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Abstract

Model quantization is a widely used technique to com-

press and accelerate deep neural network (DNN) inference.

Emergent DNN hardware accelerators begin to support

mixed precision (1-8 bits) to further improve the compu-

tation efficiency, which raises a great challenge to find the

optimal bitwidth for each layer: it requires domain experts

to explore the vast design space trading off among accu-

racy, latency, energy, and model size, which is both time-

consuming and sub-optimal. There are plenty of specialized

hardware for neural networks, but little research has been

done for specialized neural network optimization for a par-

ticular hardware architecture. Conventional quantization

algorithm ignores the different hardware architectures and

quantizes all the layers in a uniform way. In this paper,

we introduce the Hardware-Aware Automated Quantization

(HAQ) framework which leverages the reinforcement learn-

ing to automatically determine the quantization policy, and

we take the hardware accelerator’s feedback in the design

loop. Rather than relying on proxy signals such as FLOPs

and model size, we employ a hardware simulator to gener-

ate direct feedback signals (latency and energy) to the RL

agent. Compared with conventional methods, our framework

is fully automated and can specialize the quantization policy

for different neural network architectures and hardware ar-

chitectures. Our framework effectively reduced the latency

by 1.4-1.95× and the energy consumption by 1.9× with neg-

ligible loss of accuracy compared with the fixed bitwidth (8

bits) quantization. Our framework reveals that the optimal

policies on different hardware architectures (i.e., edge and

cloud architectures) under different resource constraints (i.e.,

latency, energy and model size) are drastically different. We

interpreted the implication of different quantization policies,

which offer insights for both neural network architecture

design and hardware architecture design.

∗ indicates equal contributions.
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Figure 1: We need mixed precision for different layers. We

quantize MobileNets [13] to different number of bits (both

weights and activations), and it lies on a better pareto curve

(yellow) than fixed bit quantization (blue). The reason is that

different layers have different redundancy and have differ-

ent arithmetic intensity (OPs/byte) on the hardware, which

advocates for using mixed precision for different layers.

1. Introduction

In many real-time machine learning applications (such

as robotics, autonomous driving, and mobile VR/AR), deep

neural networks is strictly constrained by the latency, energy,

and model size. In order to improve the hardware efficiency,

many researchers have proposed to directly design efficient

models [25, 13, 2] or to quantize the weights and activations

to low precision [9, 35].

Conventional quantization methods use the same number

of bits for all layers [3, 15], but as different layers have dif-

ferent redundancy and behave differently on the hardware

(computation bounded or memory bounded), it is necessary

to use mixed precision for different layers (as shown in Fig-

ure 1). This flexibility was originally not supported by chip

vendors until recently the hardware manufacturers started

to implement this feature: Apple released the A12 Bionic

chip that supports mixed precision for the neural network

inference [7]; NVIDIA recently introduced the Turing GPU

architecture that supports 1-bit, 4-bit, 8-bit and 16-bit arith-

metic operations [22]; Imagination launched a flexible neural

network IP that supports per-layer bitwidth adjustment for
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Inference latency on

HW1 HW2 HW3

Best Q. policy for HW1 16.29 ms 85.24 ms 117.44 ms

Best Q. policy for HW2 19.95 ms 64.29 ms 108.64 ms

Best Q. policy for HW3 19.94 ms 66.15 ms 99.68 ms

Table 1: Inference latency of MobileNet-V1 [13] on three

hardware architectures under different quantization policies.

The quantization policy that is optimized for one hardware

is not optimal for the other. This suggests we need a spe-

cialized quantization solution for different hardware archi-

tectures. (HW1: BitFusion [26], HW2: BISMO [27] edge

accelerator, HW3: BISMO cloud accelerator, batch = 16).

both weights and activations [14]. Besides industry, recently

academia also works on the bit-level flexible hardware de-

sign: BISMO [27] proposed the bit-serial multiplier to sup-

port multiplications of 1 to 8 bits; BitFusion [26] supports

multiplications of 2, 4, 8 and 16 bits in a spatial manner.

However, a very missing part is how to determine the

bitwidth of both weights and activations for each layer

on different hardware accelerators. This is a vast design

space: with M different neural network models, each with N
layers, on H different hardware platforms, there are in total

O(H ×M × 82N )∗ possible solutions. For a widely used

ResNet-50 [10] model, the size of the search space is about

8100, which is even larger than the number of particles in

the universe. Conventional methods require domain experts

(with knowledge of both machine learning and hardware

architecture) to explore the huge design space smartly with

rule-based heuristics, such as: we should retain more bits

in the first layer which extracts low level features and in the

last layer which computes the final outputs; also, we should

use more bits in the convolution layers than in the fully-

connected layers because empirically, the convolution layers

are more sensitive. As the neural network becomes deeper,

the search space increases exponentially, which makes it

infeasible to rely on hand-crafted strategies. Therefore, these

rule-based quantization policies are usually sub-optimal, and

they cannot generalize from one model to another. In this

paper, we would like to automate this exploration process by

a learning-based framework.

Another challenge is how to optimize the latency and

the energy consumption of a given model on the hardware.

A widely adopted approach is to rely on some proxy sig-

nals (e.g., FLOPs, number of memory references) [13, 25].

However, as different hardware behaves very differently, the

performance of a model on the hardware cannot always be

accurately reflected by these proxy signals. Therefore, it

is important to directly involve the hardware architecture’s

∗Assuming the bitwidth is 1 to 8 for both weights and activations.

performance feedback into the design loop. Also, as demon-

strated in Table 1, the quantization solution optimized on

one hardware might not be optimal on the other, which raises

the demand for specialized policies for different hardware

architectures.

To this end, we propose the Hardware-Aware Automated

Quantization (HAQ) framework that leverages reinforce-

ment learning to automatically predict the quantization pol-

icy given the hardware’s feedback. The RL agent decides the

bitwidth of a given neural network in a layer-wise manner.

For each layer, the agent receives the layer configuration and

statistics as observation, and it then outputs the action which

is the bitwidth of weights and activations. We then leverage

the hardware accelerator as the environment to obtain the

direct feedback from hardware to guide the RL agent to sat-

isfy the resource constraints. After all layers are quantized,

we finetune the quantized model for one more epoch, and

feed the validation accuracy after short-term retraining as the

reward signal to our RL agent. During the exploration, we

leverage the deep deterministic policy gradient (DDPG) [18]

to supervise our RL agent. We also studied the quantization

policy on multiple hardware architectures: both cloud and

edge neural network accelerators, with spatial or temporal

multi-precision design.

The contribution of this paper has four aspects:

1. Automation: We propose an automated framework for

quantization, which does not require domain experts

and rule-based heuristics. It frees the human labor from

exploring the vast search space of choosing bitwidths.

2. Hardware-Aware: Our framework involves the hard-

ware architecture into the loop so that it can directly

reduce the latency, energy and storage on the target

hardware instead of relying on proxy signals.

3. Specialization: For different hardware architectures,

our framework can offer a specialized quantization pol-

icy that’s exactly tailored for the target hardware archi-

tecture to optimize latency and energy.

4. Design Insights: We interpreted the different quantiza-

tion polices learned for different hardware architectures.

Taking both computation and memory access into ac-

count, the interpretation offers insights on both neural

network architecture and hardware architecture design.

2. Related Work

Quantization. There have been extensive explorations on

compressing and accelerating deep neural networks using

quantization. Han et al. [9] quantized the network weights

to reduce the model size by rule-based strategies: e.g., they

used human heuristics to determine the bitwidths for con-

volution and fully-connected layers. Courbariaux et al. [5]

binarized the network weights into {−1,+1}; Rastegari et

al. [24] and Zhou et al. [33] binarized each convolution filter
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Figure 2: An overview of our Hardware-Aware Automated Quantization (HAQ) framework. We leverage the reinforcement

learning to automatically search over the huge quantization design space with hardware in the loop. The agent propose an

optimal bitwidth allocation policy given the amount of computation resources (i.e., latency, power, and model size). Our RL

agent integrates the hardware accelerator into the exploration loop so that it can obtain the direct feedback from the hardware,

instead of relying on indirect proxy signals.

into {−w,+w}; Zhu et al. [35] mapped the network weights

into {−wN, 0,+wP} using two bits; Zhou et al. [34] used

one bit for network weights and two bits for activations; Ja-

cob et al. [15] made use of 8-bit integers for both weights and

activations. We refer the reader to the survey paper by Kr-

ishnamoorthi et al. [17] for a more detailed overview. These

conventional quantization methods either simply assign the

same number of bits to all layers or require domain experts to

determine the bitwidths for different layers, while our frame-

work automates this design process, and our learning-based

policy outperforms rule-based strategies.

AutoML. Many researchers aimed to improve the perfor-

mance of deep neural networks by searching the network

architectures: Zoph et al. [36] proposed the Neural Architec-

ture Search (NAS) to explore and design the transformable

network building blocks, and their network architecture out-

performs several human designed networks; Liu et al. [20]

introduced the Progressive NAS to accelerate the architecture

search by 5× using sequential model-based optimization;

Pham et al. [23] introduced the Efficient NAS to speed up

the exploration by 1000× using parameter sharing; Cai et

al. [1] introduced the path-level network transformation to

effectively search the tree-structured architecture space. Mo-

tivated by these AutoML frameworks, He et al. [11] lever-

aged the reinforcement learning to automatically prune the

convolution channels. Our framework further explores the

automated quantization for network weights and activations,

and it takes the hardware architectures into consideration.

Efficient Models. To facilitate the efficient deployment,

researchers designed hardware-friendly approaches to slim

neural network models. For instance, the coarse-grained

channel pruning methods [12, 19, 21] prune away the entire

channel of convolution kernels to achieve speedup. Recently,

researchers have explicitly optimized for various aspects of

hardware properties, including the inference latency and en-

ergy: Yang et al. [31] proposed the energy-aware pruning

to directly optimize the energy consumption of neural net-

works; Yang et al. [32] reduced the inference time of neural

networks on the mobile devices through a lookup table. Nev-

ertheless, these methods are still rule-based and mostly focus

on pruning. Our framework automates the quantization pro-

cess by taking hardware-specific metric as direct rewards

using a learning based method.

3. Approach

We model the quantization task as a reinforcement learn-

ing problem (Figure 2). We use the actor-critic model with

DDPG agent to give the action: bits for each layer. We

collect hardware counters as constraints, together with ac-

curacy as rewards to search the optimal quantization policy.

We have three hardware environments that covers edge and

cloud, spatial and temporal architectures for mixed-precision

accelerator.

3.1. Observation (State Space)

Our agent processes the neural network in a layer-wise

manner. For each layer, our agent takes two steps: one for

weights, and one for activations. In this paper, we introduce

a ten-dimensional feature vector Ok as our observation:

If the kth layer is a convolution layer, the state Ok is

Ok = (k, cin, cout, skernel, sstride, sfeat, nparams, idw, iw/a, ak−1),
(1)
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where k is the layer index, cin is #input channels, cout is

#output channels, skernel is kernel size, sstride is the stride,

sfeat is the input feature map size, nparams is #parameters,

idw is a binary indicator for depthwise convolution, iw/a is a

binary indicator for weight/activation, and ak−1 is the action

from the last time step.

If the kth layer is a fully-connected layer, the state Ok is

Ok = (k, hin, hout, 1, 0, sfeat, nparams, 0, iw/a, ak−1), (2)

where k is the layer index, hin is #input hidden units, hout is

#output hidden units, sfeat is the size of input feature vector,

nparams is #parameters, iw/a is a binary indicator for weight/

activation, and ak−1 is the action from the last step.

For each dimension in the observation vector Ok, we

normalize it into [0, 1] to make them in the same scale.

3.2. Action Space

We use a continuous action space to determine the

bitwidth. The reason that we do not use a discrete action

space is because it loses the relative order: e.g., 2-bit quan-

tization is more aggressive than 4-bit and even more than

8-bit. At the kth time step, we take the continuous action ak
(which is in the range of [0, 1]), and round it into the discrete

bitwidth value bk:

bk = round(bmin − 0.5 + ak × (bmax − bmin + 1)), (3)

where bmin and bmax denote the min and max bitwidth (in our

experiments, we set bmin to 2 and bmax to 8).

Resource Constraints. In real-world applications, we

have limited computation budgets (i.e., latency, energy, and

model size). We would like to find the quantization policy

with the best performance given the constraint.

We encourage our agent to meet the computation budget

by limiting the action space. After our RL agent gives actions

{ak} to all layers, we measure the amount of resources

that will be used by the quantized model. The feedback is

directly obtained from the hardware accelerator, which we

will discuss in Section 3.3. If the current policy exceeds

our resource budget (on latency, energy or model size), we

will sequentially decrease the bitwidth of each layer until the

constraint is finally satisfied.

3.3. Direct Feedback from Hardware Accelerators

An intuitive feedback to our RL agent can be FLOPs or

the model size. However, as these proxy signals are indirect,

they are not equal to the performance (i.e., latency, energy

consumption) on the hardware. Cache locality, number of

kernel calls, memory bandwidth all matters. Proxy feed-

back can not model these hardware functionality to find the

specialized strategies (see Table 1).

Instead, we use direct latency and energy feedback from

the hardware accelerator as resource constraints, which en-

ables our RL agent to determine the bitwidth allocation pol-

icy from the subtle differences between different layers: e.g.,

vanilla convolution has more data reuse and better locality,

while depthwise convolution [4] has less reuse and worse

locality, which makes it memory bounded. Such difference

impacts the optimal quantization policy.

3.4. Quantization

We linearly quantize the weights and activations of each

layer using the action ak given by our agent, as linearly

quantized model only needs fixed point arithmetic unit which

is more efficient to implement on the hardware.

Specifically, for each weight value w in the kth layer, we

first truncate it into the range of [−c, c], and we then quantize

it linearly into ak bits:

quantize(w, ak, c) = round(clamp(w, c)/s)× s, (4)

where clamp(·, x) is to truncate the values into [−x, x], and

the scaling factor s is defined as s = c/(2ak−1 − 1). In this

paper, we choose the value of c by finding the optimal value

x that minimizes the KL-divergence between the original

weight distribution Wk and the quantized weight distribution

quantize(Wk, ak, x):

c = argmin
x

DKL(Wk || quantize(Wk, ak, x)), (5)

where DKL(· || ·) is the KL-divergence that characterizes the

distance between two distributions. As for activations, we

quantize the values similarly except that we truncate them

into the range of [0, c], not [−c, c] since the activation values

(which are the outputs of the ReLU layers) are non-negative.

3.5. Reward Function

After quantization, we retrain the quantized model for

one more epoch to recover the performance. As we have

already imposed the resource constraints (latency, energy) by

limiting the action space (Section 3.2), we define our reward

function R to be only related to the accuracy:

R = λ× (accquant − accorigin), (6)

where accorigin is the top-1 classification accuracy of the full-

precision model on the training set, accquant is the accuracy

of the quantized model after finetuning, and λ is a scaling

factor which is set to 0.1 in our experiments.

3.6. Agent

For the RL agent, we leverage the deep deterministic

policy gradient (DDPG) [18], which is an off-policy actor-

critic algorithm for continuous control problem. In our envi-

ronment, one step means that our agent makes an action
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to decide the number of bits assigned to the weights or

activations of a specific layer, while one episode is com-

posed of multiple steps, where our RL agent makes actions

to all layers. We apply a variant form of the Bellman’s

Equation, where each transition in an episode is defined

as Tk = (Ok, ak,R, Ok+1). During exploration, the Q-

function is computed as

Q̂k = Rk − B + γ ×Q(Ok+1, w(Ok+1) | θ
Q), (7)

and the loss function can be approximated by

L =
1

Ns

Ns∑

k=1

(Q̂k −Q(Ok, ak | θQ))2, (8)

where Ns denotes the number of steps in this episode, and

the baseline B is defined as an exponential moving average

of all previous rewards in order to reduce the variance of the

gradient estimation. The discount factor γ is set to 1 since we

assume that the action made for each layer should contribute

equally to the final result. Moreover, as the number of steps

is always finite (bounded by the number of layers), the sum

of the rewards will not explode.

3.7. Implementation Details

In this section, we present the implementation details

about RL exploration and finetuning quantized models.

Agent. The DDPG agent consists of an actor network and

a critic network. Both using the same network architec-

ture: they take the state vector and the action from the last

time step as inputs and feed them into two separate fully-

connected layers with hidden sizes of 400. After that, we

add the two hidden vectors together and go through another

two fully-connected layers with hidden sizes of {300, 1}. As

for the actor network, we use an additional sigmoid function

to project the output into the range of [0, 1].

Exploration. Optimization of the DDPG agent is carried

out using ADAM [16] with β1 = 0.9 and β2 = 0.999. We

use a fixed learning rate of 10−4 for the actor network and

10−3 for the critic network. During exploration, we employ

the following stochastic process of the noise:

w′(Ok) ∼ Ntrunc(w(Ok | θwk ), σ
2, 0, 1), (9)

where Ntrunc(µ, σ, a, b) is the truncated normal distribution,

and w is the model weights. The noise σ is initialized as 0.5,

and after each episode, the noise is decayed exponentially

with a decay rate of 0.99.

Finetuning. During exploration, we finetune the quantized

model for one epoch to help recover the performance (using

SGD with a fixed learning rate of 10−3 and momentum of

0.9). We randomly select 100 categories from ImageNet [6]

Hardware Batch PE Array AXI port Block RAM

Edge Zynq-7020 1 8×8 4×64b 140×36Kb

Cloud VU9P 16 16×16 4×256b 2160×36Kb

Table 2: The configurations of edge and cloud accelerators.

to accelerate the model finetuning during exploration. After

exploration, we quantize the model with our best policy and

finetune it on the full dataset.

4. Experiments

We conduct extensive experiments to demonstrate the

consistent effectiveness of our framework for multiple objec-

tives: latency, energy, and model size.

Datasets and Models. Our experiments are performed on

the ImageNet [6] dataset. As our focus is on more efficient

models, we extensively study the quantization of MobileNet-

V1 [13] and MobileNet-V2 [25]. Both MobileNets are in-

spired from the depthwise separable convolutions [4] and re-

place the regular convolutions with the pointwise and depth-

wise convolutions: MobileNet-V1 stacks multiple “depth-

wise – pointwise” blocks repeatedly; while MobileNet-V2

uses the “pointwise – depthwise – pointwise” blocks as its

basic building primitives.

4.1. Latency­Constrained Quantization

We first evaluate our framework under latency constraints

on two representative hardware architectures: spatial and

temporal architectures for multi-precision CNN. We show

that it’s beneficial to have specialized quantization policies

for different hardware architectures. We systematically inter-

pret the policy given by AI to guide future human designs.

Temporal Architecture. Bit-Serial Matrix Multiplication

Overlay (BISMO) proposed by Yaman et al. [27] is a classic

temporal design of neural network accelerator on FPGA. It

introduces bit-serial multipliers which are fed with one-bit

digits from 256 weights and corresponding activations in

parallel at one time and accumulates their partial products

by shifting over time.

Spatial Architecture. BitFusion architecture proposed by

Hardik et al. [26] is a state-of-the-art spatial ASIC design for

neural network accelerator. It employs a 2D systolic array of

Fusion Units which spatially sum the shifted partial products

of two-bit elements from weights and activations.

4.1.1 Quantization policy for BISMO Architecture

Inferencing neural networks on edge devices and cloud

severs can be quite different: batch size, memory bandwidth,

peak FLOPs, etc.. We use Xilinx Zynq-7020 FPGA [30] as
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Edge Accelerator Cloud Accelerator

MobileNet-V1 MobileNet-V2 MobileNet-V1 MobileNet-V2

Bitwidths Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency

PACT [3] 4 bits 62.44 84.19 45.45 ms 61.39 83.72 52.15 ms 62.44 84.19 57.49 ms 61.39 83.72 74.46 ms

Ours flexible 67.40 87.90 45.51 ms 66.99 87.33 52.12 ms 65.33 86.60 57.40 ms 67.01 87.46 73.97 ms

PACT [3] 5 bits 67.00 87.65 57.75 ms 68.84 88.58 66.94 ms 67.00 87.65 77.52 ms 68.84 88.58 99.43 ms

Ours flexible 70.58 89.77 57.70 ms 70.90 89.91 66.92 ms 69.97 89.37 77.49 ms 69.45 88.94 99.07 ms

PACT [3] 6 bits 70.46 89.59 70.67 ms 71.25 90.00 82.49 ms 70.46 89.59 99.86 ms 71.25 90.00 127.07 ms

Ours flexible 71.20 90.19 70.35 ms 71.89 90.36 82.34 ms 71.20 90.08 99.66 ms 71.85 90.24 127.03 ms

Original 8 bits 70.82 89.85 96.20 ms 71.81 90.25 115.84 ms 70.82 89.85 151.09 ms 71.81 90.25 189.82 ms

Table 3: Latency-constrained quantization on BISMO (edge accelerator and cloud accelerator) on ImageNet. Our framework

can reduce the latency by 1.4× to 1.95× with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization.
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Figure 3: Quantization policy under latency constraints for

MobileNet-V1. On edge accelerator, our RL agent allocates

less activation bits to the depthwise convolutions, which

echos that the depthwise convolutions are memory bounded

and the activations dominates the memory access. On cloud

accelerator, our agent allocates more bits to the depthwise

convolutions and allocates less bits to the pointwise convolu-

tions, as cloud device has more memory bandwidth and high

parallelism, the network appears to be computation bounded.

our edge device and Xilinx VU9P [29] as our cloud device.

Table 2 shows our experiment configurations on these two

platforms along with their available resources.

As for comparison, we adopt the PACT [3] as our baseline,

which uses the same number of bits for all layers except for

the first layer which extracts the low level features, they

use 8 bits for both weights and activations as it has fewer

parameters and is very sensitive to errors. We follow a

similar setup for the first layer (8 bits), and explore the

bitwidth allocation policy for all the other layers. Under the

same latency, HAQ consistently achieved better accuracy

than the baseline on both the cloud and the edge (Table 3).

With similar accuracy, HAQ can reduce the latency by 1.4×
to 1.95× compared with the baseline.

Interpreting the quantization policy. Our agent gave

quite different quantization policy for edge and cloud ac-

celerators (Figure 3). For the activations, the depthwise con-

volution layers are assigned less bitwidth than the pointwise

layers on the edge; while on the cloud device, the bitwidth

of these two types of layers are similar. For weights, the

bitwidth of these types of layers are nearly the same on the

edge; while on the cloud, the depthwise convolution layers

got more bitwidth than the pointwise convolution layers.

We explain the difference of quantization policy between

edge and cloud by the roofline model [28]. Many previous

works use FLOPs or BitOPs as metrics to measure compu-

tation complexity. However, they are not able to directly

reflect the latency, since there are many other factors influ-

encing the hardware performance, such as memory access

cost and degree of parallelism [25, 21]. Taking computation

and memory access into account, the roofline model assumes

that applications are either computation-bound or memory

bandwidth-bound, if not fitting in on-chip caches, depending

on their operation intensity. Operation intensity is measured

as operations (MACs in neural networks) per byte accessed.

A lower operation intensity indicates suffering more from

the memory access.

The bottom of Figure 3 shows the operation intensities

(OPs per Byte) of convolution layers in the MobileNet-V1.

Depthwise convolution is memory bounded, and the point-

wise convolution is computation bounded. Our experiments

show that when running MobileNet-V1 on the edge devices
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Figure 4: Quantization policy under latency constraints for MobileNet-V2 on BISMO. Similar to Figure 3, depthwise layer is

assigned with fewer bits on the edge accelerator, and pointwise layer is assigned with fewer bits on the cloud accelerator.

Weights Activations Acc.-1 Acc.-5 Latency

PACT [3] 4 bits 4 bits 62.44 84.19 7.86 ms

Ours flexible flexible 67.45 87.85 7.86 ms

PACT [3] 6 bits 4 bits 67.51 87.84 11.10 ms

Ours flexible flexible 70.40 89.69 11.09 ms

PACT [3] 6 bits 6 bits 70.46 89.59 19.99 ms

Ours flexible flexible 70.90 89.95 19.98 ms

Original 8 bits 8 bits 70.82 89.85 20.08 ms

Table 4: Latency-constrained quantization on BitFusion

(MobileNet-V1 on ImageNet). Our framework can reduce

the latency by 2× with almost no loss of accuracy compared

with the fixed bitwidth (8 bits) quantization.

with small batch size, its latency is dominated by the depth-

wise convolution layers. Since the feature maps take a major

proportion in the memory of depthwise convolution layers,

our agent gives the activations less bits. In contrast, when

running MobileNet-V1 on the cloud with large batch size,

our agent increases the bitwidth of depthwise convolution to

preserve the accuracy at low memory overhead since depth-

wise convolution only takes a small proportion of the total

weights. A similar phenomenon can be observed in Figure 4

on MobileNet-V2. Moreover, as the activation size in deeper

layers gets smaller, they get assigned more bits.

4.1.2 Quantization policy for BitFusion Architecture

In order to demonstrate the effectiveness of our frame-

work on different hardware architectures, we further compare

our framework with PACT [3] under the latency constraints

on the BitFusion [26] architecture (Table 4). Our frame-

work performs much better than the hand-craft policy with

the same latency. It can achieve almost no degradation of

accuracy with only half of the latency used by the original

Weights Activations Acc.-1 Acc.-5 Energy

PACT [3] 4 bits 4 bits 62.44 84.19 13.47 mJ

Ours flexible flexible 64.78 85.85 13.69 mJ

PACT [3] 6 bits 4 bits 67.51 87.84 16.57 mJ

Ours flexible flexible 70.37 89.40 16.30 mJ

PACT [3] 6 bits 6 bits 70.46 89.59 26.80 mJ

Ours flexible flexible 70.90 89.73 26.67 mJ

Original 8 bits 8 bits 70.82 89.95 31.03 mJ

Table 5: Energy-constrained quantization on BitFusion

(MobileNet-V1 on ImageNet). Our framework reduces the

power consumption by 2× with nearly no loss of accuracy

compared with the fixed bitwidth quantization.

MobileNet-V1 model (from 20.08 to 11.09 ms). Therefore,

our framework is flexible to provide specialized quantization

policy for different hardware platforms.

4.2. Energy­Constrained Quantization

We then evaluate our framework under the energy con-

straints. Similar to the latency-constrained experiments, we

compare our framework with PACT [3] that uses fixed num-

ber of bits without hardware feedback. From Table 5, we can

clearly see that our framework outperforms the rule-based

baseline: it achieves much better performance while consum-

ing similar amount of energy. In particular, our framework is

able to achieve almost no loss of accuracy with nearly half of

the energy consumption of the original MobileNet-V1 model

(from 31.03 to 16.57 mJ), which suggests that mixed preci-

sion with hardware-aware, specialized quantization policy

can indeed help reduce the energy consumption.
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MobileNet-V1 MobileNet-V2 ResNet-50

Weights Acc.-1 Acc.-5 Model Size Acc.-1 Acc.-5 Model Size Acc.-1 Acc.-5 Model Size

Han et al. [9] 2 bits 37.62 64.31 1.09 MB 58.07 81.24 0.96 MB 68.95 88.68 6.32 MB

Ours flexible 57.14 81.87 1.09 MB 66.75 87.32 0.95 MB 70.63 89.93 6.30 MB

Han et al. [9] 3 bits 65.93 86.85 1.60 MB 68.00 87.96 1.38 MB 75.10 92.33 9.36 MB

Ours flexible 67.66 88.21 1.58 MB 70.90 89.76 1.38 MB 75.30 92.45 9.22 MB

Han et al. [9] 4 bits 71.14 89.84 2.10 MB 71.24 89.93 1.79 MB 76.15 92.88 12.40 MB

Ours flexible 71.74 90.36 2.07 MB 71.47 90.23 1.79 MB 76.14 92.89 12.14 MB

Original 32 bits 70.90 89.90 16.14 MB 71.87 90.32 13.37 MB 76.15 92.86 97.49 MB

Table 6: Model size-constrained quantization on ImageNet. Compared with Deep Compression [8], our framework achieves

higher accuracy under similar model size (especially under high compression ratio).
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Figure 5: Quantization policy under model size constraints for MobileNet-V2. Our RL agent allocates more bits to the

depthwise convolutions, since depthwise convolutions have fewer number of parameters.

4.3. Model Size­Constrained Quantization

Finally, we evaluate our framework under the model size

constraints. Following Han et al. [9], we employ the k-means

algorithm to quantize the values into k different centroids

instead of using the linear quantization for compression,

since k-means quantization can be more effective reducing

the model size.

We compare our framework with Deep Compression [9]

on MobileNets and ResNet-50. From Table 6, we can see

that our framework performs much better than Deep Com-

pression: it achieves higher accuracy with the same model

size. For compact models like MobileNets, Deep Compres-

sion significantly degrades the performance especially under

aggressive quantization, while our framework can preserve

the accuracy much better. For instance, when Deep Com-

pression quantizes the weights of MobileNet-V1 to 2 bits,

the accuracy drops significantly from 70.90 to 37.62; while

our framework can still achieve 57.14 of accuracy with the

same model size. The reason is our framework makes full

use of the mixed precision by systematically searching the

optimal quantization policy.

Discussions. In Figure 5, we visualize the bitwidth allo-

cation strategy for MobileNet-V2. From this figure, we

can observe that our framework assigns more bitwidths to

the weights in depthwise convolution layers than pointwise

convolution layers. Intuitively, this is because the number

of parameters in the former is much smaller than the latter.

Comparing Figure 4 and Figure 5, the policies are drasti-

cally different under different optimization objectives (fewer

bitwiths for depthwise convolutions under latency optimiza-

tion, more bitwidths for depthwise convolutions under model

size optimization). Our framework succeeds in learning to

adjust its bitwidth policy under different constraints.

5. Conclusion

In this paper, we propose Hardware-Aware Automated

Quantization (HAQ), an automated framework for quanti-

zation which does not require any domain experts and rule-

based heuristics. We provide a learning based method that

can search the quantization policy with hardware feedback.

Compared with indirect proxy signals, our framework can

offer a specialized quantization solution for different hard-

ware platforms. Extensive experiments demonstrate that our

framework performs better than conventional rule-based ap-

proaches for multiple objectives: latency, energy and model

size. Our framework reveals that the optimal policies on

different hardware architectures are drastically different, and

we interpreted the implication of those policies. We believe

the insights will inspire the future software and hardware

co-design for efficient deployment of deep neural networks.
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