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Figure 1: We propose to learn a representation for visual correspondence from raw video. Without any fine-tuning, the acquired represen-

tation generalizes to various tasks involving visual correspondence, allowing for propagation of: (a) Multiple Instance Masks; (b) Pose; (c)

Semantic Masks; (d) Long-Range Optical Flow; (e) Texture.

Abstract

We introduce a self-supervised method for learning vi-

sual correspondence from unlabeled video. The main idea

is to use cycle-consistency in time as free supervisory signal

for learning visual representations from scratch. At training

time, our model learns a feature map representation to be

useful for performing cycle-consistent tracking. At test time,

we use the acquired representation to find nearest neighbors

across space and time. We demonstrate the generalizability

of the representation – without finetuning – across a range

of visual correspondence tasks, including video object seg-

mentation, keypoint tracking, and optical flow. Our ap-

proach outperforms previous self-supervised methods and

performs competitively with strongly supervised methods.1

1. Motivation

It is an oft-told story that when a young graduate stu-

dent asked Takeo Kanade what are the three most impor-

tant problems in computer vision, Kanade replied: “Cor-

respondence, correspondence, correspondence!” Indeed,

*Equal contribution.
1Project page: http://ajabri.github.io/timecycle

most fundamental vision problems, from optical flow and

tracking to action recognition and 3D reconstruction, re-

quire some notion of visual correspondence. Correspon-

dence is the glue that links disparate visual percepts into

persistent entities and underlies visual reasoning in space

and time.

Learning representations for visual correspondence,

from pixel-wise to object-level, has been widely explored,

primarily with supervised learning approaches requiring

large amounts of labelled data. For learning low-level corre-

spondence, such as optical flow, synthetic computer graph-

ics data is often used as supervision [10, 22, 50, 62], lim-

iting generalization to real scenes. On the other hand, ap-

proaches for learning higher-level semantic correspondence

rely on human annotations [71, 19, 65], which becomes pro-

hibitively expensive at large scale. In this work, our aim

is to learn representations that support reasoning at various

levels of visual correspondence (Figure 1) from scratch and

without human supervision.

A fertile source of free supervision is video. Because

the world does not change abruptly, there is inherent vi-

sual correspondence between observations adjacent in time.

The problem is how to find these correspondences and turn
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Figure 2: A Cycle in Time. Given a video, tracking along the sequence formed by a cycle in time can be self-supervised: the target is

simply the beginning of the cycle. The yellow arrow between the start and end represents the differentiable learning signal.

them into a learning signal. In a largely static world ob-

served by a stationary camera, such as a webcam trained on

the Eiffel Tower, correspondence is straightforward because

nothing moves and capturing visual invariance (to weather,

lighting) amounts to supervised metric learning. In the dy-

namic world, however, change in appearance is confounded

by movement in space. Finding correspondence becomes

more difficult because capturing visual invariance now re-

quires learning to track, but tracking relies on a model of

visual invariance. This paper proposes to learn to do both

simultaneously, in a self-supervised manner.

The key idea is that we can obtain unlimited supervi-

sion for correspondence by tracking backward and then for-

ward (i.e. along a cycle in time) and using the inconsis-

tency between the start and end points as the loss function

(Figure 2). We perform tracking by template-matching in a

learned deep feature space. To minimize the loss – i.e. to

be cycle-consistent – the model must learn a feature repre-

sentation that supports identifying correspondences across

frames. As these features improve, the ability to track im-

proves, inching the model toward cycle-consistency. Learn-

ing to chain correspondences in such a feature space should

thus yield a visual similarity metric tolerant of local trans-

formations in time, which can then be used at test-time as a

stand-alone distance metric for correspondence.

While conceptually simple, implementing objectives

based on cycle-consistency can be challenging. Without

additional constraints, learning can take shortcuts, making

correspondences cycle-consistent but wrong [88]. In our

case, a track that never moves is inherently cycle-consistent.

We avoid this by forcing the tracker to re-localize the

next patch in each successive frame. Furthermore, cycle-

consistency may not be achievable due to sudden changes in

object pose or occlusions; skip-cycles can allow for cycle-

consistency by skipping frames, as in Figure 3 (right). Fi-

nally, correspondence may be poor early in training, and

shorter cycles may ease learning, as in Figure 3 (left). Thus,

we simultaneously learn from many kinds of cycles to in-

duce a natural curriculum and provide better training data.

The proposed formulation can be used with any differ-

entiable tracking operation, providing a general framework

for learning representations for visual correspondence from

raw video. Because the method does not rely on human an-

notation, it can learn from the near infinite video data avail-

able online. We demonstrate the usefulness of the learned

features for tasks at various levels of visual correspondence,

ranging from pose, keypoint, and segmentation propagation

(of objects and parts) to optical flow.

2. Related Work

Temporal Continuity in Visual Learning. Temporal

structure serves as a useful signal for learning because the

visual world is continuous and smoothly-varying. Spatio-

temporal stability is thought to play a crucial role in the

development of invariant representations in biological vi-

sion [83, 36, 77, 78]. For example, Wood [77] showed

that for newborn chicks raised in a visual world that was

not temporally smooth, object recognition abilities were

severely impaired. Computational approaches for unsuper-

vised learning have sought to leverage this continuity, such

as continuous transformation learning [13, 70], “slow” fea-

ture learning [76, 91, 25] and information maximization be-

tween neighbouring patches in time [66]. Our work can be

seen as slow feature learning with fixation, learned end-to-

end without supervision.

Self-supervised Representation Learning from Video.

Learning representations from video using time as super-

vision has been extensively studied, both as future pre-

diction task [15, 60, 44, 42] as well as motion estima-

tion [2, 25, 63, 38, 40]. Our approach is most related to the

methods of Wang et al. [73, 74] and Pathak et al. [47], which

use off-the-shelf tools for tracking and optical flow respec-

tively, to provide supervisory signal for training. However,

representations learned in this way are inherently limited by

the power of these off-the-shelf tools as well as their failure

modes. We address this issue by learning the representation

and the tracker jointly, and find the two learning problems
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Figure 3: Multiple Cycles and Skip Cycles. Cycle-consistency may not be achievable due to sudden changes in object pose or occlusions.

Our solution is to optimize multiple cycles of different lengths simultaneously. This allows learning from shorter cycles when the full cycle

is too difficult (left). This also allows cycles that skip frames, which can deal with momentary occlusions (right).

to be complementary. Our work is also inspired by the inno-

vative approach of Vondrick et al [69] where video coloriza-

tion is used as a pretext self-supervised task for learning to

track. While the idea is very intriguing, in Section 4 we find

that colorization is a weaker source of supervision for cor-

respondence than cycle-consistency, potentially due to the

abundance of constant-color regions in natural scenes.

Tracking. Classic approaches to tracking treat it as a

matching problem, where the goal is to find a given ob-

ject/patch in the next frame (see [11] for overview), and the

key challenge is to track reliably over extended time pe-

riods [57, 79, 1, 27]. Starting with the seminal work of

Ramanan et al. [49], researchers largely turned to “track-

ing as repeated recognition”, where trained object detectors

are applied to each frame independently [3, 28, 80, 71, 19,

35, 65]. Our work harks back to the classic tracking-by-

matching methods in treating it as a correspondence prob-

lem, but uses learning to obtain a robust representation that

is able to model wide range of appearance changes.

Optical Flow. Correspondence at the pixel level – map-

ping where each pixel goes in the next frame – is the

optical flow estimation problem. Since the energy mini-

mization framework of Horn and Schunck [20] and coarse-

to-fine image warping by Lucas and Kanade [41], much

progress has been made in optical flow estimation [46, 6,

61, 10, 22, 50, 62]. However, these methods still struggle

to scale to long-range correspondence in dynamic scenes

with partial observability. These issues have driven re-

searchers to study methods for estimating long-range op-

tical flow [56, 5, 55, 51, 52, 34]. For example, Brox and

Malik [5] introduced a descriptor that matches region hier-

archies and provides dense and subpixel-level estimation of

flow. Our work can be viewed as enabling mid-level optical

flow estimation.

Mid-level Correspondence. Given our focus on finding

correspondence at the patch level, our method is also re-

lated to the classic SIFT Flow [39] algorithm and other

methods for finding mid-level correspondences between re-

gions across different scenes [30, 16, 87]. More recently,

researchers have studied modeling correspondence in deep

feature space [64, 33, 31, 17, 53, 54]. In particular, our work

draws from Rocco et al. [53, 54], who propose a differen-

tiable soft inlier score for evaluating quality of alignment

between spatial features and provides a loss for learning

semantic correspondences. Most of these methods rely on

learning from simulated or large-scale labeled datasets such

as ImageNet, or smaller custom human-annotated data with

narrow scope. We address the challenge of learning repre-

sentations of correspondence without human annotations.

Forward-Backward and Cycle Consistency. Our work

is influenced by the classic idea of forward-backward con-

sistency in tracking [57, 79, 1, 27], which has long been

used as an evaluation metric for tracking [27] as well as a

measure of uncertainty [1]. Recent work on optical flow es-

timation [43, 24, 68, 75, 45] also utilizes forward-backward

consistency as an optimization goal. For example, Meister

et al. [45] combines one-step forward and backward con-

sistency check with pixel reconstruction loss for learning

optical flows. Compared to pixel reconstruction, model-

ing correspondence in feature space allows us to follow and

learn from longer cycles. Forward-backward consistency is

a specific case of cycle-consistency, which has been widely

applied as a learning objective for 3D shape matching [21],

image alignment [87, 89, 88], depth estimation [86, 14, 84],

and image-to-image translation [90, 4]. For example Zhou

et al. [88] used 3D CAD models to render two synthetic

views for pairs of training images and construct a corre-

spondence flow 4-cycle. To the best of our knowledge, our

work is the first to employ cycle-consistency across multi-

ple steps in time.

3. Approach

An overview of the training procedure is presented in

Figure 4a. The goal is to learn a feature space φ by tracking

a patch pt extracted from image It backwards and then for-

wards in time, while minimizing the cycle-consistency loss

lθ (yellow arrow). Learning φ relies on a simple tracking
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Figure 4: Method Overview. (a) During training, the model learns a feature space encoded by φ to perform tracking using tracker T .

By tracking backward and then forward, we can use cycle-consistency to supervise learning of φ. Note that only the initial patch pt is

explicitly encoded by φ; other patch features along the cycle are obtained by localizing image features. (b) We show one step of tracking

back in time from t to t − 1. Given input image features xI
t−1 and query patch features x

p
t , T localizes the patch x

p
t−1

in xI
t−1. This

operation is performed iteratively to track along the cycle in (a).

operation T , which takes as inputs the features of a current

patch and a target image, and returns the image feature re-

gion with maximum similarity. Our implementation of T is

shown in Figure 4b: without information of where the patch

came from, T must match features encoded by φ to localize

the next patch. As shown in Figure 4a, T can be iteratively

applied backwards and then forwards through time to track

along an arbitrarily long cycle. The cycle-consistency loss

lθ is the euclidean distance between the spatial coordinates

of initial patch pt and the patch found at the end of the cycle

in It. In order to minimize lθ, the model must learn a feature

space φ that allows for robustly measuring visual similarity

between patches along the cycle.

Note that T is only used in training and is deliberately

designed to be weak, so as to place the burden of repre-

sentation on φ. At test time, the learned φ is used directly

for computing correspondences. In the following, we first

formalize cycle-consistent tracking loss functions and then

describe our architecture for mid-level correspondence.

3.1. Cycle­Consistency Losses

We describe a formulation of cycle-consistent tracking

and use it to succinctly express loss functions based on tem-

poral cycle-consistency.

3.1.1 Recurrent Tracking Formulation

Consider as inputs a sequence of video frames It−k:t and a

patch pt taken from It. These pixel inputs are mapped to a

feature space by an encoder φ, such that xI
t−k:t = φ(It−k:t)

and x
p
t = φ(pt).

Let T be a differentiable operation xI
s×x

p
t 7→ xp

s , where

s and t represent time steps. The role of T is to localize the

patch features xp
s in image features xI

s that are most similar

to x
p
t . We can apply T iteratively in a forward manner i

times from t− i to t− 1:

T (i)(xI
t−i, x

p) = T (xI
t−1, T (xI

t−2, ...T (xI
t−i, x

p)))

By convention, the tracker T can be applied backwards i

times from time t− 1 to t− i:

T (−i)(xI
t−1, x

p) = T (xI
t−i, T (xI

t−i+1, ...T (xI
t−1, x

p)))

3.1.2 Learning Objectives

The following learning objectives rely on a measure of

agreement lθ(x
p
t , x̂

p
t ) between the initial patch and re-

localized patch (defined in Section 3.2).

Tracking: The cycle-consistent loss Li
long is defined as

Li
long = lθ(x

p
t , T

(i)(xI
t−i+1, T

(−i)(xI
t−1, x

p
t ))).

The tracker attempts to follow features backward and then

forward i steps in time to re-arrive to the initial query, as

depicted in Figure 4a.

Skip Cycle: In addition to cycles through consecutive

frames, we also allow skipping through time. We define the

loss on a two-step skip-cycle as Li
skip:

Li
skip = lθ(x

p
t , T (xI

t , T (xI
t−i, x

p
t ))).

This attempts longer-range matching by skipping to the

frame i steps away.

Feature Similarity: We explicitly require the query

patch x
p
t and localized patch T (xI

t−i, x
p
t ) to be similar in

feature space. This loss amounts to the negative Frobenius

inner product between spatial feature tensors:

Li
sim = −〈xp

t , T (xI
t−i, x

p
t )〉

In principle, this loss can further be formulated as the inlier

loss from [54]. The overall learning objective sums over the

k possible cycles, with weight λ = 0.1:

L =

k∑

i=1

Li
sim + λLi

skip + λLi
long.
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3.2. Architecture for Mid­level Correspondence

The learning objective thus described can be used to train

arbitrary differentiable tracking models. In practice, the ar-

chitecture of the encoder determines the type of correspon-

dence captured by the acquired representation. In this work,

we are interested in a model for mid-level temporal corre-

spondence. Accordingly, we choose the representation to

be a mid-level deep feature map, coarser than pixel space

but with sufficient spatial resolution to support tasks that

require localization. An overview is provided in Figure 4b.

3.2.1 Spatial Feature Encoder φ

We compute spatial features with a ResNet-50 architec-

ture [18] without res5 (the final 3 residual blocks). We re-

duce the spatial stride of res4 for larger spatial outputs. In-

put frames are 240 × 240 pixels, randomly cropped from

video frames re-scaled to have min(H,W ) = 256. The

size of the spatial feature of the frame is thus 30 × 30. Im-

age patches are 80 × 80, randomly cropped from the full

240 × 240 frame, so that the feature is 10 × 10. We per-

form l2 normalization on the channel dimension of spatial

features to facilitate computing cosine similarity.

3.2.2 Differentiable Tracker T

Given the representation from the encoder, we perform

tracking with T . As illustrated in Figure 4b, the differen-

tiable tracker is composed of three main components.

Affinity function f provides a measure of similarity be-

tween coordinates of spatial features xI and xp. We de-

note the affinity function as f(xI , xp) := A, such that

f : Rc×30×30 × R
c×10×10 −→ R

900×100.

A generic choice for computing the affinity is the dot

product between embeddings, referred to in recent litera-

ture as attention [67, 72] and more historically known as

normalized cross-correlation [10, 35]. With spatial grid j in

feature xI as xI(j) and the grid i in xp as xp(i),

A(j, i) =
exp (xI(j)⊺xp(i))∑
j exp (x

I(j)⊺xp(i))
(1)

where the similarity A(j, i) is normalized by the softmax

over the spatial dimension of xI , for each xp(i). Note that

the affinity function is defined for any feature dimension.

Localizer g takes affinity matrix A as input and estimates

localization parameters θ corresponding to the patch in fea-

ture xI which best matches xp. g is composed of two convo-

lutional layers and one linear layer. We restrict g to output

3 parameters for the bilinear sampling grid (i.e. simpler

than [23]), corresponding to 2D translation and rotation:

g(A) := θ, where g : R900×100 −→ R
3. The expressive-

ness of g is intentionally limited so as to place the burden

of representation on the encoder (see Appendix B).

Bilinear Sampler h uses the image feature xI and θ pre-

dicted by g to perform bilinear sampling to produce a new

patch feature h(xI , θ) which is in the same size as xp, such

that h : Rc×30×30 × R
3 −→ R

c×10×10.

3.2.3 End-to-end Joint Training

The composition of encoder φ and T forms a differentiable

patch tracker, allowing for end-to-end training of φ and T :

xI , xp = φ(I), φ(p)

T (xI , xp) = h(xI , g(f(xI , xp)).

Alignment Objective lθ is applied in the cycle-consistent

losses Li
long and Li

skip, measuring the error in alignment

between two patches. We follow the formulation introduced

by [53]. Let M(θxp) correspond to the bilinear sampling

grids used to form a patch feature xp from image feature

xI . Assuming M(θxp) contains n sampling coordinates,

the alignment objective is defined as:

lθ(x
p
∗
, x̂

p
t ) =

1

n

n∑

i=1

||M(θxp
∗

)i −M(θx̂p

t
)i||

2
2

4. Experiments

We report experimental results for a model trained on

the VLOG dataset [12] from scratch; training on other

large video datasets such as Kinetics gives similar results

(see Appendix A.3). The trained representation is evalu-

ated without fine-tuning on several challenging video prop-

agation tasks: DAVIS-2017 [48], JHMDB [26] and Video

Instance-level Parsing (VIP) [85]. Through various experi-

ments, we show that the acquired representation generalizes

to a range of visual correspondence tasks (see Figure 5).

4.1. Common Setup and Baselines

Training. We train the model on the VLOG dataset [12]

without using any annotations or pre-training. The VLOG

dataset contains 114K videos and the total length of the

videos is 344 hours. During training, we set the number of

past frames as k = 4. We train on a 4-GPU machine with a

mini-batch size of 32 clips (8 clips per GPU), for 30 epochs.

The model is optimized with Adam [32] with a learning rate

of 0.0002 and momentum term β1 = 0.5, β2 = 0.999.

Inference. At test time, we use the trained encoder’s

representation to compute dense correspondences for video

propagation. Given initial labels of the first frame, we prop-

agate the labels to the rest of the frames in the video. La-

bels are given by specified targets for the first frame of

each task, with instance segmentation masks for DAVIS-

2017 [48], human pose keypoints JHMDB [26], and both

instance-level and semantic-level masks for VIP [85]. The

labels of each pixel are discretized to C classes. For seg-

mentation masks, C is the number of instance or semantic

labels. For keypoints, C is the number of keypoints. We
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Figure 5: Visualizations of our propagation results. Given the labels as input in the first frame, our feature can propagate them to the rest

of frames, without further fine-tuning. The labels include (a) instance masks in DAVIS-2017 [48], (b) pose keypoints in JHMDB [26], (c)

semantic masks in VIP [85] and even (d) texture map.

include a background class. We propagate the labels in the

feature space. The labels in the first frame are one-hot vec-

tors, while propagated labels are soft distributions.

Propagation by k-NN. Given a frame It and a frame

It−1 with labels, we compute their affinity in feature space:

At−1,t = f(φ(It−1), φ(It)) (Eq. 1). We compute label yi
of pixel i in It as

yi =
∑

j

At−1,t(j, i)yj , (2)

where At−1,t(j, i) is the affinity between pixels i in It and j

in It−1. We propagate from the top-5 pixels with the great-

est affinity At−1,t(j, i) for each pixel i. Labels are propa-

gated from It−1:t−K , as well as I1, and averaged. Finally,

we up-sample the label maps to image size. For segmenta-

tion, we use the argmax of the class distribution of each

pixel. For keypoints, we choose the pixel with the maxi-

mum score for each keypoint type.

Baselines. We compare with the following baselines:

• Identity: Always copy the first frame labels.

• Optical Flow (FlowNet2 [22]): A state-of-the-art

method for predicting optical flow with neural networks

[22]. We adopt the open-source implementation which is

trained with synthetic data in a supervised manner. For a

target frame It, we compute the optical flow from frame

It−1 to It and warp the labels in It−1 to It.

• SIFT Flow [39]: For a target frame It, we compute the

SIFT Flow between It and its previous frames. We prop-

agate the labels in K frames before It and the first frame

via SIFT Flow warping. The propagation results are av-

eraged to compute the labels for It.

• Transitive Invariance [74]: A self-supervised approach

that combines multiple objectives: (i) visual tracking on

raw video [73] and (ii) spatial context reasoning [9]. We

use the open-sourced pre-trained VGG-16 [58] model

and adopt our proposed inference procedure.

• DeepCluster [8]: A self-supervised approach which uses

a K-means objective to iteratively update targets and

learn a mapping from images to targets. It is trained on

the ImageNet dataset without using annotations. We ap-

ply the trained model with VGG-16 and adopt the same

inference procedure as our method.

• Video Colorization [69]: A self-supervised approach for

label propagation. Trained on the Kinetics [29] dataset, it

uses color propagation as self-supervision. The architec-

ture is based on 3D ResNet-18. We report their results.

• ImageNet Pre-training [18]: The conventional setup for

supervised training of ResNet-50 on ImageNet.

• Fully-Supervised Methods: We report fully-supervised

methods for reference, which not only use ImageNet pre-

training but also fine-tuning on the target dataset. Note

that these methods do not always follow the inference

procedure used with method, and labels of the first frame

are not used for JHMDB and VIP at test time.

4.2. Instance Propagation on DAVIS­2017

We apply our model to video object segmentation on the

DAVIS-2017 validation set [48]. Given the initial masks of

the first frame, we propagate the masks to the rest of the

frames. Note that there can be multiple instances in the first

frame. We follow the standard metrics including the region
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model Supervised J (Mean) F (Mean)

Identity 22.1 23.6

Random Weights (ResNet-50) 12.4 12.5

Optical Flow (FlowNet2) [22] 26.7 25.2

SIFT Flow [39] 33.0 35.0

Transitive Inv. [74] 32.0 26.8

DeepCluster [8] 37.5 33.2

Video Colorization [69] 34.6 32.7

Ours (ResNet-18) 40.1 38.3

Ours (ResNet-50) 41.9 39.4

ImageNet (ResNet-50) [18] X 50.3 49.0

Fully Supervised [81, 7] X 55.1 62.1

Table 1: Evaluation on instance mask propagation on DAVIS-

2017 [48]. We follow the standard metric on region similarity J

and contour-based accuracy F .

similarity J (IoU) and the contour-based accuracy F . We

set K = 7, the number of reference frames in the past.

We show comparisons in Table 1. Comparing to the re-

cent Video Colorization approach [69], our method is 7.3%
in J and 6.7% in F . Note that although we are only 4.4%
better than the DeepCluster baseline in J , we are better in

contour accuracy F by 6.2%. Thus, DeepCluster does not

capture dense correspondence on the boundary as well.

For fair comparisons, we also implemented our method

with a ResNet-18 encoder, which has less parameters com-

pared to the VGG-16 in [74, 8] and the 3D convolutional

ResNet-18 in [69]. We observe that results are only around

2% worse than our model with ResNet-50, which is still

better than the baselines.

While the ImageNet pre-trained network performs better

than our method on this task, we argue it is easy for the Ima-

geNet pre-trained network to recognize objects under large

variation as it benefits from curated object-centric annota-

tion. Though our model is only trained on indoor scenes

without labels, it generalizes to outdoor scenes.

Although video segmentation is an important applica-

tion, it does not necessarily show that the representation

captures dense correspondence.

4.3. Pose Keypoint Propagation on JHMDB

To see whether our method is learning more spatially

precise correspondence, we apply our model on the task

of keypoint propagation on the split 1 validation set of JH-

MDB [26]. Given the first frame with 15 labeled human

keypoints, we propagate them through time. We follow the

evaluation of the standard PCK metric [82], which measures

the percentage of keypoints close to the ground truth in dif-

ferent thresholds of distance. We set the number of refer-

ence frames same as experiments in DAVIS-2017.

As shown in Table 2, our method outperforms all self-

supervised baselines by a large margin. We observe

that SIFT Flow actually performs better than other self-

supervised learning methods in PCK@.1. Our method out-

performs SIFT Flow by 8.7% in PCK@.1 and 9.9% in

model Supervised PCK@.1 PCK@.2

Identity 43.1 64.5

Optical Flow (FlowNet2) [22] 45.2 62.9

SIFT Flow [39] 49.0 68.6

Transitive Inv. [74] 43.9 67.0

DeepCluster [8] 43.2 66.9

Video Colorization [69] 45.2 69.6

Ours (ResNet-18) 57.3 78.1

Ours (ResNet-50) 57.7 78.5

ImageNet (ResNet-50) [18] X 58.4 78.4

Fully Supervised [59] X 68.7 92.1

Table 2: Evaluation on pose propagation on JHMDB [26]. We

report the PCK in different thresholds.

PCK@.2. Notably, our approach is only 0.7% worse than

ImageNet pre-trained features in PCK@.1 and performs

better in PCK@.2.

4.4. Semantic and Instance Propagation on VIP

We apply our approach on the Video Instance-level Pars-

ing (VIP) dataset [85], which is densely labeled with seman-

tic masks for different human parts (e.g., hair, right arm, left

arm, coat). It also has instance labels that differentiate hu-

mans. Most interestingly, the duration of a video ranges

from 10 seconds to 120 seconds in the dataset, which is

much longer than aforementioned datasets.

We test our method on the validation set of two tasks

in this dataset: (i) The first task is to propagate the seman-

tic human part labels from the first frame to the rest of the

video, and evaluate with the mean IoU metric; (ii) In the

second task, the labels in the first frame are given with not

only the semantic labels but also the instance identity. Thus,

the model must differentiate the different arms of different

human instances. We use the standard instance-level human

parsing metric [37], mean Average Precision, for overlap

thresholds varying from 0.1 to 0.9. Since part segments are

relatively small (compared to objects in DAVIS-2017), we

increase the input image size to 560×560 for inference, and

use two reference frames, including the first frame.

Semantic Propagation. As shown with the mIoU met-

ric in Table 3, our method again exceeds all self-supervised

baselines by a large margin (a [69] model is currently not

available). ImageNet pre-trained models have the advantage

of semantic annotation and thus do not necessarily have to

perform tracking. As shown in Figure 5(c), our method is

able to handle occlusions and multiple instances.

Part Instance Propagation. This task is more challeng-

ing. We show the results in mean AP r
vol in Table 3. Our

method performs close to the level of ImageNet pre-trained

features. We show different radial thresholds for average

precision (AP r
vol) in Table 4. ImageNet pre-trained features

performs better under smaller thresholds and worse under

larger thresholds, suggesting that it has an advantage in find-

ing coarse correspondence while our method is more capa-

ble of spatial precision.
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model Supervised mIoU AP r
vol

Identity 13.6 4.0

Optical Flow (FlowNet2) [22] 16.1 8.3

SIFT Flow [39] 21.3 10.5

Transitive Inv. [74] 19.4 5.0

DeepCluster [8] 21.8 8.1

Ours (ResNet-50) 28.9 15.6

ImageNet (ResNet-50) [18] X 34.7 16.1

Fully Supervised [85] X 37.9 24.1

Table 3: Evaluation on propagating human part labels in Video

Instance-level Parsing (VIP) dataset [85]. We measure Semantic

Propagation with mIoU and Part Instance Propagation in AP r
vol.

AP r
vol

IoU threshold

model 0.3 0.5 0.7

Ours (ResNet-50) 15.6 23.0 12.7 5.4

ImageNet (ResNet-50) [18] 16.1 24.2 11.9 4.8

Table 4: A more detailed analysis of different thresholds for Part

Instance Propagation on the VIP dataset [85].

4.5. Texture Propagation

The acquired representation allows for propagation of

not only instance and semantic labels, but also textures. We

visualize texture propagation in Figure 5 (d); these videos

are samples from DAVIS-2017 [48]. We “paint” a texture of

6 colored stripes on an the object in the first frame and prop-

agate it to the rest of the frames using our representation.

We observe that the structure of the texture is well preserved

in the following frames, demonstrating that the represen-

tation allows for finding precise correspondence smoothly

though time. See the project page for video examples.

4.6. Video Frame Reconstructions

Though we do not optimize for pixel-level objectives at

training time, we can evaluate how well our method per-

forms on pixel-level reconstruction. Specifically, given two

images Is and It distant in time in a video, we compute

coordinate-wise correspondences under the acquired repre-

sentation and generate a flow field for pixel movement be-

tween Is and It. We then upsample the flow field to the

same size as the image and warp it on Image Is to generate

a new image I ′t (as shown in Figure 6). We compare the

L1 distance between I ′t and It in RGB space and report the

reconstruction errors in Table 5.

For fair comparison, we perform this experiment on the

DAVIS-2017 validation set, which none of the reported

methods have seen. We experiment with two time gaps,

5 and 10 frames. For the smaller gap, FlowNet2 [22] per-

forms reasonably well, whereas reconstruction degrades for

larger gaps. In both cases, our method performs better than

FlowNet2 and the ImageNet pre-trained network. This is

encouraging: our method is not trained with pixel-level

losses, yet out-performs methods trained with pixel-level

tasks and human supervision.

!" !#Flow from !" to !# Warping !" to !#

Figure 6: Given I1, I6 which have 5-frame gap, we compute the

long-range flows between them with our representation. This flow

can be used to warp I1 to generate image similar to I6.

model 5-F 10-F

Identity 82.0 97.7

Optical Flow (FlowNet2) [22] 62.4 90.3

ImageNet (ResNet-50) [18] 64.0 79.2

Ours (ResNet-50) 60.4 76.4

Table 5: We compute the long-range flow on two frames and warp

the first one with the flow. We compare the warped frame with the

second frame in L1 distance. The gaps are 5 or 10 frames.

5. Limitations and Future Work

While in principle our method should keep improving

with more data, in practice, learning seems to plateau after

a moderate amount of training (i.e. 30 epochs). An impor-

tant next step is thus how to better scale to larger, noisier

data. A crucial component is improving robustness to oc-

clusions and partial observability, for instance, by using a

better search strategy for finding cycles at training time. An-

other issue is deciding what to track at training time. Pick-

ing patches at random can result in issues such as station-

ary background patches and tracking ambiguity – e.g. how

should one track a patch containing two objects that even-

tually diverge? Jointly learning what to track may also give

rise to unsupervised object detection. Finally, incorporat-

ing more context for tracking both at training and test time

may be important for learning more expressive models of

spatial-temporal correspondence.

We hope this work is a step toward learning from the

abundance of visual correspondence inherent in raw video

in a scalable and end-to-end manner. While our experiments

show promising results at certain levels of correspondence,

much work remains to cover the full spectrum.
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