpixel-based approach of Yeo et

al. [68]. However, at 4 frames per seconds (fps), its fastest

variant is significantly slower than our proposal. Further-

more, when using CNN features, its speed is affected by a

60-fold decrease, plummeting below 0.1 fps. Finally, it has

not demonstrated to be competitive on modern tracking or

VOS benchmarks Similar to us, the methods of Perazzi et
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al. [45] and Ci et al. [12] can also start from a rectangle and

output per-frame masks. However, they require fine-tuning

at test time, which makes them slow.

Semi-supervised video object segmentation. Bench-

marks for arbitrary object tracking (e.g. [55, 30]) assume

that trackers receive input frames in a sequential fashion.

This aspect is generally referred to with the attributes on-

line or causal [30]. Moreover, methods are often focused

on achieving a speed that exceeds the ones of typical video

framerates [29]. Conversely, semi-supervised VOS algo-

rithms have been traditionally more concerned with an ac-

curate representation of the object of interest [44, 46].

In order to exploit consistency between video frames,

several methods propagate the supervisory segmentation

mask of the first frame to the temporally adjacent ones via

graph labeling approaches (e.g. [61, 47, 57, 40, 2]). In

particular, Bao et al. [2] recently proposed a very accurate

method that makes use of a spatio-temporal MRF in which

temporal dependencies are modelled by optical flow, while

spatial dependencies are expressed by a CNN.

Another popular strategy is to process video frames in-

dependently (e.g. [39, 45, 60]), similarly to what happens

in most tracking approaches. For example, in OSVOS-S

Maninis et al. [39] do not make use of any temporal in-

formation. They rely on a fully-convolutional network pre-

trained for classification and then, at test time, they fine-

tune it using the ground-truth mask provided in the first

frame. MaskTrack [45] instead is trained from scratch on

individual images, but it does exploit some form of tempo-

rality at test time by using the latest mask prediction and

optical flow as additional input to the network.

Aiming towards the highest possible accuracy, at test

time VOS methods often feature computationally intensive

techniques such as fine-tuning [39, 45, 2, 60], data augmen-

tation [25, 33] and optical flow [57, 2, 45, 33, 10]. There-

fore, these approaches are generally characterised by low

framerates and the inability to operate online. For example,

it is not uncommon for methods to require minutes [45, 11]

or even hours [57, 2] for videos that are just a few seconds

long, like the ones of DAVIS.

Recently, there has been an increasing interest in the

VOS community towards faster methods [40, 63, 10, 9, 24,

23]. To the best of our knowledge, the fastest approaches

with a performance competitive with the state of the art

are the ones of Yang et al. [66] and Wug et al. [63]. The

former uses a meta-network “modulator” to quickly adapt

the parameters of a segmentation network during test time,

while the latter does not use any fine-tuning and adopts an

encoder-decoder Siamese architecture trained in multiple

stages. Both these methods run below 10 frames per sec-

ond, while we are more than six times faster and only rely

on a bounding box initialisation.

3. Methodology

To allow online operability and fast speed, we adopt

the fully-convolutional Siamese framework of Bertinetto et

al. [4]. Moreover, to illustrate that our approach is agnostic

to the specific fully-convolutional method used as a start-

ing point (e.g. [4, 31, 71, 67, 18]), we consider the popular

SiamFC [4] and SiamRPN [31] as two representative ex-

amples. We first introduce them in Section 3.1 and then

describe our approach in Section 3.2.

3.1. Fully­convolutional Siamese networks

SiamFC. Bertinetto et al. [4] propose to use, as a fun-

damental building block of a tracking system, an offline-

trained fully-convolutional Siamese network that compares

an exemplar image z against a (larger) search image x to

obtain a dense response map. z and x are, respectively, a

w×h crop centered on the target object and a larger crop

centered on the last estimated position of the target. The

two inputs are processed by the same CNN fθ, yielding two

feature maps that are cross-correlated:

gθ(z, x) = fθ(z) ⋆ fθ(x). (1)

In this paper, we refer to each spatial element of the re-

sponse map (left-hand side of Eq. 1) as response of a can-

didate window (RoW). For example, gnθ (z, x), encodes a

similarity between the examplar z and n-th candidate win-

dow in x. For SiamFC, the goal is for the maximum value of

the response map to correspond to the target location in the

search area x. Instead, in order to allow each RoW to en-

code richer information about the target object, we replace

the simple cross-correlation of Eq. 1 with depth-wise cross-

correlation [3] and produce a multi-channel response map.

SiamFC is trained offline on millions of video frames with

the logistic loss [4, Section 2.2], which we refer to as Lsim.

SiamRPN. Li et al. [31] considerably improve the perfor-

mance of SiamFC by relying on a region proposal network

(RPN) [53, 16], which allows to estimate the target location

with a bounding box of variable aspect ratio. In particular,

in SiamRPN each RoW encodes a set of k anchor box pro-

posals and corresponding object/background scores. There-

fore, SiamRPN outputs box predictions in parallel with

classification scores. The two output branches are trained

using the smooth L1 and the cross-entropy losses [31, Sec-

tion 3.2]. In the following, we refer to them as Lbox and

Lscore respectively.

3.2. SiamMask

Unlike existing tracking methods that rely on low-

fidelity object representations, we argue the importance of

producing per-frame binary segmentation masks. To this

aim we show that, besides similarity scores and bound-

ing box coordinates, it is possible for the RoW of a fully-
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Figure 2. Schematic illustration of SiamMask variants: (a) three-branch architecture (full), (b) two-branch architecture (head). ⋆d denotes

depth-wise cross correlation. For simplicity, upsampling layer and mask refinement module are omitted here and detailed in Appendix.

convolutional Siamese network to also encode the informa-

tion necessary to produce a pixel-wise binary mask. This

can be achieved by extending existing Siamese trackers with

an extra branch and loss.

We predict w×h binary masks (one for each RoW) using

a simple two-layers neural network hφ with learnable pa-

rameters φ. Let mn denote the predicted mask correspond-

ing to the n-th RoW,

mn = hφ(g
n
θ (z, x)). (2)

From Eq. 2 we can see that the mask prediction is a function

of both the image to segment x and the target object in z. In

this way, z can be used as a reference to guide the segmen-

tation process, such that objects of any arbitrary class can be

tracked. This clearly means that, given a different reference

image z, the network will produce a different segmentation

mask for x.

Loss function. During training, each RoW is labelled with

a ground-truth binary label yn ∈ {±1} and also associated

with a pixel-wise ground-truth mask cn of size w×h. Let

cijn ∈ {±1} denote the label corresponding to pixel (i, j) of

the object mask in the n-th candidate RoW. The loss func-

tion Lmask (Eq. 3) for the mask prediction task is a binary

logistic regression loss over all RoWs:

Lmask(θ, φ) =
∑

n

(
1 + yn

2wh

∑

ij

log(1 + e−cijn mij
n )). (3)

Thus, the classification layer of hφ consists of w×h classi-

fiers, each indicating whether a given pixel belongs to the

object in the candidate window or not. Note that Lmask is

considered only for positive RoWs (i.e. with yn = 1).

Mask representation. In contrast to semantic segmenta-

tion methods à-la FCN [36] and Mask R-CNN [19], which

maintain explicit spatial information throughout the net-

work, our approach follows the spirit of [49, 50] and gen-

erates masks starting from a flattened representation of the

object. In particular, in our case this representation corre-

sponds to one of the (17×17) RoWs produced by the depth-

wise cross-correlation between fθ(z) and fθ(x). Impor-

tantly, the network hφ of the segmentation task is composed

of two 1×1 convolutional layers, one with 256 and the other

with 632 channels (Figure 2). This allows every pixel clas-

sifier to utilise information contained in the entire RoW and

thus to have a complete view of its corresponding candidate

window in x, which is critical to disambiguate between in-

stances that look like the target (e.g. last row of Figure 4),

also known as distractors [52, 71]. With the aim of pro-

ducing a more accurate object mask, we follow the strategy

of [50], which merges low and high resolution features us-

ing multiple refinement modules made of upsampling layers

and skip connections (See Appendix).

Two variants. For our experiments, we augment the ar-

chitectures of SiamFC [4] and SiamRPN [31] with our seg-

mentation branch and the loss Lmask, obtaining what we

call the two-branch and three-branch variants of SiamMask.

These respectively optimise the multi-task losses L2B and

L3B , defined as:

L2B = λ1 · Lmask + λ2 · Lsim, (4)

L3B = λ1 · Lmask + λ2 · Lscore + λ3 · Lbox. (5)

We refer the reader to [4, Section 2.2] for Lsim and to [31,

Section 3.2] for Lbox and Lscore. For L3B , a RoW is con-

sidered positive (yn = 1) if one of its anchor boxes has

IOU with the ground-truth box of at least 0.6 and negative

(yn = −1) otherwise. For L2B , we adopt the same strat-

egy of [4] to define positive and negative samples. We did

not search over the hyperparameters of Eq. 4 and Eq. 5 and

simply set λ1 = 32 like in [49] and λ2 = λ3 = 1. The task-

specific branches for the box and score outputs are consti-

tuted by two 1×1 convolutional layers. Figure 2 illustrates

the two variants of SiamMask.

Box generation. Note that, while VOS benchmarks re-

quire binary masks, typical tracking benchmarks such as
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Figure 3. In order to generate a bounding box from binary mask

(in yellow), we experiment with three different methods. Min-

max: Axis-aligned box (red), MBR: minimum bounding rectan-

gle (green) and Opt: the optimisation strategy proposed in VOT-

2016 [28] (blue).

VOT [30] require a bounding box as final representation

of the target object. We consider three different strategies

to generate a bounding box from a binary mask (Figure 3):

(1) axis-aligned bounding rectangle (Min-max), (2) rotated

minimum bounding rectangle (MBR) and (3) the optimisa-

tion strategy used for the automatic bounding box gener-

ation proposed in VOT-2016 [28] (Opt). We empirically

evaluate these alternatives in Section 4 (Table 1).

3.3. Implementation details

Network architecture. For both our variants, we use a

ResNet-50 [20] until the final convolutional layer of the 4-th

stage as our backbone fθ. In order to obtain a high spatial

resolution in deeper layers, we reduce the output stride to 8
by using convolutions with stride 1. Moreover, we increase

the receptive field by using dilated convolutions [8]. In our

model, we add to the shared backbone fθ an unshared adjust

layer (1×1 conv with 256 outputs). For simplicity, we omit

it in Eq. 1. We describe the network architectures in more

detail in Appendix.

Training. Like SiamFC [4], we use examplar and search

image patches of 127×127 and 255×255 pixels respec-

tively. During training, we randomly jitter examplar and

search patches. Specifically, we consider random transla-

tions (up to ±8 pixels) and rescaling (of 2±1/8 and 2±1/4

for examplar and search respectively).

The network backbone is pre-trained on the

ImageNet-1k classification task. We use SGD with a

first warmup phase in which the learning rate increases

linearly from 10−3 to 5×10−3 for the first 5 epochs

and then descreases logarithmically until 5×10−4 for 15

more epochs. We train all our models using COCO [35],

ImageNet-VID [54] and YouTube-VOS [64].

Inference. During tracking, SiamMask is simply evalu-

ated once per frame, without any adaptation. In both our

variants, we select the output mask using the location attain-

ing the maximum score in the classification branch. Then,

after having applied a per-pixel sigmoid, we binarise the

output of the mask branch with a threshold 0.5. In the two-

branch variant, for each video frame after the first one, we

fit the output mask with the Min-max box and use it as ref-

erence to crop the next frame search region. Instead, in the

three-branch variant, we find more effecitve to exploit the

highest-scoring output of the box branch as reference.

4. Experiments

In this section, we evaluate our approach on two related

tasks: visual object tracking (on VOT-2016 and VOT-2018)

and semi-supervised video object segmentation (on DAVIS-

2016 and DAVIS-2017). We refer to our two-branch and

three-branch variants with SiamMask-2B and SiamMask

respectively.

4.1. Evaluation for visual object tracking

Datasets and settings. We adopt two widely used bench-

marks for the evaluation of the object tracking task: VOT-

2016 [28] and VOT-2018 [29], both annotated with rotated

bounding boxes. We use VOT-2016 to conduct an exper-

iment to understand how different types of representation

affect the performance. For this first experiment, we use

mean intersection over union (IOU) and Average Precision

(AP)@{0.5, 0.7} IOU. We then compare against the state-

of-the-art on VOT-2018, using the official VOT toolkit and

the Expected Average Overlap (EAO), a measure that con-

siders both accuracy and robustness of a tracker [29].

How much does the object representation matter?

Existing tracking methods typically predict axis-aligned

bounding boxes with a fixed [4, 22, 15, 37] or variable [31,

21, 71] aspect ratio. We are interested in understanding to

which extent producing a per-frame binary mask can im-

prove tracking. In order to focus on representation accuracy,

for this experiment only we ignore the temporal aspect and

sample video frames at random. The approaches described

in the following paragraph are tested on randomly cropped

search patches (with random shifts within ±16 pixels and

scale deformations up to 21±0.25) from the sequences of

VOT-2016.

In Table 1, we compare our three-branch variant using

the Min-max, MBR and Opt approaches (described at the

end of Section 3.2 and in Figure 3). For perspective, we also

report results for SiamFC and SiamRPN as representative

of the fixed and variable aspect-ratio approaches, together

with three oracles that have access to per-frame ground-

truth information and serve as upper bound for the differ-

ent representation strategies. (1) The fixed aspect-ratio or-

acle uses the per-frame ground-truth area and center loca-

tion, but fixes the aspect reatio to the one of the first frame

and produces an axis-aligned bounding box. (2) The Min-

max oracle uses the minimal enclosing rectangle of the ro-

tated ground-truth bounding box to produce an axis-aligned

bounding box. (3) Finally, the MBR oracle uses the rotated

minimum bounding rectangle of the ground-truth. Note that

(1), (2) and (3) can be considered, respectively, the per-

formance upper bounds for the representation strategies of
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mIOU (%) mAP@0.5 IOU mAP@0.7 IOU

Fixed a.r. Oracle 73.43 90.15 62.52

Min-max Oracle 77.70 88.84 65.16

MBR Oracle 84.07 97.77 80.68

SiamFC [4] 50.48 56.42 9.28

SiamRPN [71] 60.02 76.20 32.47

SiamMask-Min-max 65.05 82.99 43.09

SiamMask-MBR 67.15 85.42 50.86

SiamMask-Opt 71.68 90.77 60.47

Table 1. Performance for different bounding box representation

strategies on VOT-2016.

SiamFC, SiamRPN and SiamMask.

Table 1 shows that our method achieves the best mIOU,

no matter the box generation strategy used (Figure 3). Al-

beit SiamMask-Opt offers the highest IOU and mAP, it re-

quires significant computational resources due to its slow

optimisation procedure [28]. SiamMask-MBR achieves a

mAP@0.5 IOU of 85.4, with a respective improvement of

+29 and +9.2 points w.r.t. the two fully-convolutional

baselines. Interestingly, the gap significantly widens when

considering mAP at the higher accuracy regime of 0.7 IOU:

+41.6 and +18.4 respectively. Notably, our accuracy re-

sults are not far from the fixed aspect-ratio oracle. More-

over, comparing the upper bound performance represented

by the oracles, it is possible to notice how, by simply chang-

ing the bounding box representation, there is a great room

of improvement (e.g. +10.6% mIOU improvement between

the fixed aspect-ratio and the MBR oracles).

Overall, this study shows how the MBR strategy to obtain

a rotated bounding box from a binary mask of the object

offers a significant advantage over popular strategies that

simply report axis-aligned bounding boxes.

Results on VOT-2018 and -2016. In Table 2 we com-

pare the two variants of SiamMask with MBR strategy and

SiamMask–Opt against five recently published state-of-the-

art trackers on the VOT-2018 benchmark. Unless stated oth-

erwise, SiamMask refers to our three-branch variant with

MBR strategy. Both the variant of SiamMask achieve out-

standing performance and run in real-time. In particular,

our three-branch variant significantly outperforms the very

recent and top performing DaSiamRPN [71], achieving a

EAO of 0.380 and runs at 55fps. Even without box regres-

sion branch, our simpler two-branch variant (SiamMask-

2B) achieves a high EAO of 0.334, which is in par with

SA Siam R [17] and superior to any other real-time method

in the published literature. Moreover, SiamMask–Opt can

achieve the best performance with EAO of 0.387, but runs

at only 5fps. This is expected, as the box optimisation

strategy requires more computation to offer a higher IOU.

Our model is particularly strong under the accuracy metric,

showing a significant advantage with respect to the Correla-

tion Filter-based trackers CSRDCF [37], STRCF [32]. This

is not surprising, as SiamMask relies on a richer object rep-

resentation, as outlined in Table 1. Interestingly, similarly

to us, He et al. (SA Siam R) [17] are motivated to achieve

a more accurate target representation by considering mul-

tiple rotated and rescaled bounding boxes. However, their

representation is still constrained to a fixed aspect-ratio box.

Table 3 gives further results of SiamMask with dif-

ferent box generation strategies on VOT-2018 and -2016.

SiamMask-box means the box branch of SiamMask is

adopted for inference despite the mask branch has been

trained. We can observe clear improvements on all evalua-

tion metrics by using the mask branch for box generation.

4.2. Evaluation for semi­supervised VOS

Our model, once trained, can also be used for the task

of VOS to achieve competitive performance without requir-

ing any adaptation at test time. Importantly, differently to

typical VOS approaches, ours can operate online, runs in

real-time and only requires a simple bounding box initiali-

sation.

Datasets and settings. We report the performance of

SiamMask on DAVIS-2016 [46], DAVIS-2017 [51] and

YouTube-VOS [64] benchmarks. For both DAVIS datasets,

we use the official performance measures: the Jaccard index

(J ) to express region similarity and the F-measure (F) to

express contour accuracy. For each measure C ∈ {J ,F},

three statistics are considered: mean CM, recall CO, and

decay CD, which informs us about the gain/loss of perfor-

mance over time [46]. Following [64], final result O on

YouTube-VOS is the average of four metrics: J for seen

categories, F for seen categories, J for unseen categories,

and F for unseen categories.

To initialise SiamMask, we extract the axis-aligned

bounding box (Min-max strategy, Figure 3) from the mask

provided in the first frame. Similarly to most VOS methods,

in case of multiple objects in the same video (DAVIS-2017)

we simply perform multiple inferences.

Results on DAVIS and YouTube-VOS. In the semi-

supervised setting, VOS methods are initialised with a

binary mask [44] and many of them require computa-

tionally intensive techniques at test time such as fine-

tuning [39, 45, 2, 60], data augmentation [25, 33], inference

on MRF/CRF [61, 57, 40, 2] and optical flow [57, 2, 45,

33, 10]. As a consequence, it is not uncommon for VOS

techniques to require several minutes to process a short se-

quence. Clearly, these strategies make the online applica-

bility (which is our focus) impossible. For this reason, in

our comparison (Table 4, 5 and 6) we mainly concentrate

on fast state-of-the-art approaches.

The three tables show how SiamMask can be considered

as a strong baseline for online VOS. First, it is almost two

orders of magnitude faster than accurate approaches such

as OnAVOS [60] or SFL [11]. Second, it is competitive
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SiamMask-Opt SiamMask SiamMask-2B DaSiamRPN [71] SiamRPN [31] SA Siam R [17] CSRDCF [37] STRCF [32]

EAO ↑ 0.387 0.380 0.334 0.326 0.244 0.337 0.263 0.345

Accuracy ↑ 0.642 0.609 0.575 0.569 0.490 0.566 0.466 0.523

Robustness ↓ 0.295 0.276 0.304 0.337 0.460 0.258 0.318 0.215

Speed (fps) ↑ 5 55 60 160 200 32.4 48.9 2.9

Table 2. Comparison with the state-of-the-art under EAO, Accuracy, and Robustness on the VOT-2018 benchmark.

EAO ↑ A ↑ R ↓ EAO ↑ A ↑ R ↓ Speed ↑

SiamMask-box 0.363 0.584 0.300 0.412 0.623 0.233 76

SiamMask 0.380 0.609 0.276 0.433 0.639 0.214 55

SiamMask-Opt 0.387 0.642 0.295 0.442 0.670 0.233 5

Table 3. Results on VOT-2018 benchmark (left) and VOT-2016

benchmark (right). Speed is measured in frames per second (fps).

FT M JM↑ JO↑ JD↓ FM↑ FO↑ FD↓ Speed

OnAVOS [60] ✔ ✔ 86.1 96.1 5.2 84.9 89.7 5.8 0.08

MSK [45] ✔ ✔ 79.7 93.1 8.9 75.4 87.1 9.0 0.1

MSKb [45] ✔ ✘ 69.6 - - - - - 0.1

SFL [11] ✔ ✔ 76.1 90.6 12.1 76.0 85.5 10.4 0.1

FAVOS [10] ✘ ✔ 82.4 96.5 4.5 79.5 89.4 5.5 0.8

RGMP [63] ✘ ✔ 81.5 91.7 10.9 82.0 90.8 10.1 8

PML [9] ✘ ✔ 75.5 89.6 8.5 79.3 93.4 7.8 3.6

OSMN [66] ✘ ✔ 74.0 87.6 9.0 72.9 84.0 10.6 8.0

PLM [70] ✘ ✔ 70.2 86.3 11.2 62.5 73.2 14.7 6.7

VPN [24] ✘ ✔ 70.2 82.3 12.4 65.5 69.0 14.4 1.6

SiamMask ✘ ✘ 71.7 86.8 3.0 67.8 79.8 2.1 55

Table 4. Results on DAVIS 2016 (validation set). FT and M re-

spectively denote if the method requires fine-tuning and whether

it is initialised with a mask (✔) or a bounding box (✘). Speed is

measured in frames per second (fps).

FT M JM↑ JO↑ JD↓ FM↑ FO↑ FD↓ Speed

OnAVOS [60] ✔ ✔ 61.6 67.4 27.9 69.1 75.4 26.6 0.1

OSVOS [7] ✔ ✔ 56.6 63.8 26.1 63.9 73.8 27.0 0.1

FAVOS [10] ✘ ✔ 54.6 61.1 14.1 61.8 72.3 18.0 0.8

OSMN [66] ✘ ✔ 52.5 60.9 21.5 57.1 66.1 24.3 8.0

SiamMask ✘ ✘ 54.3 62.8 19.3 58.5 67.5 20.9 55

Table 5. Results on DAVIS 2017 (validation set).

FT M JS↑ JU↑ FS↑ FU↑ O ↑ Speed ↑

OnAVOS [60] ✔ ✔ 60.1 46.6 62.7 51.4 55.2 0.1

OSVOS [7] ✔ ✔ 59.8 54.2 60.5 60.7 58.8 0.1

OSMN [66] ✘ ✔ 60.0 40.6 60.1 44.0 51.2 8.0

SiamMask ✘ ✘ 60.2 45.1 58.2 47.7 52.8 55

Table 6. Results on YouTube-VOS (validation set).

with recent VOS methods that do not employ fine-tuning,

while being four times more efficient than the fastest ones

(i.e. OSMN [66] and RGMP [63]). Interestingly, we note

that SiamMask achieves low decay [46] for region similar-

ity (JD,) and contour accuracy (FD) on both DAVIS-2016

and DAVIS-2017. This suggests that our method is robust

AN RN EAO ↑ JM↑ FM↑ Speed (fps)

SiamFC ✔ 0.188 - - 86

SiamFC ✔ 0.251 - - 40

SiamRPN ✔ 0.243 - - 200

SiamRPN ✔ 0.359 - - 76

SiamMask-2B w/o R ✔ 0.326 62.3 55.6 43

SiamMask w/o R ✔ 0.375 68.6 57.8 58

SiamMask-2B-score ✔ 0.265 - - 40

SiamMask-box ✔ 0.363 - - 76

SiamMask-2B ✔ 0.334 67.4 63.5 60

SiamMask ✔ 0.380 71.7 67.8 55

Table 7. Ablation studies on VOT-2018 and DAVIS-2016.

over time and thus it is indicated for particularly long se-

quences.

Qualitative results of SiamMask for both VOT and

DAVIS sequences are shown in Figure 4 and Appendix. De-

spite the high speed, SiamMask produces accurate segmen-

tation masks even in presence of distractors.

4.3. Further analysis

In this section, we illustrate ablation studies, failure

cases and timings of our methods.

Network architecture. In Table 7, AN and RN denote

whether we use AlexNet or ResNet-50 as the shared back-

bone fθ (Figure 2), while with “w/o R” we mean that the

method does not use the refinement strategy of Pinheiro et

al. [50]. From the results of Table 7, it is possible to make

several observations. (1) The first set of rows in Table 7

shows that, by simply updating the architecture of fθ, it

is possible to achieve an important performance improve-

ment. However, this comes at the cost of speed, especially

for SiamRPN. (2) SiamMask-2B and SiamMask consider-

ably improve over their baselines (with same fθ) SiamFC

and SiamRPN. (3) Interestingly, the refinement approach of

Pinheiro et al. [50] is very important for the contour accu-

racy FM, but less so for the other metrics.

Multi-task training. We conducted two further experi-

ments to disentangle the effect of multi-task training. Re-

sults are reported in Table 7 and and Table 3. To achieve

this, we modified the two variants of SiamMask during in-

ference so that, respectively, they report an axis-aligned

bounding box from the score branch (SiamMask-2B-score)

or the box branch (SiamMask-box). Therefore, despite hav-

ing been trained, the mask branch is not used during in-
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Figure 4. Qualitative results of our method for sequences belonging to both object tracking and video object segmentation benchmarks.

Basketball and Nature are from VOT-2018 [29]; Car-Shadow is from DAVIS-2016 [46]; Dogs-Jump and Pigs are DAVIS-2017 [51].

Figure 5. Failure cases: motion blur and “non-object” pattern.

ference. We can observe how both variants obtain an im-

provement with respect to their no-mask-branch counter-

parts (SiamFC and SiamRPN): from 0.251 to 0.265 EAO

for the two-branch and from 0.359 to 0.363 for the three-

branch on VOT2018. The gaps are therefore due solely to

the benefits of multi-task training.

Timing. SiamMask operates online without any adapta-

tion to the test sequence. On a single NVIDIA Titan X GPU,

we measured an average speed of 55 and 60 frames per

second, respectively for the two-branch and three-branch

variants. Note that the highest computational burden comes

from the feature extractor fθ.

Failure cases. Finally, we discuss two scenarios in which

SiamMask fails: motion blur and “non-object” pattern (Fig-

ure 5). Despite being different in nature, these two cases

arguably arise from the complete lack of similar training

samples in a training set such as YouTube-VOS [64], which

is focused on objects that can be unambiguously segmented

from the foreground.

5. Conclusion

We introduced SiamMask, a simple approach that en-

ables fully-convolutional Siamese trackers to produce class-

agnostic binary segmentation masks of the target object.

We show how it can be applied with success to both tasks

of visual object tracking and semi-supervised video object

segmentation, showing better accuracy than state-of-the-art

trackers and, at the same time, the fastest speed among VOS

methods. The two variants of SiamMask we proposed are

initialised with a simple bounding box, operate online, run

in real-time and do not require any adaptation to the test se-

quence. We hope that our work will inspire further studies

that consider the two problems of visual object tracking and

video object segmentation together.
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