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Abstract

Standard convolution is inherently limited for semantic

segmentation of point cloud due to its isotropy about fea-

tures. It neglects the structure of an object, results in poor

object delineation and small spurious regions in the seg-

mentation result. This paper proposes a novel graph at-

tention convolution (GAC), whose kernels can be dynami-

cally carved into specific shapes to adapt to the structure

of an object. Specifically, by assigning proper attentional

weights to different neighboring points, GAC is designed to

selectively focus on the most relevant part of them accord-

ing to their dynamically learned features. The shape of the

convolution kernel is then determined by the learned dis-

tribution of the attentional weights. Though simple, GAC

can capture the structured features of point clouds for fine-

grained segmentation and avoid feature contamination be-

tween objects. Theoretically, we provided a thorough anal-

ysis on the expressive capabilities of GAC to show how it

can learn about the features of point clouds. Empirically,

we evaluated the proposed GAC on challenging indoor and

outdoor datasets and achieved the state-of-the-art results in

both scenarios.

1. Introduction

Semantic segmentation of point clouds aims to assign

a category label to each point, which is an important yet

challenging task for 3D understanding. Recent approaches

have attempted to generalize convolutional neural network

(CNN) from grid domains (i.e., speech signals, images, and

video data) to unorganized point clouds [34, 45, 33, 35, 44,

36, 26, 14]. However, due to the isotropy of their convolu-

tion kernels about the neighboring points’ feature attributes,

these works are inherently limited for the semantic point

cloud segmentation. Intuitively, the learned features for the

points at the boundary of two objects (i.e., point 1 in Fig-

ure 1) are actually from both objects rather than the object

they truly belong to, which results in ambiguous label as-
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Figure 1. Illustration of the standard convolution and GAC on a

subgraph of a point cloud. Left: The weights of standard convo-

lution are determined by the neighbors’ spatial positions, and the

learned feature at point 1 characterizes all of its neighbors indistin-

guishably. Right: In GAC, the attentional weights on “chair” (the

brown dotted arrows) are masked, so that the convolution kernel

can focus on the “table” points.

signment.

In fact, standard convolution kernels work in a regular

receptive field for feature response, and the convolution

weights are fixed at specific positions within the convolu-

tion window. This kind of position-determined weights re-

sults in the isotropy of the convolution kernel about the fea-

ture attributes of neighboring points. For instance, in Fig-

ure 1 the learned feature at point 1 characterizes its neigh-

boring “table” and “chair” indistinguishably. This limita-

tion of the standard convolution neglects the structural con-

nection between points belonging to the same object, and

results in poor object delineation and small spurious regions

in the segmentation result.

To address this problem, the key idea of this work is as

follows. Based on the position-determined weights of the

standard convolution, we learn to mask or weaken part of

the convolution weights according to the neighbors’ feature

attributes, so that the actual receptive field of our convolu-

tion kernel for point clouds is no longer a regular 3D box

but has its own shape to dynamically adapt to the structure

of the objects.

In this paper, we implement this idea by proposing a

novel GAC to selectively focus on the most relevant part

of the neighbors in the receptive field. Specifically, inspired

by the idea of attention mechanism [4, 13, 47], GAC is de-

signed to dynamically assign proper attentional weights to

different neighboring points by combining their spatial po-
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sitions and feature attributes. The shape of the convolution

kernel is then determined by the learned distribution of the

attentional weights.

Finally, like the standard convolution in grid domain, our

GAC can also be efficiently implemented on the graph rep-

resentation of a point cloud. Referring to image segmenta-

tion network, we train an end-to-end graph attention con-

volution network (GACNet) with the proposed GAC for se-

mantic point cloud segmentation.

Notably, postprocessing of CNN’s outputs using condi-

tional random field (CRF) has practically become a de facto

standard in semantic segmentation [45, 5, 9, 2]. However,

by combining the spatial and feature constraints for atten-

tional weights generation, GAC shares the same proper-

ties as CRF, which encourages the label agreement between

similar points. Thus, CRF is no longer needed in the pro-

posed GACNet.

Our contributions are as follows:

• We propose a novel graph attention convolution with

learnable kernel shapes to dynamically adapt to the

structure of the objects;

• We provide thorough theoretical and empirical analy-

ses on the capability and effectiveness of the proposed

graph attention convolution;

• We train an end-to-end graph attention convolution

network for point cloud semantic segmentation with

the proposed GAC and experimentally demonstrate its

effectiveness.

2. Related Works

This section will discuss the related prior works in three

main aspects: deep learning on point clouds, convolution on

graphs, and CRF in deep learning.

Deep learning on point clouds. While deep learning

has been successfully used in 2D images, there are still

many challenges to exploring its feature learning power

for 3D point clouds with irregular data structures. Re-

cent researches on this issue can be mainly summarized

as voxelization-based [25, 49], multi-view-based [43, 24],

graph-based [7, 51, 42] and set-based methods [33, 35].

The voxelization-based method [50, 30] aims to dis-

cretize the point cloud space into regular volumetric oc-

cupancy grids, so that the 3D convolution can be applied

similarly as the image. These full-voxel-based methods in-

evitably lead to information loss, as well as memory and

computational consumption as it increases cubically with

respect to the voxel’s resolution. To reduce the computa-

tional cost of these full-voxel-based methods, OctNet [38]

and Kd-Net [20] were designed to resolve them by skipping

the computations on empty voxels and focusing on infor-

mative voxels. The multi-view-based method [43, 24, 18]

represents the point cloud as a set of images rendered from

multiple views. However, it is still unclear how to deter-

mine the number and distribution of the views to cover the

3D objects while avoiding mutual occlusions.

The graph-based method [7, 51] first represents the point

cloud as a graph according to their spatial neighbors, and

then generalizes the standard CNN to adapt to the graph-

structural data. Shen et al. [40] defined a point-set kernel as

a set of learnable 3D points that jointly respond to the neigh-

boring points according to their geometric affinities mea-

sured by the kernel correlation. 3DGNN [36] applied graph

neural network to RGBD data. However, due to the isotropy

of its aggregation function, 3DGNN can hardly adapt to ob-

jects with different structures. ECC [42] and SPG [23] pro-

posed to generate the convolution filters according to the

edge labels (weights), so that the information can propagate

in a specific direction on the graph. Nevertheless, ECC and

SPG can only capture some specific structures since these

edge labels (weights) are predefined.

Benefiting from the development of deep learning on

sets [33, 52, 37], researchers recently constructed effective

and simple architecture to directly learn on point sets by first

computing individual point features from per-point multi-

layer perceptron (MLP) and then aggregating all the fea-

tures as a global presentation of a point cloud [35, 12]. The

set-based method can be used directly on the point level and

is robust to the rigid transformation. However, it neglects

the spatial neighboring relation between points, which con-

tains fine-grained structural information for semantic seg-

mentation.

Convolution on Graphs. Related works about convolu-

tion on graphs can be categorized as spectral approaches

and non-spectral approaches. Spectral approaches work

with a spectral representation of graphs that relies on the

eigen-decomposition of their Laplacian matrix [19, 10].

The corresponding eigenvectors can be regarded as the

Fourier bases in the harmonic analysis of spectral graph the-

ory. The spectral convolution can then be defined as the

element-wise product of two signals’ Fourier transform on

the graph [8]. This spectral convolution does not guaran-

tee the spatial localization of the filter and thus requires ex-

pensive computations [41, 17]. In addition, as spectral ap-

proaches are associated with their corresponding Laplacian

matrix, a spectral CNN model learned on one graph cannot

be transferred to another graph that has a different Laplacian

matrix.

Non-spectral approaches aim to define convolution di-

rectly on a graph with local neighbors in a spatial or man-

ifold domain. The key to non-spectral approaches is to de-

fine a set of sharing weights applied to the neighbors of each

vertex [3, 48]. Duvenaud et al. [11] computed a weight ma-

trix for each vertex and multiplied it to its neighbors fol-

lowing a sum operation. Niepert et al. [32] proposed select-

ing and ordering the neighbors of each vertex heuristically
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Figure 2. Left: Illustration of GAC on a subgraph of a point cloud. The output is a weighted combination of the neighbors of point 1.

Right: The attention mechanism employed in GAC for dynamically attentional weights generating. It receives the neighboring vertices’

spatial positions and features as input, and then maps them to normalized attentional weights.

so that the 1D CNN can be used. Monti et al. [31] pro-

posed a unified framework that allows the generalization of

CNN architecture to graph using fixed local polar pseudo-

coordinates around each vertex. Hamilton et al. [16] intro-

duced an inductive framework by applying a specific aggre-

gator over the neighbors, such as the max/mean operator or

a recurrent neural network (RNN). However, their convo-

lution weights are mainly generated according to the prede-

fined local coordinate system, while neglecting the structure

of the objects for semantic segmentation.

CRF in Deep Learning. CRF [22] possesses fine-

grained probabilistic modeling capability, while CNN has

powerful feature learning capability. The combination of

CRF and CNN has been proposed in many image segmenta-

tion works [5, 9, 2, 29]. Recently, referring to the mean-field

algorithm [21], the iteration of CRF inference was modeled

as a stack of CNN layers [53, 28]. For 3D point cloud, fol-

lowing CRF-RNN [53], SegCloud [45] extends the imple-

mentation of CRF into 3D point clouds after a fully con-

nected CNN. However, since CRF is applied as an indi-

vidual part following the CNN, it is difficult to explore the

power of their combination.

3. Method

We propose a novel graph attention convolution (GAC)

for structured feature learning of 3D point cloud and

demonstrate its theoretical advantage (Section 3.1). After-

wards, we construct an end-to-end point cloud segmentation

framework (Section 3.2) with the proposed GAC. The de-

tails of converting point cloud into our needed graph pyra-

mid are provided in Section 3.3.

3.1. Graph attention convolution

Consider a graph G(V,E) constructed from a given

point cloud P = {p1, p2, ..., pN} ∈ R
3 according to their

spatial neighbors, where V = {1, 2, ..., N} and E ⊆
|V | × |V | represent the set of vertices and edges respec-

tively and N is the number of vertices (points). Denote

N (i) = {j : (i, j) ∈ E} ∪ {i} (including itself) as the

neighbor set of vertex i. Let H = {h1, h2, ..., hN} be a set

of input vertex features, each feature hi ∈ R
F is associated

with a corresponding graph vertex i ∈ V , where F is the

feature dimension of each vertex.

Our GAC is designed to learn a function g : RF → R
K ,

which maps the input features H to a new set of vertex fea-

tures H
′

= {h
′

1, h
′

2, ..., h
′

N} with h
′

i ∈ R
K , while main-

taining the structural connection between these output fea-

tures. Meanwhile, unlike the relatively fixed neighboring

relation in image domain, the proposed GAC should also

be able to handle the unordered and size-varying neighbors

while retaining the weight sharing property.

To this end, we construct a sharing attention mechanism

α : R3+F → R
K to focus on the most relevant part of the

neighbors for feature learning, so that the convolution ker-

nel of GAC can dynamically adapt to the structure of the

objects. Specifically, the attentional weight of each neigh-

boring vertex is computed as follows:

ãij = α(∆pij ,∆hij), j ∈ N (i) (1)

where ãij = [ãij,1, ãij,2, ..., ãij,K ] ∈ R
K indicates the at-

tentional weight vector of vertex j to vertex i. ∆pij = pj −
pi, and ∆hij = Mg(hj)−Mg(hi), where Mg : RF → R

K

is a feature mapping function applied on each vertex, i.e.,

Mg is a multilayer perceptron. The first term of α indicates

the spatial relations of the neighboring vertices, which helps

to span the unordered neighbors to meaningful surface. The

second term measures the feature difference between vertex

pairs, which guides us to assign more attention to the sim-

ilar neighbors. The sharing attention mechanism α can be

implemented with any differentiable architecture, we use a

multilayer perceptron in this work (as shown in Figure 2),

which can be formulated as follows:

α(∆pij ,∆hij) = Mα([∆pij ||∆hij ]) (2)

where || is the concatenation operation, Mα indicates the

applied multilayer perceptron.

In addition, to handle the size-varying neighbors across

different vertices and spatial scales, the attentional weights

are normalized across all the neighbors of vertex i as fol-
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Figure 3. GACNet architecture. Our GACNet is constructed on the graph pyramid of a point cloud. On each scale of the graph pyramid, the

proposed GAC is applied for local feature learning, followed by the graph pooling for resolution reducing in each feature channel. After

that, the learned features are interpolated back to the finest scale layer by layer for point-wise label assignment.

lows:

aij,k =
exp(ãij,k)∑

l∈N (i) exp(ãil,k)
(3)

where ãij,k is the attentional weight of vertex j to vertex i

at the k-th feature channel.

Therefore, the final output of the proposed GAC can be

formulated as follows:

h
′

i =
∑

j∈N (i)

aij ∗Mg(hj) + bi (4)

where * represents the Hadamard product, which produces

the element-wise production of two vectors, and bi ∈ R
K

is a learnable bias.

Relationship to standard convolution. The convolu-

tion weights of a standard convolution in the grid domain

are determined by the neighbors’ local spatial positions. In

our GAC, the attentional weights are generated according

to not only the neighbors’ spatial positions but also their

dynamically learned features. Additionally, as GAC is de-

signed on the spatial neighbors of points, it also retains the

key properties of the standard convolution in grid domain:

weight sharing and locality.

Relationship to prior works. The proposed GAC is re-

lated to several prior works, mainly including GAT [47] and

PointNet [33].

Although we are inspired by the idea of attention mech-

anism as GAT [47], our GAC is different: 1) GAC assigns

proper attentional weights to not only different neighboring

points but also different feature channels, as the features at

different channels are hopefully independent; 2) Compared

to GAT, GAC incorporates the local spatial relationship be-

tween neighboring points, which plays an important role in

3D shape analysis; 3) We generate the attentional weights

based on the feature differences rather than the concatena-

tion of two neighboring features, which is more efficient

and explicit to characterize the feature relation.

PointNet [33] and its variations [35] have achieved

promising results for point cloud analysis by directly learn-

ing on point sets. Key to PointNet is the use of a max-

pooling operator (including a MLP). It can be seen as an

extreme case of GAC as “max attention”, which aggregates

the neighboring features by taking the max value at each

feature channel. The max operator tends to capture the most

“special” features, which damages the structural connec-

tions between the points of an object and becomes sensitive

to noise. Comparatively, the proposed GAC aggregates the

neighboring features by assigning them proper attentional

weights, maintaining the structure of the objects for fine-

grained point cloud segmentation.

Theoretical analysis. In this section, we explore the

expressive capabilities of our GAC to further understand

how GAC can efficiently learn the features of point clouds.

Specifically, we consider whether GAC can learn to pre-

cisely represent the neighboring features of each vertex.

Suppose the input vertex features H are bounded, i.e.,

H ⊆ [a, b]F , where a and b indicate the lower and upper

bound respectively. In fact, we can show that the proposed

GAC is capable of aggregating the entire neighbor infor-

mation of any vertex on the graph G(V,E) to an arbitrary

precision:

Theorem 1. Let X = {S : S ⊆ [a, b]F and S is finite},

f : X → R is a continuous set function w.r.t. Hausdorff

distance dH(·, ·). Denote Si = {hj : j ∈ N (i) ∈ X} as

the set of neighboring points of vertex i ∈ V with arbitrary

order. ∀ǫ > 0, ∃K ∈ Z and parameter θ of GAC, such that
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for any i ∈ V ,

|f(Si)− γ(gθ(Si))| < ǫ (5)

where γ is a continuous function, and gθ(Si) ∈ R
K is the

output of GAC.

The full proof is provided in the Appendix. Similar to

PointNet, in the worst case, our GAC can learn to divide

the point cloud into a volumetric representation. In Point-

Net, the representation capability is limited by the output

dimension K. However, as the attention mechanism in our

GAC actually acts as a feature encoder, GAC is capable of

approximating the set function f even when K is not suffi-

ciently large.

3.2. Graph attention convolution network

We follow the common image segmentation architecture

to organize our network for point cloud semantic segmen-

tation, coined graph attention convolution network (GAC-

Net). The difference is that, our GACNet is implemented on

the graph pyramid of a point cloud, as shown in Figure 3. At

each scale of the graph pyramid, GAC is applied for local

feature learning. Then a graph pooling operation is used to

reduce the resolution of point clouds in each feature chan-

nel. After that, the learned features are interpolated back to

the finest scale layer by layer. Inspired by [27], features at

the same scale are skip-connected. Finally, considering the

loss of feature fidelity caused by the multiple graph pooling

and feature interpolation layers, an additional GAC layer is

applied at the finest scale for feature refinement.

Graph pooling. Graph pooling aims to output the aggre-

gated features on the vertices of a coarsened graph. Denote

H
′

l as the output feature set at the l-th scale of the graph

pyramid, the input feature set Hl+1 of the (l+1)-th scale is

calculated as follows:

hv = pooling{h
′

j : j ∈ Nl(v)} (6)

where hv ∈ Hl+1 and Nl(v) indicates the neighbors of ver-

tex v at the l-th scale. The pooling function can be a max

or mean function, which corresponds to the max and mean

pooling, respectively [42].

Feature interpolation. To finally obtain the feature map

that has the same number of points as the original input, we

must interpolate the learned features from the coarsest scale

to the original scale layer by layer. Let H
′

l be the learned

feature set at the l-th scale of the graph pyramid, Pl and

Pl−1 are the spatial coordinates set of the l-th and (l-1)-th

scales, respectively. To obtain the features of the (l-1)-th

scale, we simply search the three nearest neighbors of Pl−1

in Pl and calculate the weighted sum of their features. The

combination weights are calculated according to the neigh-

bors’ normalized spatial distances [35].

GACNet vs. CRF. CRF has practically become a de

facto standard as the postprocessing of the CNN’s outputs

in semantic segmentation tasks. The key idea of CRF is

to encourage similar points to share consistent labels. In-

tuitively, spatially close and appearance-similar points are

encouraged to be assigned the same label.

In fact, our GAC shares the same characteristics as the

CRF model. Specifically, GAC assigns neighbors proper

attentional weights according to both their spatial positions

and feature attributes. The spatial position term encour-

ages the spatially close points to share similar features,

whereas the feature attribute term aims at leading the infor-

mation propagating between points with similar attributes

(i.e., low-level local features or high-level semantic labels).

Therefore, the CRF model is no longer needed in GACNet.

Notably, compared to formulating the CRF model as a

recurrent network [53], the proposed GACNet has several

compelling advantages. First, rather than using CRF for a

postprocessing which is independent of the CNN, GACNet

is equivalent to unfolding the recurrent network of CRF into

each layer of the network, which directly guides the learned

features to maintain the structure of an object for seman-

tic segmentation. Second, compared to the simple message

passing and compatibility transform in the class-probability

space of CRF [21, 53], GAC also has the capability to map

the input signals into a hidden feature space for further fea-

ture extraction. We experimentally evaluate these claims in

Section 4.3.

3.3. Graph pyramid construction on a point cloud

This section describes how we construct the graph pyra-

mid on point clouds. Specifically, we search the spatial

neighbors for all points and link them as a graph. The graph

pyramid with different spatial scales is constructed by al-

ternately applying graph construction and coarsening tech-

niques. Additionally, the covariance matrix of each point’s

neighbors at the finest scale are recorded during the graph

construction process, and its eigenvalues are used as local

geometrical feature (geo-feature). The initial feature vector

of a point is composed of height, RGB, and geo-feature.

Graph construction on a point cloud. For given point

cloud P , which records the spatial coordinates of the points,

we construct a directed graph G(V,E). Here, each vertex

is associated with a point, and the edges are added between

the point and its KG neighbors. In our experiments, the

KG neighbors are randomly sampled within radius ρ, which

shows better performance than searching their KG nearest

neighbors as it is unrelated to the density of the point cloud.

Graph coarsening. Similar to pyramid construction

in the image domain, we subsample the input point cloud

P with a set of ratios using the furthest point sampling

algorithm [35]. Denote the subsampled point clouds as

P = {P0, P1, ..., PL}, where L is the number of scales

for subsampling and P0 = P . For each Pl(l = 0, ..., L),
a corresponding graph Gl(Vl, El) can be constructed as de-
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Method OA mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [33] - 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

SegCloud [45] - 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60

SPG [23] 86.38 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

GACNet(ours) 87.79 62.85 92.28 98.27 81.90 0.00 20.35 59.07 40.85 78.54 85.80 61.70 70.75 74.66 52.82

Table 1. Results on the S3DIS dataset (testing on Area 5 and training on the rest five areas).

Method OA mIoU
man-made

terrain

natural

terrain

high

vegetation

low

vegetation
buildings hard scape

scanning

artefacts
cars

SnapNet [6] 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4

SegCloud [45] 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

RF MSSF [46] 90.3 62.7 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

MSDeepVoxNet [39] 88.4 65.3 83.0 67.2 83.8 36.7 92.4 31.3 50.0 78.2

SPG [23] 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

GACNet(ours) 91.9 70.8 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

Table 2. Results on the Semantic3D dataset (reduced-8 challenge).

scribed above.

4. Experiments

In this section, we evaluate the proposed GACNet on

various 3D point cloud segmentation benchmarks, includ-

ing the Stanford Large-Scale 3D Indoor Spaces (S3DIS) [1]

dataset and the Semantic3D [15] dataset. The performance

is quantitatively evaluated with three metrics, including the

per-class intersection over union (IoU), mean IoU of each

class (mIoU), and overall accuracy (OA). In addition, the

performance of several key components of GAC is further

analyzed.

4.1. Indoor segmentation on the S3DIS dataset

The S3DIS dataset contains 3D RGB point clouds from

six indoor areas of three different buildings. Each point

is annotated with one of the semantic labels from 13 cat-

egories. For a principled evaluation, we follow [45, 33, 23]

to choose Area 5 as our testing set and train our GACNet

on the rest to ensure that the training model does not see

any part of the testing area. Notably, Area 5 is not in the

same building as other areas and there exist some differ-

ences between the objects in Area 5 and other areas. This

across-building experimental setup is better for measuring

the model’s generalizability, while also brings challenges to

the segmentation task.

To prepare our training data, we first split the dataset

room by room and then sample them into 1.2m by 1.2m

blocks with a 0.1m buffer area on each side. Points lying

in the buffer area are regarded as the contextual information

and are not linked to the loss function for model training or

class prediction. In addition, for training convenience, the

points in each block are sampled into a uniform number of

4,096 points. During the testing phase, blocks can be any

size depending on the memory of the computing device. In

this experiment, we slice our test room into 3.6m by 3.6m

blocks with a maximum of 4,096×9 points. Each block is

individually constructed as a graph pyramid according to

Section 3.3 for training or testing.

The quantitative evaluations of the experimental results

are provided in Table 1. We can see that the proposed GAC-

Net performs better than other competitive methods in most

classes. In particular, we achieve considerable gains in win-

dow, table, sofa, and board. In the S3DIS dataset, the board

and window are pasted onto the wall and difficult to delin-

eate geometrically, but our GACNet can still segment them

out according to their color features. As the convolution

weights of GAC are assigned according to not only the spa-

tial positions but also the feature attributes of the neighbor-

ing points, the proposed GACNet is able to capture the dis-

criminative features of point clouds even though the spatial

geometry is lost or weak.

4.2. Outdoor segmentation on the Semantic3D
dataset

The Semantic3D dataset is currently the largest avail-

able LiDAR dataset, with over 4 billion points from a va-

riety of urban and rural scenes. Each point has RGB and

intensity values and is labeled with one of 8 categories:

man-made terrain, natural terrain, high vegetation, low veg-

etation, buildings, hard scape, scanning artefacts, and cars.

Different from the S3DIS dataset, the Semantic3D dataset

contains outdoor scenes which have relatively larger ob-

jects. To adapt to the size of objects, the sampled blocks for

the Semantic3D dataset is set to be 4m by 4m while main-

taining the same maximum number of 4,096 points. We

provide the evaluation results on the reduced-8 challenge of

the benchmark in Table 2.

Additionally, we list the overall accuracy and mean IoU

of our GACNet compared to other state-of-the-art methods.
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man-made terrain

natural terrain

Figure 4. Illustration of an easily-confused area (red ovals) close

to the scanning station (yellow stars) and similar to natural terrain

in color and geometry but is actually man-made terrain. Note, this

kind of area does not appear in our training set and is therefore

difficult to segment.

In general, our performance is on par with or better than

other competitive methods for many classes. Notably, in

the semantic3D dataset, most of the objects, such as cars,

hard scape, buildings, and low/high-vegetation, are frag-

mented and incomplete due to the mutual occlusion among

points. However, our GACNet can still learn to capture their

discriminative features for segmentation owing to the pow-

erful structured feature learning capability of GAC. Mean-

while, we also notice that the man-made terrain and the nat-

ural terrain are relatively difficult to separate for GACNet

in this experiment, as there are a large number of points in

an easily-confused area (as shown in Figure 4) that does not

appear in the training set.

4.3. Ablation studies and analysis

To better understand the influence of various design

choices made in the proposed framework, we further con-

duct several ablation studies to demonstrate the effective-

ness of GAC, explore the effect of spatial positions and fea-

ture attributes in GAC, compare GAC with CRF-RNN [53],

and investigate the effect of initial features.

Effectiveness of GAC. To further understand the effec-

tiveness of the proposed GAC, we compare it with the max

operator (including a MLP) of PointNet [33], which has

achieved promising results by directly learning on point

sets. Specifically, we only replace the attention mechanism

in GAC with the max operator while keeping the rest un-

changed in our GACNet. The testing results on the S3DIS

dataset are provided in Table 3. We can see that the mean

IoU of GAC is 4.43% higher than the max operator, which

shows that GAC has more advantages in discriminative fea-

ture learning than the max operator. Actually, the max oper-

ator in PointNet [33] acts as a “max attention” mechanism

that tends to characterize the contour of point sets in the

feature space while damaging the structural connections be-

tween the points of an object. It results in the max operator

being good at the object classification task but poor at seg-

mentation where the border of the object needs to be finely

delineated.

Ablation studies OA mIoU

Max operator 85.47 58.42

Spatial positions only 87.44 60.41

Feature attributes only 87.28 60.25

CRF-RNN (1 iteration) 87.12 61.70

CRF-RNN (3 iterations) 87.86 61.97

CRF-RNN (5 iterations) 87.46 61.83

No RGB 86.06 60.16

No geo-feature 86.17 60.37

Height only 83.56 58.96

GACNet 87.79 62.85

Table 3. Ablation studies on the S3DIS test set.

Spatial positions and feature attributes. In GAC, the

neighboring points’ spatial positions and feature attributes

serve as spatial and feature guides to dynamically generate

their attentional weights. To explore their respective roles,

we designed two other variations of GAC that only use the

spatial positions and the feature attributes. Their testing re-

sults on the S3DIS dataset are reported in Table 3 for com-

paring convenience. The experimental results show that,

both spatial positions and feature attributes have played im-

portant roles in GAC for semantic point cloud segmenta-

tion. The spatial positions span the unordered neighboring

points to meaningful object surfaces, while the feature at-

tributes further guide GAC to adapt to the structure of an

object by assigning proper weights to different neighbors.

Without the constraint of the spatial positions, points will

only exchange information with neighbors with similar ini-

tial features, which causes the final features to be piece-

meal and difficult to form meaningful objects. Without the

guidance of the feature attributes, convolution kernels can

hardly distinguish where the object’s border is, and the cur-

rent points are easily contaminated by the neighboring ob-

jects (as shown in Figure 5).

CRF-RNN. As described in Section 3.2, our GAC-

Net actually shares the same characteristics with the CRF

model, which encourages feature and label agreement be-

tween similar points. To experimentally verify this claim,

we remove the last GAC layer in our GACNet and replace

it with the CRF-RNN [53] using different iterations. Specif-

ically, we use the Gaussian kernels from [21] for the pair-

wise potentials of CRF. Their testing results on the S3DIS

dataset are also provided in Table 3 for comparing conve-

nience. We can see that, with one iteration the CRF-RNN

has basically converged and more iterations do not result

in considerably increased accuracy. Since our GACNet has

shared the same characteristics of CRF in each layer of the

network (Section 3.2), the recurrence of CRF is no longer

needed.

Effect of initial features. In the above experiments on

the S3DIS dataset, the initial feature vector of each point

is composed of height, RGB, and geo-feature. In this sec-
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Figure 5. Illustration of the role of feature attributes in GAC. Figures from left to right are the input point cloud, the predicted result by

GACNet, the predicted result by GACNet without the feature attributes, and the ground truth. We can see that, with the guidance of the

feature attributes, the objects are more clearly and regularly delineated.
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Figure 6. Training accuracy with or without geo-feature.

tion, we provide additional ablation studies to further under-

stand the performance of our GACNet with different initial

input features. We design three comparison experiments

where we remove the RGB information, the geo-feature,

and both of them, respectively. The testing results on the

S3DIS dataset are provided in Table 3. By comparison,

the mIoU drops by 2.69%, 2.48%, and 3.89% respectively.

However, compared to the relatively large accuracy differ-

ence in the testing phase, we also notice that the training

accuracy without geo-feature actually shows little differ-

ence from our standard GACNet (as shown in Figure 6).

The initial geo-feature serves as the low-level universal fea-

tures and is designed according to priori knowledge, which

is useful for the generalization of the network.

4.4. Robustness test and stress test

We compare GAC with the max operator [33] on ro-

bustness against random Gaussian noise, and resistance on

missing data. However, as additional noise will change the

class attribute of a point in the segmentation task, we turn

to a classification task for our robustness and stress test. We

implement this work on the ModelNet40 [50] shape clas-

sification benchmark. There are 12,311 CAD models from

40 man-made object categories, splitting them into 9,843

for training and 2,468 for testing. We uniformly sample

1,024 points on their mesh and normalize them into a unit

sphere as inputs for our network. Our classification network

is built by simply replacing the feature interpolation layers

in GACNet with a global pooling layer, and the input of the
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Figure 7. Robustness and stress test. GAC and Max indicate that

we use graph attention convolution and the max operator in the

classification network respectively.

network is just the height information of each point. All

models are trained without data augmentation. During the

robustness test, input points are added with Gaussian noise

with a series of standard deviations and zero means. For

the stress test, a series of ratios of input points are randomly

dropped out. From Figure 7, we can see that the max op-

erator is more sensitive to noise because it actually tends to

capture the most “special” features (probably noise), while

GAC is robust to noise owing to its spatial and feature con-

straints. For missing data, the accuracy of GAC drops by

13.66% when the missing ratio is 40%, while the max oper-

ator drops by 26.48%.

5. Conclusion

We propose a novel graph attention convolution (GAC)

with learnable kernel shape for structured feature learning

of 3D point cloud. Our GAC is a universal and simple mod-

ule maintaining the weight sharing property of the standard

convolution and can be efficiently implemented on graph

data. We have applied GAC to train an end-to-end net-

work for semantic point cloud segmentation. Both theo-

retical analysis and empirical experiments have shown the

effectiveness and advantage of the proposed GAC.
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