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Abstract

Current studies on action detection in untrimmed videos

are mostly designed for action classes, where an action is

described at word level such as jumping, tumbling, swing,

etc. This paper focuses on a rarely investigated problem

of localizing an activity via a sentence query which would

be more challenging and practical. Considering that cur-

rent methods are generally time-consuming due to the dense

frame-processing manner, we propose a recurrent neural

network based reinforcement learning model which selec-

tively observes a sequence of frames and associates the

given sentence with video content in a matching-based man-

ner. However, directly matching sentences with video con-

tent performs poorly due to the large visual-semantic dis-

crepancy. Thus, we extend the method to a semantic match-

ing reinforcement learning (SM-RL) model by extracting se-

mantic concepts of videos and then fusing them with global

context features. Extensive experiments on three benchmark

datasets, TACoS, Charades-STA and DiDeMo, show that

our method achieves the state-of-the-art performance with a

high detection speed, demonstrating both effectiveness and

efficiency of our method.

1. Introduction

With the rapid growth of video surveillance systems, a

large amount of video data are generated. Understanding

the content of video data is becoming increasingly impor-

tant. Action recognition is one of the hottest topics in this

area, which first obtains a representation of the given video,

and then trains a classifier to categorize it into one of spec-

ified actions. However, action recognition usually assumes

that videos are manually precut and each action ubiqui-

tously exists in the given video. Such assumption does not

always hold in real-world scenarios, because most videos in

real applications are untrimmed and contain various back-

ground segments without any action, especially in video

surveillance. To address this problem, temporal action de-

tection has emerged, which aims to recognize and localize

actions in videos simultaneously.

There has been growing interest in temporal action de-

tection, and different approaches have been proposed [19,

27, 6, 9, 28, 25, 14, 2]. Although significant progress has

been made, there is a major limitation of temporal action

detection. In particular, these studies just focus on a limited

set of actions described at word level. They can not properly

handle activities in practice, because activities in real world

are more complex and diverse which consist of many se-

mantic concepts, such as actors, actions, objects, etc. Take

the sentence “the person cuts oranges on a cutting board” in

Figure 1 for an example, besides the action “cuts”, the ac-

tivity contains an actor “person”, and two objects, namely

“oranges” and “cutting board”. It is inappropriate to de-

scribe this activity by a single word or simply categorize it

into an action class.

In this paper, we are interested in a more challenging and

practical problem, namely language-driven temporal activ-

ity localization. There are few studies that investigate this

problem [11, 8, 15], which all utilize a traditional cross-

modal retrieval framework to match video clips and sen-

tence queries with an alignment loss or a ranking loss. How-

ever, they utilize sliding windows to generate dense propos-

als and every frame needs to be processed, which is pro-

hibitively time-consuming. Besides, they use average pool-

ing to generate video features at clip level, thus temporal

information might not be fully exploited.

Motivated by the work using reinforcement learning to
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Figure 1. Illustration of semantic concepts in videos.

avoid time-consuming proposal generation in single-word

video action detection [26], we also want to use a reinforce-

ment learning based method for efficient language-driven

temporal activity localization. However, directly applying

the existing method to this new problem is infeasible, since

they correlate the action word with video content in a classi-

fication way, while we focus on sentences rather than words,

which include multiple words of action, actor and object.

Although we could regard a sentence as multiple word-level

classes and perform reinforcement learning in a multi-label

learning way, this will ignore the intrinsic semantic order

of the sentence and lead to confusion to the final semantic

meanings [12]. In addition, the existing methods usually

train an individual reinforcement learning model for each

action class (totally 20 or 21 models), which cannot scale to

our problem since words in the sentence can be diverse and

the total number could be several thousands.

To deal with these issues, we propose a recurrent neural

network based reinforcement learning model for language-

driven temporal activity localization. Under the guidance

of sentences, our model acts as a recurrent neural net-

work based agent which dynamically observes a sequence

of video frames and finally outputs the temporal boundaries

of the given sentence query with a high detection speed. In

particular, at each time step, the hidden state of the recur-

rent neural network is supervised by the sentence embed-

ding to select the next observation location and output can-

didate detections. After observing several selected video

frames, the model will output the final temporal bound-

aries of the activity. Different from separately training a

model for each action class by classification [26], our model

aims to associate the entire sentence with video content in a

matching-based manner. In particular, we introduce a state

value, namely a matching score, which measures the sim-

ilarity of the given sentence query and current observed

video frame. Here we use back-propagation to train the

neural-network components and policy gradient to address

the non-differentiablities due to the selecting manner.

However, we experimentally find that directly matching

sentences with video content performs poorly, and the pre-

diction of matching scores is not accurate, as well as the

poor performance of activity localization. It is because there

exists a huge visual-semantic gap between videos and sen-

tence queries. As shown in Figure 1, the sentence contains

highly abstract semantic concepts as actor, action, and ob-

ject, while the representation of video usually lacks of such

high-level semantic information. To make video represen-

tations semantically more comparable with sentences, we

improve our method as a semantic matching reinforcement

learning (SM-RL) model which improves video representa-

tion by introducing visual semantic concepts. To predict the

semantic concepts of video frames, we exploit supervised

learning methods based on the annotations of datasets. A

fixed-length vector is created for each video frame, whose

length is the size of the attribute set. Each element in the

vector presents the prediction probability for a specific se-

mantic concept. After applying semantic concept learn-

ing, the matching score becomes more accurate and reli-

able, and the final performance improves significantly. We

evaluate our model on three benchmark datasets, TACoS,

Charades-STA and DiDeMo. Experimental results show

that our model outperforms the state-of-the-art method with

high detection speed. The major contributions of this paper

are summarized as follows:

• We propose a recurrent neural network based rein-

forcement learning model for language-driven tempo-

ral activity localization, which dynamically observes a

sequence of video frames conditioned on the given lan-

guage query and finally outputs temporal boundaries.

• To bridge the semantic gap between visual and seman-

tic information, we further introduce mid-level seman-

tic concepts into the model and we propose to corre-

late the visual and semantic information in a semantic

matching manner.

• Our approach achieves the state-of-the-art perfor-

mance on three benchmark datasets, and 6× faster than

the previous state-of-the-art work.

2. Related Work

We briefly review temporal action detection and tempo-

ral action proposal generation in this section.

Temporal Action Detection Temporal action detection

aims to identify the start and end time as well as the ac-

tion category for each action instance in a long untrimmed

video, which has received significant attention. Approaches

to video action detection in the literature can be roughly

grouped into three categories. The first category is to

employ temporal annotations to train the models in a su-

pervised learning manner. Some of these works are in a

two-stage proposal-classification manner [20, 7, 3, 19, 28],

which first generate temporal video proposals and then clas-

sify the action categories for each proposal. However, most

of these methods rely on external proposal generation or
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Figure 2. The framework of the proposed SM-RL model. In the forward pass, the sentence query is encoded by skip-thoughts [13] and

further mapped into Es. The global context feature of video frame is concatenated with the semantic concept feature. The location of

current observed frame loct is embedded and concatenated with the video representation. The LSTM sequentially summarizes information

from historically observed frames, and encodes temporal information of the video. The hidden state ht is concatenated with Es to output

the action and state value. The action output is used to sample actions from the action space so as to select the next observation location

loct+1. The state value consists of a candidate detection dt, a matching score mt, and a binary prediction indicator pt. The reward and

loss function are then calculated according to the state value. The agent takes the termination action to stop the observation process at time

step T, and outputs final temporal boundaries according to the candidate detections. Rectangles with F denote fully connected layers.

sliding windows at multiple temporal scales, leading to

computationally infeasible for large-scale video processing.

Some other works follow the architecture of faster R-CNN

which is end-to-end trainable, such as [9, 6, 10, 25, 5]. Al-

though these methods are more efficient to some extent,

temporal information is not fully explored in video fea-

tures. The second category is based on weakly supervised

learning, where only video-level action labels are available

for training without temporal annotations. Untrimmed-Net

[24] learns attention weights on precut video segments us-

ing a temporal softmax function and thresholds the atten-

tion weights to generate action proposals. Nguyen et al.

[16] propose to combine temporal class activation maps and

class agnostic attentions for temporal localization of tar-

get actions. The third category uses reinforcement learning

to learn the observation policies. Yeung et al. [26] for-

mulate the model as an agent that learns a policy for se-

quentially forming and refining hypotheses about action in-

stances. Our detection procedure is similar to the third cate-

gory mentioned above, but we focus on localizing sentence-

describing activities rather than actions described at word-

level.

Temporal Action Proposal Generation The goal of

temporal action proposal generation is to extract seman-

tically important (e.g., human actions) segments from

untrimmed videos. In [20, 28, 4], the problem is formulated

as a binary classification problem (i.e., action vs. back-

ground). Heilbron et al. [4] propose the use of dictionary

learning for class independent proposal generation. Zhao

et al. [28] use an actionness classifier to obtain binary ac-

tionness probabilities for video clips, and then find those

continuous temporal regions with mostly high actionness

snippets to serve as proposals. Shou et al. [20] introduce a

multi-stage framework to classify if the content of a video

segment is an action or not. Gao et al. [10] utilize temporal

boundary regression for actions based on clip-level units.

Shyamal et al. [3] exploit a new architecture SST to run

over the video in a single pass, without the use of overlap-

ping temporal sliding windows. Different from these works

that extract arbitrary action segments from videos, we aim

to locate an activity with specific sentence description.

3. Methodology

Given a long untrimmed video v = {v1, v2, ..., vN},

where vi (i = 1, 2, ..., N) is the i-th frame, as well as a sen-

tence query s, the goal of language-driven temporal activity

localization is to identify temporal boundaries of the visual

content that the sentence refers to, namely (tstart, tend). In-

spired by human’s decision-making process, we formulate

the model as an agent that interacts with the environment

(i.e., the long videos) and takes a series of actions to opti-

mize the target (i.e., localizing the activity). The historical

experience is also explored to assist current decision. As

shown in Figure 2, we base the agent on a recurrent neural

network which summarizes historical observations from the

input video and the sentence query.

To locate an activity, it is important to first understand

the overall meaning of the sentence. In this paper, we use

skip-thoughts [13] to encode the sentences, because skip-
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thoughts is trained on a large corpus of documents, which

can produce generic sentence representations that are ro-

bust and perform well in cross-modal tasks. In the obser-

vation module, global context feature is extracted to rep-

resent the global information of the image, while semantic

concept feature is predicted to focus on the regional infor-

mation and bridges the gap between videos and sentences.

Thus, we concatenate the global context feature with the

semantic concept feature for their complementary property.

The location of the observed video frame plays an important

role in the network, because the goal of this task is closely

related to the temporal information of videos. Hence, we

combine the location information with the video represen-

tation. Then, the final output of observation module Eo is

input into the LSTM to integrate visual information.

A decision-making process in reinforcement learning

consists of a series of actions. After each action, a state

value is obtained and a reward is assigned to the agent ac-

cording to current state value. In our framework, the agent

combines information from historical observations ht with

the embedding of sentence query Es to sample action from

the action space and output three state values (a candidate

detection dt, a matching score mt, and a binary prediction

indicator pt). Finally, the agent executes the sampled action

to determine the location of next observation frame loct+1.

The agent aims to find the most precise localization result

by maximizing the accumulated reward. Thus, after observ-

ing all the selected frames, the agent receives a reward ac-

cording to the precision of candidate detections.

3.1. Semantic Concept Learning

TACoS provides attribute annotations for each video clip

including actions, vegetables, kitchen items, etc. We build

the semantic concept vocabulary directly based on these an-

notations. Charades-STA and DiDeMo do not provide at-

tribute information but only sentences. We use NLP toolbox

to select nouns, adjectives, verbs and numbers as semantic

concepts. Since the size of the semantic concept vocabulary

is very large, we exclude the words with low use frequen-

cies. Consequently, the vocabulary containing K semantic

concepts is obtained. A straightforward way is to formu-

late semantic concept learning as a multi-label classification

based model.

Multi-label Classification Based Model Taking the ex-

tracted video features from fc-7 of the VGG-16 [21] net-

work as input, we train a CNN network for multi-label clas-

sification. The CNN we used is a 2-layer fully connected

network. The size of the first layer is 4094. The size of

the second layer is K, each corresponding to the prediction

probability for a specific semantic concept. Given a video

frame, its multi-hot representation of ground truth semantic

concepts is yi ∈ {0, 1}K , and the semantic concept vec-

tor predicted by the multi-label CNN is ỹi ∈ [0, 1]K . The

model can be learned by optimizing the following objective:

LCNN =

K∑

j=1

log(1 + e−yi,j ỹi,j ) (1)

where yi,j = 1 or 0 means whether the video frame vi con-

tains the j-th semantic concept or not. ỹi,j means the prob-

ability that vi contains the j-th concept generated by the

second layer of the multi-label CNN.

Faster R-CNN Based Model We find that the predicted

semantic concepts are not satisfying on accuracy with the

above multi-label classification bases model. We think that

there might be two reasons. First, semantic concepts usu-

ally exist in local regions rather than global image. The

global image includes many concept-irrelevant contents that

could be quite noisy. Second, the used datasets are rela-

tively small and the numbers of semantic concepts are not

balanced, therefore the trained models are biased. To deal

with these two issues, we use Faster R-CNN in conjunc-

tion with Visual Genome dataset [22] to predict the seman-

tic concepts. In particular, to obtain regional visual features,

we use Faster R-CNN to detect regions and output their cor-

responding features. To overcome the limitation of our ex-

perimental datasets, we train the model with Visual Genome

dataset [22], which is a large dataset containing very diverse

content that could cover most instances appeared in our ex-

perimental datasets. The dataset has very rich and region-

level annotations for each image, so we can use them to

train the model. Moreover, some recent works have demon-

strated the usefulness of this dataset for general cross-modal

data analysis, e.g., image captioning [23] and VQA [1].

Thus, we follow [1] to use Faster R-CNN with ResNet-

101 pretrained for classification on ImageNet [18] and then

finetune the model on the Visual Genome [22] dataset. The

output box proposals of the Faster R-CNN are used to gen-

erate a set of image features, and non-maximum suppres-

sion is applied for each object class using an IoU threshold.

All regions where any class detection probability exceeds

a confidence threshold are selected. In order to predict

semantic concepts for region i, we concatenate the mean-

pooled convolutional feature from region i with a learned

embedding of ground-truth object class. We feed this into

a softmax function over each semantic concept. In the test-

ing stage, we can obtain semantic concepts for each video

frame by summarizing the semantic concepts contained in

all regions.

3.2. SM-RL Model

After obtaining the semantic concept features of video

frames, we detail the proposed semantic matching rein-

forcement learning (SM-RL) model as illustrated in Figure

2. At each time step t, we use skip-thoughts [13] to en-

code the sentence query, where the output is further em-

bedded to Es with a fully connected (FC) layer followed
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by a sigmoid function. The global context feature of video

frame is extracted from fc7 of the VGG-16 network [21].

We then concatenate the semantic concept feature with the

global context feature as the final content representation of

the video frame, and it is further embedded by a FC layer

followed by a sigmoid function. The location of current

frame loct is normalized to [0, 1] in a video sequence, and it

is encoded with a FC layer followed by a sigmoid function.

Then the video representation and location information are

concatenated and further embedded, as the visual input to

the LSTM, namely Eo. In particular, Eo encodes both the

content of the video and the location of the content. The

other input of the LSTM is the previous hidden state ht−1

which summarizes information from all the historically ob-

served frames. We then concatenate the hidden state ht with

Es to jointly output the action and state values.

State and Action Space At each step, the agent decides

the action to execute according to current information. The

action is to select the temporal location loct+1 of the video

frame that the agent chooses to observe next. This location

is not constrained, and the agent may skip both forwards

and backwards around a video. The location is formulated

as loct+1 = fl(ht||Es; θl), where fl is a fully connected

layer, such that the agent’s decision is a function of its

past observations, their temporal locations and the sentence

query. At training stage, the location is sampled from a

Gaussian distribution, loct+1 ∼ p(· | fl(ht||Es; θl)), where

fl(ht||Es; θl) represents the mean of the distribution, and

the variance δ is fixed as a constant. At testing stage, the

MAP estimate is used to infer the next observation location.

There are three state values at each time step: a candidate

detection dt, a matching score mt, and a binary prediction

indicator pt to indicate whether dt should be emitted as a

prediction. The candidate detection dt is (tstart, tend) ∈
[0, 1]2, where tstart and tend are the normalized start and

end time of the sentence query, mt is the cross-modal

matching score indicating the cross-modal similarity of the

given sentence query and the observed video frame. tstart,

tend, mt and pt are calculated as:

(tstart, tend) = fse(ht||Es; θd) (2)

mt = fm(ht||Es; θm) (3)

pt = fp(ht||Es; θp) (4)

At the training stage, fp is used to parameterize a Bernoulli

distribution from which pt is sampled. At the testing stage,

the MAP estimate is used. Note that, fl, fse and fm men-

tioned above are all designed as a fully connected layer fol-

lowed by a sigmoid function.

Semantic Matching As illustrated above, we use mt to

indicate the cross-modal similarity of the given sentence

query and the observed video frame, which plays an im-

portant role in localization. Since we want the agent to find

more relevant video frame of the sentence query, mt is in-

tended to be closer to 1 if the observed video frame is related

to the sentence query, and 0 otherwise. The training objec-

tive is then to minimize the standard cross-entropy loss:

Lcls(mt; θm) = −
∑

i

(ri)logP (ri|mi; θm) (5)

where ri=1 or 0 denotes whether the ith video frame is re-

lated to the sentence query.

3.3. Location Regression Loss

The goal of this work is to output temporal boundaries

of the video clip related to the language query. To obtain

more precise prediction, we train dt and mt at each time

step using backpropagation.

Boundary Regression Loss With the temporal annota-

tions of sentences, we are capable to train the candidate de-

tection dt using standard backpropagation. Since we want

the candidate detection at each time step to get closer with

the ground truth, the candidate detection at each time step

is involved in the loss function no matter whether the can-

didate detection is emitted as a prediction. Suppose there is

a set of candidate detections D = {dt | t = 1, ..., T} pro-

duced by the agent over T time steps, and the ground truth

annotation is (gstart, gend) for the sentence query. The loss

function is defined as

L(D) = ω1

∑

t

Lcls(mt) + ω2

∑

t

Lloc(dt, (gstart, gend))

(6)

The classification loss Lcls(mt) is a standard cross-

entropy loss. The localization loss is defined as an

L2 regression loss, namely Lloc = ‖(tstart, tend) −
(gstart, gend)‖. ω1 and ω2 are two hyper-parameters con-

trolling the balance of these two loss functions.

Frame-level Regression Loss In Eq. (6), we directly

regress the start time and end time with an L2-form regres-

sion loss. In this section, we transfer the regression problem

into a multi-label classification problem to verify whether

each frame in the training sample is a relevant frame to the

sentence query. After concatenation of ht and Es, we in-

put the concatenated vector into a fully connected layer fol-

lowed by a sigmoid function, where the number of output

node is the number of frames in one training sample. We de-

note each output of the fully connected layer as pij , which

indicates the probability that each frame belongs to the pre-

dicted video clip.

We try several loss functions, and find that the simple

binary sigmoid cross-entropy loss works best. Therefore

the location regression loss in Eq. (6) can be rewritten as

Lloc =
1

n

n∑

i

M∑

j

[xij log(pij)] + (1− xij)log(1− pij)]

(7)
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where j is the jth frame in a training sample, M is the to-

tal number of input frames, xi = [xi1, xi2, ..., xiM ] is the

label vector of the ith training sample. xij = 1 or 0 de-

notes whether the frame is related to the sentence query or

not. pij denotes the probability that the frame is related to

the query. At the testing stage, we regard those continu-

ous temporal regions with mostly high probabilities as the

detection results.

3.4. Reward

Because the prediction indicator pt and observation loca-

tion loct+1 are non-differentiable which cannot be trained

using backpropagation, we use reinforcement learning to

solve them. Since we aim to find the most accurate location

of an activity described by the sentence, the reward function

should lead the agent to find a detection with high recall and

high precision at the final time step. Thus, we formulate the

reward function to encourage true positives, while depress

false positives and false negatives:

rT =

{
RFN , FN

NTPRTP +NFPRFP , TP and FP
(8)

where FN (false negative) represents the model does not

emit any prediction while there is a ground truth video clip

in the video, and a negative reward RFN is assigned to

the agent. NTP is the number of TP (true positive) pre-

dictions, where a prediction is emitted and the IoU between

the prediction and the ground truth is larger than a threshold.

RTP is the positive reward assigned to the TP predictions.

NFP is the number of FP (false positive) predictions. There

are two kinds of FP predictions. 1) The input video does

not contain any relevant video clips to the sentence query

but the model emits a prediction. 2) There exists a rele-

vant video clip for the sentence query and the model indeed

emits a prediction, but the IoU is smaller than the thresh-

old. It should be noted that all reward is assigned at the

Tth (final) time step, while the reward is zero in the middle

time step, which leads the model to a high overall detection

performance.

4. Experiments

4.1. Training Data

We evaluate our method on three benchmark datasets,

TACoS [17], Charades-STA [8] and DiDeMo [11]. TACoS

consists of 17,344 clip-sentence pairs. Following the same

train/val/test split strategy as Gao et al. [8], we split the

dataset in 50% for training, 25% for validation and 25%

for testing. There are 19,509 clip-sentence pairs in the

Charades-STA dataset. We split it as in [8] by dividing the

dataset into 13,898 clip-sentence pairs in the training set,

and 4,233 clip-sentence pairs in the testing set. DiDeMo

dataset contains 10,464 videos with 40,543 clip-sentence

pairs. We split the videos as [11], namely 8,395 for training,

1,065 for validation and 1,004 for testing.

We use sliding windows with a fixed scale to collect

training video samples which are the input to our frame-

work. For a sliding window clip, we align it as a positive

training sample if it satisfies two constraints: 1) The IoU

(intersection over union) of the sliding window clip and the

ground truth temporal interval is larger than 0.5. 2) The

nIoL (non intersection over length) of the sliding window

clip and ground truth temporal interval is smaller than 0.2.

We also collect negative samples which have no intersection

with any sentence annotations.

The length of training samples of TACoS is fixed as 400

frames, the overlap of consecutive video clips is 40%. We

further downsample the video clips by randomly selecting

a single frame for every consecutive 16 frames. There-

fore, the agent processes the video data in a sequence of 25

frames each time. For the Charades-STA dataset, the length

of training samples is 252 frames, and the overlap of con-

secutive video clips is also set to 40%. We downsample the

252 frames to 21 frames, such that the agent processes the

video data in a sequence of 21 frames. For DiDeMo dataset,

we fix the training samples as 320 frames, and the overlap

of consecutive video clips is also set to 40%. We then down

sample the 320 frames to 20 frames.

4.2. Experimental Settings

The sizes of the semantic concept vocabularies for

TACoS, Charades-STA and DiDeMo are 71, 60 and 85 re-

spectively. In the Faster R-CNN based semantic learning

model, the IoU threshold is set as 0.7 for region proposal

suppression, and 0.3 for object class suppression. For the

recurrent neural network, we use a 3-layer LSTM network

with 1024 hidden units in each layer. The agent observes

a fixed number of frames for each sequence, typically 6 in

our experiments. We train the model with the batch size of

256, including 128 positive samples and 128 negative sam-

ples. The learning rate is assigned as 0.002. The standard

variance δ of the Gaussian distribution is set to 0.08 for the

observation location loct+1 in the training stage. In Eq. (6),

w1 and w2 are both set as 1. The hyper-parameters are de-

termined by cross validation. We will analyze the effect of

several important hyper-parameters in Section 4.4.

During testing, any candidate detections overlapping or

crossing sequence bounds are merged with a simple union

rule. For fair comparison, we adopt the same evaluation

metric as [8] on TACoS and Charades-STA, which com-

putes “R@n,IoU=m” meaning the percentage of at least

one of the top-n results having IoU with the sentence anno-

tation larger than m. Suppose there are N sentences in total,

the overall performance is the average among all the sen-

tences. R(n,m) = 1

N

∑N

i=1
r(n,m, si), where r(n,m, si)

is the recall for a sentence query si. For DiDeMo dataset,
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TACoS Charades-STA

Method
R@1

IoU=0.5

R@1

IoU=0.3

R@1

IoU=0.1

R@5

IoU=0.5

R@5

IoU=0.3

R@5

IoU=0.1
mR

R@1

IoU=0.5

R@1

IoU=0.7

R@5

IoU=0.5

R@5

IoU=0.7
mR

Random 0.83 1.81 3.28 3.57 7.03 15.09 5.27 8.51 3.03 37.12 14.06 15.68

ACRN [15] 14.62 19.52 24.22 24.88 34.97 47.42 27.61 - - - - -

CTRL [8] 13.30 18.32 24.32 25.42 36.69 48.73 27.80 23.63 8.89 58.92 29.52 30.24

RL(b) 11.76 17.70 22.42 22.61 33.24 45.10 25.47 19.78 5.60 55.65 25.07 26.53

RL(f) 12.79 18.53 23.87 24.56 35.30 47.64 27.15 21.18 7.33 56.01 27.85 28.09

SM-RL(attr+b) 13.50 18.83 23.72 24.01 34.19 46.56 26.80 21.00 7.63 57.25 28.06 28.49

SM-RL(attr+f) 14.01 19.02 23.96 24.55 36.42 47.14 27.51 22.54 8.56 58.95 29.74 29.95

SM-RL(attr*+b) 14.20 19.79 25.17 25.38 36.69 48.22 28.24 23.56 9.52 60.17 32.53 31.45

SM-RL(attr*+f) 15.95 20.25 26.51 27.84 38.47 50.01 29.84 24.36 11.17 61.25 32.08 32.22

Table 1. Comparison of different methods on TACoS and Charades-STA.

we measure the performance with Rank@1, Rank@5, and

mean intersection over union (mIoU ) as [11].

4.3. Experimental Results

As shown in Table 1, we report the results as R@{1,

5} with IoU ∈ {0.1, 0.3, 0.5} for the TACoS dataset, and

R@{1, 5} with IoU ∈ {0.5, 0.7} for the Charades-STA

dataset. We also compute the mean value mR of the above

evaluation metrics. The top row means that we randomly

select n windows from the test sliding windows and eval-

uate R@n with IoU=m. The second and third row shows

the experimental results of previous methods ACRN [15]

and CTRL [8]. Rows 4-9 show the experimental results of

different variants of our model. “RL” means that we di-

rectly use the recurrent neural network based reinforcement

learning model. “SM-RL” means that we use the semantic

matching reinforcement learning model which incorporates

semantic concepts into the framework. “b” means that the

location is regressed with the L2-form loss function which

directly regresses the boundaries, and “f” means that the

model is trained with the frame-level regression loss. “attr”

means that the semantic concept model is trained by the

multi-label classification based model. “attr*” means that

the semantic concepts are learned with the Faster R-CNN

based model.

We can observe from Table 1 that the performance is

relatively poor when directly applying “RL(b)” or “RL(f)”

in this task, and the performance is lower than CTRL [8]

and ACRN [15]. When we further enhance the model with

semantic concepts learned by the multi-label classification

model, namely “SM-RL(attr+b)” and “SM-RL(attr+f)”, the

performance becomes comparable with CTRL, where our

method outperforms CTRL at some of the evaluation met-

rics such as R@1, IoU=0.5, R@1, IoU=0.3 on the

TACoS dataset, and R@5, IoU=0.5, R@5, IoU=0.7 on

the Charades-STA dataset. In particular, when the semantic

concepts are learned with the Faster R-CNN based model,

namely “SM-RL(attr*+b)” and “SM-RL(attr*+f)”, the per-

formance further increases and exceeds the state-of-the-art

method. Models trained by frame-level regression loss con-

sistently outperform models trained with L2-form loss. In

particular, the “SM-RL(attr*+f)” model performs best and

outperforms the state-of-the-art method CTRL by up to 2.65
percent at R@1, IoU=0.5 on the TACoS dataset. The aver-

age performance mR exceeds CTRL on the TACoS dataset

by 2.04 percent, and 1.98 percent on the Charades-STA

dataset. We further compare our method with MCN [11]

on DiDeMo dataset. As shown in Table 2, our methods

consistently outperform MCN.

Method Rank@1 Rank@5 mIoU

MCN [11] 28.10 78.21 41.08

SM-RL(attr*+b) 29.64 79.38 42.17

SM-RL(attr*+f) 31.06 80.45 43.94

Table 2. Comparison between our method and MCN on DiDeMo.

Method Average running time (per minute video)

CTRL [8] 202ms

Ours 32ms

Table 3. Comparison of detection speeds.

In addition, the proposed model is very efficient using a

fraction (less than 8%) of all the video frames. We compare

the detection speed of our model with the state-of-the-art

method CTRL [8]. Both of the two methods are tested on

a single Titan X GPU. The comparison results are shown in

Table 3. It can be seen from the table that our method is

6× faster than CTRL, showing the potential capacity to be

applied in real-world applications.

4.4. Ablation Study

4.4.1 Semantic Concept Learning Models

As illustrated in Table 1, semantic concepts significantly in-

crease the performance. This is because that visual features

are enhanced with mid-level semantic concepts. The se-

mantic gap between visual information and language infor-

mation is decreased to some extent. Besides, the Faster R-

CNN based semantic concept learning model performs bet-
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Frame2240 2336 2400 26082440 2512

Observation Sequence

Ground Truth

Prediction

Query A The person washes the leeks in the sink

Frame96 120 216 374287 346

Query B Person put on a pair of shoes

Figure 3. Examples of the observation policies and predictions by our proposed method.

ter than multi-label based semantic concept learning model

in our experiments. This is because the Faster R-CNN can

attend to more accurate regions of interest and the features

are more fine-grained in comparison with the single multi-

label classification model.

4.4.2 Comparison on Different Loss Functions

As shown in Table 1, the model trained with frame-level re-

gression loss consistently outperforms the regular L2-form

regression loss. The possible reason is when training the

model with frame-level regression loss the fse in Eq. (2) is

modeled as a fully connected layer with 25, 21 or 20 output

nodes instead of just 2 nodes which directly regress the start

point and end point. Accordingly the binary sigmoid cross-

entropy loss forces the model to encode more information

from the previous summarization of videos, leading to more

accurate location estimation.

4.4.3 Hyper-parameters Analysis

When training the proposed model, we vary the number

of observations, w1 and w2 in Eq. (6), and the standard

variance δ of the Gaussian distribution of loct. The experi-

ments are conducted with our SM-RL(attr*+f) model on the

TACoS dataset. The corresponding results in Table 4 show

that the accuracy dramatically decreases when the number

of observations is set to 1. Nevertheless, when the value is

larger than 4, the model is very robust. As shown in Table 5,

the result achieves best when δ = 0.08. As shown in Table

6, the result achieves best when w1 = 1 and w2 = 1.

Observation 1 2 4 6 8

R@1,IoU=0.5 4.26 8.45 15.58 15.95 15.20

Table 4. Performance comparison for the number of observations.

δ 0 0.04 0.08 0.12 0.16

R@1,IoU=0.5 9.57 9.36 15.95 10.16 8.93

Table 5. Performance comparison for parameter δ.

w1 1 2 3

w2 1 2 3 1 3 1 2

R@1, IoU=0.5 15.95 9.48 7.52 7.33 12.45 8.36 13.12

Table 6. Performance comparison for w1 and w2.

4.4.4 Result Visualization

As shown in Figure 3, we illustrate two typical examples

of observation policies that our model learns. The sentence

query of the left example is “the person washes the leeks

in the sink”. Note that when the agent is near to the end

time of the activity, it takes a step backward to refine its

hypothesis. However, the prediction is a little longer than

the ground truth, as the start location of this activity is hard

to define. The model outputs the prediction from the time

when the person puts the leeks in the sink, while the ground

truth annotates this activity from the time when the person

starts to wash it. The possible reason is that the image de-

tails are not well captured and the definition of an activity in

real life is obscure. The right example illustrates the obser-

vation policy for the sentence query “person put on a pair

of shoes”. For this sentence query, the agent takes two step

backward to refine its start time and end time. It is obvious

that the prediction is much more accurate than the left one,

because it is easier to verify the start and end positions for

this activity.

5. Conclusion and Future Work

This paper has studied a rarely investigated and chal-

lenging problem, namely language-driven temporal activ-

ity localization. To deal with this problem, we have pro-

posed a semantic reinforcement learning (SM-RL) model

for temporal activity localization. The experimental results

on three benchmark datasets have shown that our method

outperforms the state-of-the-art method with a much higher

speed. Currently we associate the hidden state of LSTM

and sentence embedding with a simple concatenation. In

the future, we would like to apply the gated fusion unit to

associate the multi-modal data.
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