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Abstract

In this paper, we propose a channel-wise interaction

based binary convolutional neural network learning method

(CI-BCNN) for efficient inference. Conventional methods

apply xnor and bitcount operations in binary convolution

with notable quantization error, which usually obtains in-

consistent signs in binary feature maps compared with their

full-precision counterpart and leads to significant informa-

tion loss. In contrast, our CI-BCNN mines the channel-wise

interactions, through which prior knowledge is provided to

alleviate inconsistency of signs in binary feature maps and

preserves the information of input samples during inference.

Specifically, we mine the channel-wise interactions by a re-

inforcement learning model, and impose channel-wise pri-

ors on the intermediate feature maps through the interacted

bitcount function. Extensive experiments on the CIFAR-10

and ImageNet datasets show that our method outperforms

the state-of-the-art binary convolutional neural networks

with less computational and storage cost.

1. Introduction

Deep convolutional neural networks have achieved state-

of-the-art performances in various vision applications such

as object detection [10, 33, 22], tracking [13, 28, 1], face

recognition [38, 29, 7] and many others. However, deploy-

ing deep convolutional neural networks in portable devices

for inference is still limited because of the huge compu-

tational and storage cost. Moreover, high degrees of re-

dundancy are exhibited in parameters of well-trained mod-

els [5]. Hence, it is desirable to design deep convolutional

neural networks with fewer parameters and lighter architec-

tures for efficient inference.

Recently, several neural network compression methods

have been proposed including pruning [9, 21, 12], quantiza-
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Figure 1. Convolution operations in real-valued neural networks

(top), Xnor-Net (the yellow box) and our CI-BCNN (the green

box). Because of the quantization error resulted from xnor

and bitcount operations, Xnor-Net usually outputs binary feature

maps which have the inconsistent signs compared with their full-

precision counterpart (the red circle). Our CI-BCNN provides pri-

ors according to channel-wise interactions to correct the inconsis-

tent signs (the blue circle), which preserves information for inter-

mediate feature maps (best viewed in color).

tion [23, 17, 8], low-rank decomposition [6, 39, 43] and ef-

ficient architecture design [18, 15, 26]. Among these meth-
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ods, network quantization represents parameters of the neu-

ral networks in constrained bandwidth for faster processing

and less memory consumption. Neural networks with bi-

nary weights replace multiply-accumulate operations with

accumulation [3, 42, 14] to save storage cost and accel-

erate computation. However, real-valued calculation is

still computationally expensive. To address this, neural

networks with both binary weights and activations substi-

tute multiply-accumulation with xnor and bitcount opera-

tions [32, 23, 24]. However, applying xnor and bitcount

operations causes and accumulates notable quantization er-

ror, which usually results in inconsistent signs in binary fea-

ture maps compared with their full-precision counterpart.

The information loss in binary neural networks explains the

significant performance degradation compared with real-

valued neural networks especially when evaluated in large-

scale datasets such as ImageNet [4].

In this paper, we present a CI-BCNN method to learn bi-

nary neural network with channel-wise interactions for ef-

ficient inference. Unlike existing methods which directly

apply xnor and bitcount operations, our method learns in-

teracted bitcount according to the mined channel-wise inter-

actions. The inconsistent signs in binary feature maps are

corrected based on prior knowledge provided by channel-

wise interactions, so that information of input images is

preserved in the forward-propagation of binary neural net-

works. More specifically, we employ a reinforcement learn-

ing model to learn an directed acyclic graph for each convo-

lutional layer, which stands for implicit channel-wise inter-

actions. We obtain the interacted bitcount by adjusting the

output of the original bitcount in line with the effects ex-

erted by the graph. We train the binary convolutional neural

network and the structure of graph simultaneously. Figure 1

depicts the comparison between our CI-BCNN and the con-

ventional binary neural network, where inconsistent signs in

binary feature maps are corrected according to the channel-

wise interactions. Experiments on the CIFAR-10 [19] and

ImageNet datasets show that our CI-BCNN outperforms

most state-of-the-art binary neural networks by a large mar-

gin across various network architectures.

2. Related Work

Network Quantization: Network quantization has

aroused extensive interest in machine learning and com-

puter vision due to the reduction of the network complex-

ity for wide deployment. Existing methods can be di-

vided into two categories: neural networks with quanti-

zation on weights [3, 32, 42, 14] versus on both weights

and activations [32, 17, 23, 24]. Weight-only quantiza-

tion methods quantized weights in deep neural networks

to save storage cost and substitute the original multiply-

accumulation with accumulation for fast processing. Cour-

bariaux et al. binarized the real-valued weights via a rigid

sign function and obtained sufficiently high accuracy on

small datasets. Rastegari et al. approximated the real-

valued weights for binarization with a scaling factor to

improve the accuracy. Zhang et al. trained an adaptive

quantizer for weights according to their distribution, min-

imizing quantization error while staying compatible with

the bitwise operations. Hou et al. applied the Taylor Ex-

pansion to minimize the loss caused by quantization per-

turbation, and proposed a proximal Newton algorithm to

find the optimal solution for quantization strategy. Em-

pirical studies showed that wider bandwidth for represent-

ing weights led to comparable performance with their full-

precision counterpart, ternary and other multi-bit quanti-

zation methods [44, 36, 25] were proposed to obtain bet-

ter performance. However, real-valued activations prevent

substantial acceleration due to the existed accumulation op-

erations. In the latter regard, weights and activations are

both quantized so that multiply-accumulation is replaced

by xnor and bitcount operations, leading to much less com-

putational complexity. Rastegari et al. and Hubara et al.

proposed neural networks with both weights and activations

binarized, applying xnor and bitcount operations to substi-

tute multiply-accumulation to obtain appreciable speedup.

Lin et al. utilized more bases for weight and activation bi-

narization, enhancing the performance especially in large-

scale datasets. Liu et al. connected the real-valued activa-

tions of consecutive blocks with an identity shortcut before

binarization to strengthen the representational capability of

the network. They also used a new training algorithm to

accurately back-propagate the gradient. Nevertheless, ap-

plying xnor and bitcount operations causes and accumulates

the quantization error, leading to severe information loss be-

cause of inconsistent signs in binary feature maps compared

with their real-valued counterpart.

Deep Reinforcement Learning: Deep reinforcement

learning purposes to learn the policies for decision-making

problems, which obtains promising results in playing

games [27, 34], object detection [30, 31], visual track-

ing [16, 35, 40, 41] and many others. Recently, reinforce-

ment learning has been adopted to network compression.

Lin et al. applied a policy gradient model to judge the im-

portance of feature maps, and pruned the network adap-

tively based on the input images and current feature maps

to fully preserve the ability of the network. Ashok et al.

shrank a large teacher network to a small student network by

removing redundant layers and shrinking the size of the re-

maining layers, where a reinforcement learning model was

employed to learn the policy. He et al. efficiently sampled

the network architecture space by leveraging a reinforce-

ment learning model, so that the model is compressed auto-

matically without predefined pipelines. In this paper, we ex-

tend the reinforcement learning model to mine the channel-

wise interactions in convolutional neural networks with bi-
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nary weights and activations, through which the inconsis-

tent signs caused by xnor and bitcount operations are cor-

rected and information of input images is preserved in the

forward-propagation process.

3. Approach

In this section, we first introduce neural networks with

binary weights and activations briefly, which are efficient

but suffer from inconsistent signs in intermediate feature

maps. Then we present the details of imposing channel-

wise interactions through the interacted bitcount. Finally,

we propose a policy gradient model to mine the channel-

wise interactions.

3.1. Binary Neural Networks

Let W l
r ∈ R

wl
f×hl

f be the real-valued weights and

Al
r ∈ R

wl
a×hl

a be the full-precision activations of the lth
convolutional layer in a given L-layer CNN model, where

(wl
f , h

l
f ) and (wl

a, h
l
a) represents the width and height of

filters and feature maps in the lth layer. Al
r carries infor-

mation of input samples without binarization error:

A
l

r = W
l

r ⊛A
l−1

r

where ⊛ stands for the standard convolution and activation

layers are omitted for simplicity. In order to obtain neural

networks with less computational and storage cost, we uti-

lize binary weights and activations to replace the multiply-

accumulation with xnor and bitcount operations [32] in the

forward-propagation:

A
l

b = sign(W l

b ⊙A
l−1

b
)

where W l

b
∈ {+1,−1}w

l
f×hl

f and Al

b
∈ {+1,−1}w

l
a×hl

a

are binary weights and activations of the lth layer respec-

tively. ⊙ indicates element-wise binary product represent-

ing xnor and bitcount operations in binary neural networks,

where the bitcount is to count the number of ones in the

results of xnor operations in each convolution. sign means

the sign function which maps number larger than one to one

and to minus one otherwise.

The objective for binarizing convolutional neural net-

works is to minimize the distance between binary and real-

valued feature maps so that information loss is minimal,

which is written as follows:

min
W l

b
,A

l−1

b

||Al

r −A
l

b||
2
2 (1)

where the optimization is NP-hard and the equivalent equa-

tion is Al

b
= sign(Al

r). Conventional methods obtain

the approximate solutions W l

b
= sign(W l

r) and A
l−1

b
=

sign(Al−1

r ) by assuming:

sign(Al

r) ≈ sign(sign(W l

r)⊛ sign(Al−1

r ))

= sign(sign(W l

r)⊙ sign(Al−1

r ))

However, due to the quantization error occurred in xnor and

bitcount operations, the assumption does not always hold as

shown in Figure 1. The approximate solution has inconsis-

tent signs in Al

b
compared with sign(Al

r), so that Equation

(1) is far from the optimal states. Moreover, the error is ac-

cumulated across layers and causes severe information loss

of input images in the forward-propagation. Our objective

is to minimize the difference between Al

b
and sign(Al

r) in

each layer by correcting the inconsistent signs in Al

b
.

3.2. Interacted Bitcount

Applying xnor operations brings significant quantization

error compared with multiplication in full-precision. More-

over, original bitcount accumulate the error, which usually

outputs inconsistent signs in feature maps compared to their

real-valued counterpart. It is shown empirically that there is

implicit dependency among filters, through which reliable

priors are provided to offset the error resulted from xnor

and bitcount operations. The interacted bitcount modifies

the original bitcount as follows:

p̃ls,ij = pls,ij +
∑

t

δlts(p
l
t,ij) (2)

where the upscript l represents the corresponding variable

in the lth convolutional layer. pls,ij and plt,ij are the integer

pixel values output by the original bitcount in the ith row

and jth column in the instructed (student) feature map F l
s

and directive (teacher) feature map F l
t respectively. p̃ls,ij is

the corresponding pixel value output by the interacted bit-

count. δlts represents the influence function imposing on F l
s

from F l
t .

To prevent the network suffering from heavy computa-

tion overhead of interacted bitcount, we simply design δlts
as a discrete function. We partition the value range of pixels

in F l
t into |Kl

ts| intervals with equal length when consider-

ing its interaction to F l
s. Kl

ts is an odd integer so that no

interaction exists if plt,ij stays near zero without sufficient

information. Integer output of δlts is obtained as follows:

δlts(p
l
t,ij) = (

1− |Kl
ts|

2
+ k) ·

Kl
ts

|Kl
ts|

· [U0N0], (3)

if plt,ij ∈ (pk, pk+1], k = 0, 1..., |Kl
ts| − 1

where pk is the origin of the kth interval in value range par-

tition of the teacher feature map F l
t . N0 is the maximum in

value range of F l
t , which is identical for all feature maps in

the same layer. U0 means the ratio of unit pixel modification

to N0, which is manually set to decide the importance of

the prior. [U0N0] stands for the minimal integer larger than

U0N0. Meanwhile, Kl
ts can be a negative integer mean-

ing that the student and teacher feature maps are negatively

correlated. We have |Kl
ts| choices from

1−|Kl
ts|

2
[U0N0] to

|Kl
ts|−1

2
[U0N0] for the output of δlts function, representing

different effects on F l
s exerted by F l

t .
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Figure 2. Illustrations for state transitions and interacted bitcount

based on the mined graph. (a) An example for graph mining.

We create edges, reassign Kl
ts and delete edges between different

channels until finalizing the graph structure (best viewed in color).

(b) A fast way to calculate the impact of graph on interacted bit-

count according to pixel values in the teacher feature map via stair

functions, where N0 = 288 and U0 is set as 0.001 in the example.

3.3. Channel-wise Interaction Mining via Policy
Gradient

The channel-wise interaction is defined as edges in the

graph among channels, which is expressed as existence and

influence. Existence of an edge demonstrates the correla-

tion between the two connected nodes, represented by one

if the coherence is sufficiently significant and zero other-

wise. An edge’s influence means the impact on the end

node imposed by the start node if the correlation exists.

Because partitioning the value range of the teacher fea-

ture map into more intervals stands for greater impact of

the channel-wise relationship, we depict the influence by

Kl
ts. Mining the channel-wise interaction can be viewed

as a Marcov Decision Process (MDP), defined as M =
{S,A, T (S,A),R(S,A)}. At each step, the agent takes

an action to create, delete or unchange edges to modify the

existence of edges in the graph together with assigning dif-

ferent values to Kl
ts to represent various influences for all

existing edges. The agent iteratively revamps the structure

of the graph to maximize the gained reward until conver-

gence or achieving the upper limit of steps.

States: The state space S expresses the current structure

of the graph in all convolutional layers, which is represented

as the direct product of the existence space Sl
e and influence

space Sl
i across layer index l:

S =
L∏

l=1

Sl
e × S l

i

where Sl
e is defined as the existence matrix W l

es ∈

{1, 0}c
l×cl and cl stands for the number of the channels in

the lth layer. For the element wl
es,ts in W l

es, it equals to one

if the directed interaction from tth to sth channel exists and

equals to zero otherwise. Zero matrix in CI-BCNN is equiv-

alent to conventional binary convolutional neural networks

without channel-wise interaction. The influence space Sl
i is

modeled by the influence matrix W l
is with odd integers. In

this paper, we limit the space with finite discrete numbers

as W l
is ∈ {±3,±5,±7, ...,±(2K0 + 1)}c

l×cl , where K0

is a hyperparameter representing the size of action space.

In our implementation, element wl
is,ts in W l

is is scaled to

Kl
ts

|Kl
ts|

·
|Kl

ts|−1

2K0

for regularization, which measures the im-

pact of the corresponding interaction.

Action: The action set A is the direct product of action

space in existence Al
e and in influence Al

i across all lay-

ers. Al
e consists of three compositional sets: Al

e,c for edge

creation, Al
e,d for edge deletion and {unchange} for re-

maining the existence invariant. Al
i depicts all possible odd

integers in W l
is for existing edges. Moreover, we stop the

policy network when the graph converges or achieving the

maximal steps. The whole action set is described as:

A =

L∏

i=1

(Al
e ×Al

i) ∪ {stop}

=
L∏

i=1

((Al
e,c ∪ Al

e,d ∪ {unchange})×Al
i) ∪ {stop}

Figure 2 represents an example of stage transitions with

actions and a fast way to implement interacted bitcount.

Transition Function: T (S,A) → S
′

is the transition

function that shows the probability to convert the old state

into the new one . T is constructed after defining state and

action space, which is the direct product of two transition

functions in all convolutional layers, T l
e for existence trans-

formation and T l
i for influence change:

T (S,A) =
L∏

i=1

T l
e (S

l
e,A

l
e)× T l

i (S
l
i ,A

l
i,S

l
e,A

l
e)

T l
e is represented by a existence transition matrix W l

et ∈

[0, 1]c
l×cl , whose element wl

et,ij demonstrates the probabil-

ity of connecting the directed edge from the ith channel to

the jth one with the normalization
∑

i,j w
l
et,ij = 1. We

select actions according to the following rules:

(1) Create: The density of the existence matrix ρ is defined

as the ratio of ones in the existence matrix. When the
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density of existence matrix is sparser than the hyper-

parameter ρmax, we create an edge directing to the jth
channel from the ith one if the sampling strategy based

on W l
et selects the element wl

et,ij and the edge has not

been connected.

(2) Delete: The probability of deletion is formu-

lated as W
′l
et = Norm([− logwl

et,ij ]cl×cl), where

Norm means the normalization operation that ensures

||W
′l
et||1 = 1. The probabilities of creation and dele-

tion are negatively related because low probabilities of

connection stand for the trend to disconnect the edges.

Meanwhile, differences of low probabilities in W l
et are

very small and can only be revealed by their power ex-

ponent, so we applied logarithm to represent the possi-

bility of deletion. We delete the existing edge between

the ith channel to the jth one if the sampling strategy

chooses the element w
′l
et,ij in W

′l
et.

(3) Unchange: We remain the existence of edges unvaried

if no creation or deletion happens.

As for the part of influence, we parameterize T l
i with a in-

fluence matrix W l
it ∈ [−1, 1]c

l×cl and select odd numbers

deterministically in Al
i for Kts according to a stair func-

tion:

Kl
ts =

wl
it,ts

|wl
it,ts|

· [2 ∗ [|K0w
l
it,ts|] + 1] (4)

Finally, we take the action stop to terminate the current

epoch of channel-wise interaction mining when the policy

network converges or achieves the maximal steps.
Reward Function: The reward function R(S,A) in

round τ is modeled as follows:

r(sτ , aτ ) = rc(sτ , aτ ) + rp(sτ , aτ )

= sgn(|C(sτ )− C(sτ+1)| − h)
C(sτ )− C(sτ+1)

|C(sτ )− C(sτ+1)|

+
1

N

L∑

l=1

∑

t,s

∑

i,j

|plt,ij(sτ+1)| − |pls,ij(sτ+1)|

||plt,ij(sτ+1)| − |pls,ij(sτ+1)||

where C(sτ ) represents the cross-entropy loss of the bi-

nary neural network for prediction under the graph mined

in round τ , and h is a positive threshold whose value is

assigned manually. plt,ij(sτ+1) and pls,ij(sτ+1) means the

pixel values in the ith row and jth column of the student and

teacher feature maps, which are output by the interacted bit-

count with the graph mined in round t+1. N stands for the

number of total pixels of feature maps in the binary neural

networks, which equals to
∑L

l=1

∑
t,s

∑
i,j 1.

The physical meaning of the reward function is illus-

trated by two terms. rc encourages the graph imposed on

the binary neural network to decrease the cross-entropy loss

in classification. The agent acquires the reward +1 or −1
if the reduced or increased cross-entropy loss is larger than

a set threshold h, while gains no reward when the loss does

not change apparently. rp aims to ensure that the teacher

feature map is more informative than the student one so that

reliable priors are provided. Because pixels carry more in-

formation are usually activated or deactivated significantly,

we expect the mean absolute value in the teacher feature

map is higher than their counterpart in the student one.

We employ a Encoder-decoder RNN for the policy net-

work, which takes the current state of graph W l
es and W l

is

as input, while outputs the transition matrix W l
et and W l

it

for the binary convolutional layer. Figure 3 shows the over-

all framework for training our CI-BCNN with the policy

network. We utilize the REINFORCE algorithm [37] to op-

timize the policy network. The objective is maximizing the

expected return over the entire CI-BCNN learning process:

max
θ

Z(θ) = Eπ[

T∑

τ=1

γrτ (sτ , aτ )] (5)

where θ means parameters in the policy network and π rep-

resents the selected policy. T stands for the time of sam-

pling for each training batch and γ is the discount factor.

According to the policy gradient method, we compute the

expected gradient of the objective as follows:

∇θZ = −Eπ[rτ (sτ , aτ )∇θ log p(aτ |sτ )] (6)

We apply Monte-Carlo Sampling to obtain the approxi-

mated gradients due to the intractability of exhaustion for

all possible states. Meanwhile, p(aτ |sτ ) is entangled by ac-

tions for exploring edge existence and influence, and the

probability to choose influence is deterministic and non-

differentiable. In order to back-propagate gradients, we

approximate the optimization problem as another differen-

tiable one (formulated in supplementary materials).

4. Experiments

In this section, we evaluated our method on two datasets

for image classification: CIFAR-10 and ImageNet. We

firstly introduced the implementation details of our CI-

BCNN and illustrated the effectiveness and intuitive logic

of CI-BCNN by toy examples. Then we investigated the in-

fluence of hyperparameters by ablation study and compared

the proposed CI-BCNN with state-of-the-art binarized neu-

ral networks regarding the accuracy. Finally, we analyzed

the storage and computation complexity during inference in

comparison with other methods.

4.1. Implementation Details

We trained our CI-BCNN with the VGG-small [42] and

ResNet20 architectures on the CIFAR-10 dataset. We em-

ployed ResNet18 and ResNet34 for the proposed CI-BCNN

in the experiments on the ImageNet dataset. We iteratively

4325572
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Figure 3. Overall framework for training the CI-BCNN. The left part is the policy network which consists of encoders and decoders. The

encoders take the state of each layer as input and decoders output the corresponding transition matrix according to the hidden variables.

The right part stands for the graphs in binary neural networks, where the lth convolutional layer modifies its graph structure based on the

transition matrix W l
et and W l

it (best viewed in color).

trained the binary neural network and the agent for mining

channel-wise interactions in our CI-BCNN. In the training

of the binary neural networks, the weights were binarized

to the sign of real-valued weights multiplying the absolute

mean value of each kernel. We followed the suggestion in

XNOR-net [32] to keep the weights in the first and last layer

real-valued. We used the Adam optimizer for all experi-

ments with the batchsize 128. For experiments on CIFAR-

10, we ran our algorithm for 100 epochs. The initial learn-

ing rate was set as 0.001 and decayed by multiplying 0.1

in the 50th and 90th epoch. In the training on ImageNet,

We set the initial learning rate as 0.001 with multiplying 0.1

in the 20th and 30th epochs out of the total 40 epochs for

ResNet18. The learning rate started from 0.005 with de-

cay by 10× in the 40th and 60th epochs out of the total

80 epochs for ResNet34. When finishing training, we froze

all convolutional layers with the constrained weights to −1
and +1, and retrained the BatchNorm layer for 1 epoch to

absorb the scaling factor.

When training the policy network, we applied two con-

volutional layers with a fully-connected layer for the en-

coder and used a fully-connected layer with two deconvo-

lutional layers for the decoder in each module of RNN. We

used cl
16

matrices of the size 16 × 16 to represent state and

transition matrices in the lth layer for memory saving and

computation acceleration. We set the hyperparameters U0,

ρmax, K0 and α as 0.01, 0.1, 2 and 0.001 respectively in

the comparison with state-of-the-art methods.

4.2. Toy Examples

The thought of the proposed CI-BCNN is to mine the

correlational graph among channels to correct inconsistent

signs in binary feature maps caused by the xnor and bitcount

operations. We conducted simple experiments a on the

MNIST dataset [20] to show the correctness of our thoughts

with intuition.

Effectiveness of the channel-wise interaction: We ar-

Figure 4. The square of correlation coefficients among 10 channels

in the binary convolutional layer. Darker colors represent higher

correlations and the blue box demonstrates the connections mined

by our policy gradient networks.

gue there are implicit correlations among channels, pro-

viding priors for eliminating significant quantization error

which causes inconsistent signs of pixel values in interme-

diate feature maps. Through our policy gradient network,

we can mine the relationships among channels. To vali-

date our thoughts, we designed the architecture with two

convolutional layers and one fully-connected layer for our

CI-BCNN. Figure 4 shows the square of correlation coeffi-

cients among different channels in the binary convolutional

layer, where darker colors mean higher correlations. The

blue box represents the channel-wise interactions learned by

our policy network. As can be seen, our model mined most

significant correlations without irrelevant channels, which

provides reliable priors for the interacted bitcount.

Effectiveness of the interacted bitcount: Our inter-

acted bitcount utilized channel-wise interaction to provide

priors for recovering the original signs in the binary feature

map. We expect that more pixels in binary feature maps

have the same signs with their full-precision counterpart, so

that information of input images is preserved during infer-
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Table 1. Comparison on the ratio of pixels with consistent signs in

different layers and corresponding accuracies of CI-BCNN.

Conv2 Conv3 Acc.(%)

Bitcout 0.6238 0.6061 99.01
Interacted Bitcount 0.6638 0.6244 99.10

ence. Table 1 shows the effect of the interacted bitcount

by the ratio of pixels with consistent signs in binary layers

and the classification accuracy. The quantization error ac-

cumulates with the depth of layers, as the ratio is lower in

the Conv3 layer compared with the Conv2 layer. Our CI-

BCNN increases the ratio, which benefits from the priors

provided by interacted bitcount.

4.3. Performance Analysis

In order to investigate the effect of channel-wise inter-

actions on intermediate feature maps, we conducted abla-

tion study with varying maximal densities of the existence

matrix ρ and ratios of unit pixel modification U0. We re-

ported the classification top-1 and top-5 accuracies on the

ImageNet dataset with the ResNet18 architecture.

Performances w.r.t. the maximal density of existence

matrix ρ: The density of existence matrix ρ is defined as

the proportion of ones in the matrix, which is positively

correlated with the hyperparameter ρmax. Higher density

of existence matrix represents more channel-wise interac-

tions in the interacted bitcount. By changing the value of

ρmax in the training of the policy network, we can control

the final density of existence matrix. The impact of ρmax on

the performance is illustrated in Figure 5(a). Medium den-

sity provides reliable priors for feature maps suffered from

inconsistent signs. High density assigns excess connections

in the graph with untrustworthy priors. Low density fails

to consider priors, which is unable to alleviate inconsistent

signs in binary feature maps caused by xnor and bitcount

operations.

Performances w.r.t. the ratio of unit pixel modifica-

tion U0: Larger U0 in the interacted bitcount stands for

more significant modification, resulting in higher impor-

tance for the prior knowledge provided by channel-wise in-

teractions. The prior knowledge becomes more important

in classification when compared with the posterior informa-

tion gained from input images. Figure 5(b) shows the per-

formance versus different U0. Medium U0 provides prior

knowledge for binarized neural networks, which is com-

bined with posteriors learned from the input image. Large

U0 enforces too strong priors on feature maps, ignoring the

knowledge obtained from the input sample. On the con-

trary, small U0 fails to impose affective priors on interme-

diate feature maps which suffer from inconsistent signs.

4.4. Comparison with State-of-the-art Methods

In this section, we compared the performance of our

CI-BCNN with existing methods including BNN [17],

Accuracy

(a) Varying ρmax

Accuracy

(b) Varying U0

Figure 5. Top-1 and top-5 classification accuracies on the Ima-

geNet dataset of the CI-BCNN in the architecture of ResNet18

with (a) varying ρmax and (b) varying U0. Variables are repre-

sented by their logarithm.

Table 2. Comparison of classification accuracy (%) on CIFAR-10

with state-of-the-art methods in VGG-small and ResNet20.

Methods Bitwidth (W/A) VGG-small ResNet20

Full-precision 32/32 93.20 92.10

BC 1/32 90.10 −
TTQ 2/32 − 91.13

HWGQ 1/2 92.50 −
LQ-Net 1/2 93.40 88.40

BNN 1/1 89.90 −
Xnor-Net 1/1 89.80 −
CI-BCNN 1/1 92.47 91.10

BC [3], BWN [32], Xnor-Net [32], Bi-Real-Net [24], ABC-

Net [23], LQ-Nets [42], SYQ [8] HWGQ [2] and TTQ [44]

through various architectures in image classification tasks

on the CIFAR-10 and ImageNet datasets.

Comparison on CIFAR-10: The CIFAR-10 dataset

consists of 60,000 images of size 32×32, which are divided

into 10 categories. We applied 50,000 images as training set

and the rest 10,000 as the test set. We padded 4 pixels on

each side of the image and randomly cropped it into the size

of 32×32. Meanwhile, we scaled and biased all images into

the range [−1, 1]. We compared the accuracies of VGG-

small [42] and ResNet20 quantized by different methods.

Table 2 shows the results. The comparison clearly indicates

the proposed CI-BCNN outperforms the existed neural net-

works with one-bit weight and activations by a sizable mar-

gin. Our method is even comparable with HWGQ which

has activations in two bits and TTQ which has 2-bit weights

and real-valued activations in VGG-small and ResNet20 ar-

chitectures respectively.

Comparison on ImageNet: ImageNet (ILSVRC12)

contains approximately 1.2 million training and 50K val-

idation images from 1,000 categories. ImageNet is much

more challenging because of its large scale and high diver-

sity. Followed by data augmentation of bias subtraction ap-

plied in CIFAR-10, a 224×224 region is randomly cropped

for training from the resized image whose shorter side is
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Table 3. Comparison of classification accuracy (%) on ImageNet

with state-of-the-art methods in ResNet18 and ResNet34.

Methods
Bitwidth

(W/A)

ResNet18 ResNet34

top-1 top-5 top-1 top-5

Full-precision 32/32 69.30 89.20 73.30 91.30

BWN 1/32 60.80 83.00 60.80 83.00
TTQ 2/32 66.60 87.20 − −

HWGQ 1/2 59.60 82.20 64.30 85.70
LQ-Net 1/2 62.60 84.30 66.60 86.90

SYQ 1/2 55.40 78.60 − −

BNN 1/1 42.20 67.10 − −

Xnor-Net 1/1 51.20 73.20 − −

ABC-Net 1/1 42.70 67.60 52.40 76.50
Bi-Real-Net 1/1 56.40 79.50 62.20 83.90
CI-BCNN 1/1 56.73 80.12 62.41 84.35

CI-BCNN (add) 1/1 59.90 84.18 64.93 86.61

Table 4. Comparison of storage cost and FLOPs of different meth-

ods in ResNet18 and ResNet34.

Storage Cost FLOPs

ResNet18

Full-precision 374.1Mbit 1.81× 10
9

Xnor-Net 33.7Mbit 1.67× 10
8

Bi-Real-Net 33.6Mbit 1.63× 10
8

CI-BCNN 33.5Mbit 1.54× 10
8

ResNet34

Full-precision 697.3Mbit 3.66× 10
9

Xnor-Net 43.9Mbit 1.98× 10
8

Bi-Real-Net 43.7Mbit 1.93× 10
8

CI-BCNN 43.5Mbit 1.82× 10
8

256. For inference, we employed the 224× 224 center crop

from images. As demonstrated in [24], additional short-

cut in every consecutive convolutional layers enhance the

performance of binary neural networks, we employed ex-

tra shortcut for adjacent layers to further improve our CI-

BCNN. We compared our CI-BCNN with state-of-the-art

network quantization methods in ResNet18 and ResNet34

architectures and reported top-1 and top-5 accuracies in Ta-

ble 3, where CI-BCNN (add) means our binary neural net-

work with addtional shortcut applied in [24]. Bi-Real-Net

achieves the outstanding performances among neural net-

works with binary weights and activations by adding more

shortcuts and training with more accurate gradients. How-

ever, Bi-Real-Net fails to consider the quantization error

caused by xnor and bitcount operations, which leads to

inconsistent signs in binary feature maps with significant

information loss. CI-BCNN preserves the information of

input samples during inference through the interacted bit-

count and the mined channel-wise interactions. Experi-

ments on the ImageNet dataset shows the superiority of

interacted bitcount directed by channel-wise interactions.

Moreover, CI-BCNN obtains higher accuracies compared

with HWGQ and BWN, which employs two-bit and float

activations. In short, CI-BCNN is more competitive than

the state-of-the-art neural networks with binary weights and

activations.

4.5. Complexity Analysis

We analyzed the computational and storage complexity

in comparison of Bi-Real Net, Xnor-Net and full-precision

networks to show the saving of memory and speedup during

inferences. The memory usage is represented by the storage

for parameters of networks, which is calculated as summa-

tion of 32 bits time real-valued parameters and 1 bit times

binary parameters. We use FLOPs to measure the computa-

tional complexity, following the calculation method in [11].

Because current generation of CPUs can implement 64 bi-

nary operations parallel in one block, the total FLOPs is

calculated as the number of floating point multiplications

plus 1

64
of the amount of binary multiplications. The results

are illustrated in Table 4 with our implementation settings.

The proposed CI-BCNN saves the storage cost by

11.17× and 16.03× in ResNet18 and ResNet34 respec-

tively, and speeds up the computation by 11.75× and

20.11× in the above architectures when compared with the

full-precision networks. In CI-BCNN, the storage overhead

is negligible because the additional parameters are only the

binary existence matrix and the discrete influence matrix

stored in low bits. Meanwhile, the extra computation cost

is resulted from interacted bitcount, which is insignificant

compared with standard binary convolutions. On the con-

trary, our CI-BCNN saves computation and storage cost

because scaling factors for weights and activations are re-

moved compared with Xnor-Net, and the real-valued accu-

mulation and batch normalization in extra shortcuts are not

used in comparison with Bi-Real-Net. Generally speaking,

CI-BCNN requires less memory usage and fewer FLOPs.

5. Conclusion

In this paper, we have proposed a binary convolutional

neural network method called CI-BCNN for efficient infer-

ence. The proposed CI-BCNN mines the graph structure

among channels via policy gradient and imposes channel-

wise interactions by interacted bitcount, through which in-

consistent signs in binary feature maps are corrected and

information of input images is preserved during inference.

Extensive experimental results demonstrate effectiveness of

the proposed approach.
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