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Abstract

Recently, counting the number of people for crowd

scenes is a hot topic because of its widespread applications

(e.g. video surveillance, public security). It is a difficult task

in the wild: changeable environment, large-range number

of people cause the current methods can not work well. In

addition, due to the scarce data, many methods suffer from

over-fitting to a different extent. To remedy the above two

problems, firstly, we develop a data collector and labeler,

which can generate the synthetic crowd scenes and simulta-

neously annotate them without any manpower. Based on it,

we build a large-scale, diverse synthetic dataset. Second-

ly, we propose two schemes that exploit the synthetic data

to boost the performance of crowd counting in the wild: 1)

pretrain a crowd counter on the synthetic data, then finetune

it using the real data, which significantly prompts the mod-

el’s performance on real data; 2) propose a crowd count-

ing method via domain adaptation, which can free humans

from heavy data annotations. Extensive experiments show

that the first method achieves the state-of-the-art perfor-

mance on four real datasets, and the second outperforms

our baselines. The dataset and source code are available at

https://gjy3035.github.io/GCC-CL/.

1. Introduction

Crowd counting is a branch of crowd analysis [17, 29,

18, 37], which is essential to video surveillance, public

areas planning, traffic flow monitoring and so on. This

task aims to predict density maps and estimate the num-

ber of people for crowd scenes. At present, many CNN-

and GAN-based methods [43, 31, 32, 33, 7] attain a phe-

nomenal performance on the existing datasets. The above

methods focus on how to learn effective and discriminative

features (such as local patterns, global contexts, multi-scale

features and so on) to improve models’ performance.

At the same time, The aforementioned mainstream deep

learning methods need a large amount of accurately la-

beled and diversified data. Unfortunately, current datasets
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Figure 1. Two ways of using the proposed GCC dataset: super-

vised learning and domain adaptation.

[8, 9, 41, 43, 38, 14, 15] can not perfectly satisfy the need-

s, which also results in two intractable problems for crowd

counting in the wild. Firstly, it causes that the existing meth-

ods cannot be performed to tackle some unseen extreme

cases in the wild (such as changeable weather, variant il-

lumination and a large-range number of people). Second-

ly, due to rare labeled data, many algorithms suffer from

overfitting, which leads to a large performance degradation

during transferring them to the wild or other scenes. In ad-

dition, there is an inherent problem in the congested crowd

datasets: the labels are not very accurate, such as some sam-

ples in UCF CC 50 [14] and Shanghai Tech A [43] (“SHT

A” for short).

In order to remedy the aforementioned problems, we s-

tart from two aspects, namely data and methodology. From

the data perspective, we develop a data collector and labeler,

which can generate synthetic crowd scenes and automatical-

ly annotate them. By the collector and labeler, we construct

a large-scale and diverse synthetic crowd counting dataset.

The data is collected from an electronic game Grand Theft

Auto V (GTA5), thus it is named as “GTA5 Crowd Count-

ing” (“GCC” for short) dataset. Compared with the existing

real datasets, there are four advantages: 1) free collection

and annotation; 2) larger data volume and higher resolution;

3) more diversified scenes and 4) more accurate annotation-

s. The detailed statistics are reported in Table 1.

From the methodological perspective, we propose two
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ways to exploit synthetic data to improve the performance

in the wild. Firstly, we propose a supervised strategy to

reduce the overfitting phenomenon. To be specific, we first-

ly exploit the large-scale synthetic data to pretrain a crowd

counter, which is our designed Spatial Fully Convolution-

al Network (SFCN). Then we finetune the obtained counter

using the real data. This strategy can effectively promp-

t the performance on real data. Traditional models (train-

ing from scratch [43, 26, 7] or image classification model

[5, 33, 15]) have some layers with random initialization or

a regular distribution, which is not a good scheme. Com-

pared with them, our strategy can provide more complete

and better initialization parameters.

Secondly, we propose a domain adaptation crowd count-

ing method, which can improve the cross-domain transfer a-

bility. To be specific, we present an SSIM Embedding (SE)

Cycle GAN, which can effectively translate the synthetic

crowd scenes to real scenes. During the training process,

we introduce the Structural Similarity Index (SSIM) loss.

It is a penalty between the original image and reconstruct-

ed image through the two generators. Compared with the

original Cycle GAN, the proposed SE effectively maintain-

s local patterns and texture information, especially in the

extremely congested crowd region and some backgrounds.

Finally, we translate the synthetic data to photo-realistic im-

ages. Based on these data, we train a crowd counter without

the labels of real data, which can work well in the wild. Fig.

1 demonstrates two flowcharts of the proposed methods.

In summary, this paper’s contributions are three-fold:

1) We are the first to develop a data collector and label-

er for crowd counting, which can automatically collect

and annotate images without any labor costs. By us-

ing them, we create the first large-scale, synthetic and

diverse crowd counting dataset.

2) We present a pretrained scheme to facilitate the o-

riginal method’s performance on the real data, which

can more effectively reduce the estimation errors com-

pared with random initialization and ImageNet mod-

el. Further, through the strategy, our proposed SFCN

achieves the state-of-the-art results.

3) We are the first to propose a crowd counting method

via domain adaptation, which does not use any label

of the real data. By our designed SE Cycle GAN, the

domain gap between the synthetic and real data can

be significantly reduced. Finally, the proposed method

outperforms the two baselines.

2. Related Works

Crowd Counting Methods. Mainstream CNN-based

crowd counting methods [42, 43, 35, 36, 19, 22, 15, 7, 33,

26] yield the new record by designing the effective network

architectures. [42, 35] exploit multi-task learning to explore

Table 1. Statistics of the seven real-world datasets and the synthet-

ic GCC dataset.

Dataset
Number Average Count Statistics

of Images Resolution Total Min Ave Max

UCSD [8] 2,000 158 × 238 49,885 11 25 46

Mall [9] 2,000 480 × 640 62,325 13 31 53

UCF CC 50 [14] 50 2101 × 2888 63,974 94 1,279 4,543

WorldExpo’10[41] 3,980 576 × 720 199,923 1 50 253

SHT A [43] 482 589 × 868 241,677 33 501 3,139

SHT B [43] 716 768 × 1024 88,488 9 123 578

UCF-QNRF [15] 1,525 2013 × 2902 1,251,642 49 815 12,865

GCC 15,212 1080 × 1920 7,625,843 0 501 3,995

the relation of different tasks to improve the counting per-

formance. [43, 15, 7, 26] integrate the features of multi-

stream, multi-scale or multi-stage networks to improve the

quality of density maps. [36, 19] attempt to encode the

large-range contextual information for crowd scenes. In or-

der to tackle scarce data, [22] proposes a self-supervised

learning to exploit unlabeled web data, and [33] presents a

deep negative correlation learning to reduce the over-fitting.

Crowd Counting Datasets. In addition to the algo-

rithms, the datasets potentially promote the development

of crowd counting. UCSD [8] is the first crowd counting

dataset released by Chan et al. from University of Califor-

nia San Diego. It records the crowd in a pedestrian walk-

way, which is a sparse crowd scene. Chen et al. [9] pro-

pose a public Mall dataset which records a shopping mall

scene. Idrees et al. [14] release the UCF CC 50 dataset for

highly congested crowd scenes. WorldExpo’10 dataset is

proposed by Zhang et al. in [41], which is captured from

surveillance cameras in Shanghai 2010 WorldExpo. Zhang

et al. [43] present ShanghaiTech Dataset, including the

high-quality real-world images. Idrees et al. [15] propose

a large-scale extremely congested dataset. More detailed

information about them is listed in Table 1.

Synthetic Dataset. Annotating the groundtruth is a

time-consuming and labor-intensive work, especially for

pixel-wise tasks (such as semantic segmentation, density

map estimation). To remedy this problem, some synthetic

datasets [28, 16, 27, 30, 6] are released to save the man-

power. [28, 16, 27] collect synthetic scenes based on G-

TA5. To be specific, [28] develops a fast annotation method

based on the rendering pipeline. Johnson-Roberson et al.

[16] present a method to analyze the internal engine buffers

according the depth information, which can produce the ac-

curate object masks. [27] proposes an approach to extract

data without modifying the source code and content from G-

TA5, which can provide six types groundtruth. [30, 6] build

synthetic models based on some open-source game engine.

[30] exploits Unity Engine [3] to construct the synthetic

street scenes data for autonomous driving, which generates

the pixel-wise segmentation labels and depth maps. [6] de-

velops a synthetic person re-identification dataset based on

Unreal Engine 4 [4].
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Figure 2. The display of the proposed GCC dataset from three views: scene capacity, timestamp and weather conditions.
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Figure 3. The demonstration of image combination for congested

crowd scenes.

3. GTA5 Crowd Counting (GCC) Dataset

Grand Theft Auto V (GTA5) is a computer game pub-

lished by Rockstar Games [1] in 2013. In GTA5, the play-

ers can immerse themselves into the game in a virtual world,

the fictional city of Los Santos, based on Los Angeles. G-

TA5 adopts the proprietary Rockstar Advanced Game En-

gine (RAGE) to improve its draw distance rendering ca-

pabilities. Benefiting from the excellent game engine, it-

s scene rendering, texture details, weather effects and so

on are very close to the real-world conditions. In addition,

Rockstar Games allows the players to develop the mod for

noncommercial or personal use.

Considering the aforementioned advantages, we develop

a data collector and labeler for crowd counting in GTA5,

which is based on Script Hook V [2]. Script Hook V is a

C++ library for developing game plugins. Our data collec-

tor constructs the complex and congested crowd scenes via

exploiting the objects of virtual world. Then, the collec-

tor captures the stable images from the constructed scenes.

Finally, by analyzing the data from rendering stencil, the la-

beler automatically annotates the accurate head locations of

persons.

Previous synthetic GTA5 datasets [28, 16, 27] capture

normal scenes directed by the game programming. Unfor-

tunately, there is no congested scene in GTA5. Thus, we

need to design a strategy to construct crowd scenes, which

is the most obvious difference with them.

3.1. Data Collection

This section describes the pipeline of data collection,

which consists of three modules as follows.

Scene Selection. The virtual world in GTA5 is built on

a fictional city, which covers an area of 252 square kilome-

ters. In the city, we selected 100 typical locations, such as

beach, stadium, mall, store and so on. For each location,

the four surveillance cameras are equipped with different

parameters (location, height, rotation/pitch angle). Finally,

the 400 diverse scenes are built. In these scenes, we elab-

orately define the Region of Interest (ROI) for placing the

persons and exclude some invalid regions according to com-

mon sense.

Person Model. Persons are the core of crowd scenes.

Thus, it is necessary that we describe the person model in

our proposed dataset. In GCC dataset, we adopt the 265

person models in GTA5: different person model has differ-

ent skin color, gender, shape and so on. Besides, for each

person model, it has six variations on external appearance,

such as clothing, haircut, etc. In order to improve the diver-

sity of person models, each model is ordered to do a random

action in the sparse crowd scenes.

Scenes Synthesis for Congested Crowd. Due to the

limitation of GTA5, the number of people must be less than

256. Considering this, for the congested crowd scenes, we

adopt a step-by-step method to generate scenes. To be spe-

cific, we segment several non-overlapping regions and then

place persons in each region. Next, we integrate multiple

scenes into one scene. Fig. 3 describes the main integration

process: the persons are placed in the red and green regions

in turn. Finally, the two images are combined in the one.

Summary. The flowchart of generation is described as

follows. Construct scenes: a) select a location and set-

up the cameras, b) segment Region of interest (ROI) for

crowd, c) set weather and time. Place persons: a) cre-

ate persons in the ROI and get the head positions, b) ob-

tain the person mask from stencil, c) integrate multiple im-

ages into one image, d) remove the positions of occluded

heads. The demonstration video is available at: https:

//www.youtube.com/watch?v=Hvl7xWkIueo.

3.2. Properties of GCC

GCC dataset consists of 15,212 images, with resolu-

tion of 1080 × 1920, containing 7,625,843 persons. Com-

pared with the existing datasets, GCC is a more large-scale

crowd counting dataset in both the number of images and

the number of persons. Table 1 compares the basic infor-

mation of GCC and the existing datasets. In addition to

the above advantages, GCC is more diverse than other real-

8200



Figure 4. The statistical histogram of crowd counts on the pro-

posed GCC dataset.

(a) Time stamp distribution. (b) Weather condition distribution.

Figure 5. The pie charts of time stamp and weather condition dis-

tribution on GCC dataset. In the left pie chart, the label “0 ∼ 3”

denotes the time period during [0 : 00, 3 : 00) in 24 hours a day.

world datasets.

Diverse Scenes. GCC dataset consists of 400 different

scenes, which includes multiple types of locations. For ex-

ample, indoor scenes: convenience store, pub, etc. outdoor

scenes: mall, street, plaza, stadium and so on. Further, al-

l scenes are assigned with a level label according to their

space capacity. The first row in Fig. 2 shows the typical

scenes with different levels. In general, for covering the

range of people, the larger scene has more images. Thus,

the setting is conducted as follows: the scenes with the

first/second/last three levels contain 30/40/50 images. Be-

sides, the images that contain some improper events should

be deleted. Finally, the number of images in some scenes

may be less than their expected value. Fig. 4 demonstrates

the population distribution histogram of our GCC dataset.

Existing datasets only focus on one of sparse or congest-

ed crowd. However, a large scene may also contain very

few people in the wild. Considering that, during the gen-

eration process of an image, the number of people is set as

random value in the range of its level. Therefore, GCC has

more large-range than other real datasets.

Diverse Environments. In order to construct the data

that are close to the wild, the images are captured at a ran-

dom time in a day and under a random weather conditions.

In GTA5, we select seven types of weathers: clear, clouds,

rain, foggy, thunder, overcast and extra sunny. The last t-

wo rows of Fig. 2 illustrate the exemplars at different times

and under various weathers. In the process of generation,

we tend to produce more images under common conditions.

The two sector charts in Fig. 5 respectively show the pro-

Spatial

Input Image Density Map

Dilation 

Figure 6. The architecture of spatial FCN (SFCN).

portional distribution on the time stamp and weather condi-

tions of GCC dataset.

4. Supervised Crowd Counting

FCN-based methods [43, 24, 40, 19] attain good perfor-

mances for crowd counting. In this section, we design an

effective spatial Fully Convolutional Network (SFCN) to

directly regress the density map, which is able to encode

the global context information.

4.1. Network Architecture

Fully convolutional network (FCN) is proposed by Long

et al. [23] in 2016, which focuses on pixel-wise task (such

as semantic segmentation, saliency detection). FCN uses

the convolutional layer to replace the fully connected layer

in traditional CNN, which guarantees that the network can

receive the image with an arbitrary size and produce the

output of the corresponding size. For encoding the context

information, Pan et al. [25] present a spatial encoder via a

sequence of convolution on the four directions (down, up,

left-to-right and right-to-left).

In this paper, we design a spatial FCN (SFCN) to

produce the density map, which adopt VGG-16 [34] or

ResnNet-101 [12] as the backbone. To be specific, the spa-

tial encoder is added to the top of the backbone. The feature

map flow is illustrated as in Fig. 6. After the spatial encoder,

a regression layer is added, which directly outputs the den-

sity map with input’s 1/8 size. Here, we do not review the

spatial encoder because of the limited space. During the

training phase, the objective is minimizing standard Mean

Squared Error at the pixel-wise level; the learning rate is set

as 10−5; and Adam algorithm is used to optimize SFCN.

4.2. Experiments

In this section, the two types of experiments are con-

ducted: 1) training and testing within GCC dataset; 2) pre-

training on GCC and fine-tuning on the real datasets.

4.2.1 Experiments on GCC Dataset

We report the results of the extensive experiments with-

in GCC dataset, which verifies SFCN from three differ-

ent training strategies: random, cross-camera and cross-

location splitting. To be specific, the three strategies are ex-

plained as follows. 1) Random splitting: the entire dataset
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Table 2. The results of our proposed SFCN and the three classic methods on GCC dataset.

Method
Random splitting Cross-camera splitting Cross-location splitting

MAE MSE PSNR SSIM MAE MSE PSNR SSIM MAE MSE PSNR SSIM

MCNN [43] 100.9 217.6 24.00 0.838 110.0 221.5 23.81 0.842 154.8 340.7 24.05 0.857

CSR [19] 38.2 87.6 29.52 0.829 61.1 134.9 29.03 0.826 92.2 220.1 28.75 0.842

FCN 42.3 98.7 30.10 0.889 61.5 156.6 28.92 0.874 97.5 226.8 29.33 0.866

SFCN 36.2 81.1 30.21 0.904 56.0 129.7 29.17 0.889 89.3 216.8 29.50 0.906

is randomly divided into two groups as the training set

(75%) and testing set (25%), respectively. 2) Cross-camera

splitting: as for a specific location, one surveillance camera

is randomly selected for testing and the others for training.

3) Cross-location splitting: we randomly choose 75/25 lo-

cations for training/testing. These scheme can effectively

evaluated the algorithm on GCC. Table 2 reports the perfor-

mance of our SFCN and two popular methods (MCNN [43]

and CSRNet[19]) on the proposed GCC dataset.

4.2.2 Experiments of Pretraining & Finetuning

Many current methods suffer from the over-fitting because

of scarce real labeled data. Some methods ([5, 33, 15])

exploit the pre-trained model based on ImageNet Database

[10]. However, the trained classification models (VGG [34],

ResNet [12] and DenseNet [13]) are not a best initialization

for the regression problem: the regression layers and the

specific modules are still initialized at the random or regu-

lar distributions.

In this paper, we propose a new scheme to remedy the

above problems: firstly, the designed model is pretrained

on the large-scale GCC Dataset; then the model pre-trained

on GCC is finetuned using the real dataset. In the last step,

the overall parameters are trained, which is better than tra-

ditional methods. To verify our strategy, we conduct the

MCNN, CSR and SFCN on the two datasets (UCF-QNRF

and SHT B). Note that SFCN adopts VGG-16 as backbone,

and SFCN† uses the ResNet101 backbone. Table 3 shows

the results of the comparison experiments. From it, we find

that using the pretrained GCC models is better than not us-

ing or using ImageNet classification models. To be specific,

for MCNN from scratch, our strategy can reduce by around

30% estimation errors. For the SFCN using pretrained Ima-

geNet classification model, our scheme also decrease by an

average 12% errors in four groups of experiments.

We also present the final results of our SFCN† on five

real datasets, which is fintuned on the pretrained SFCN† us-

ing GCC. Compared with the state-of-the-art performance,

SFCN† refreshes the records on the four datasets. The de-

tailed results comparison is listed in the Table 4.

5. Crowd Counting via Domain Adaptation

The last section proposes the supervised learning on syn-

thetic or real datasets, which adopts the labels of real data.

Table 3. The effect of pretrained GCC model on finetuning real

dataset (MAE/MSE). “*” denotes other researchers’ results.

Method PreTr UCF-QNRF SHHT B

MCNN* None 277/426 [15] 26.4/41.3 [43]

MCNN None 281.2/445.0 26.3/39.5

MCNN GCC 199.8/311.2(↓ 29/30%) 18.8/28.2(↓ 29/29%)

CSR* ImgNt - 10.6/16.0 [19]

CSR ImgNt 120.3/208.5 10.6/16.6

CSR GCC 112.4/185.6(↓ 7/11%) 10.1/15.7(↓ 5/5%)

SFCN ImgNt 134.3/240.3 11.0/17.1

SFCN GCC 124.7/203.5(↓ 7/15%) 9.4/14.4(↓ 15/16%)

SFCN† ImgNt 114.8/192.0 8.9/14.3

SFCN† GCC 102.0/171.4(↓ 11/11%) 7.6/13.0(↓ 15/9%)

Table 4. The comparison with the state-of-the-art performance on

real datasets.

Dataset
Results (MAE/MSE)

SOTA SFCN†

UCF-QNRF [15] CL[15]: 132/191 102.0/171.4

SHT A [43] SA[7]: 67.0/104.5 64.8/107.5

SHT B [43] SA[7]: 8.4/13.6 7.6/13.0

UCF CC 50 [14] SAN[21]:219.2/250.2 214.2/318.2

WorldExpo’10[41] ACSCP[32]:7.5(MAE) 9.4(MAE)

For extremely congested scenes, manually annotating them

is a tedious work. Not only that, there are label errors in

man-made annotations. Therefore, we attempt to propose a

crowd counting method via domain adaptation to save man-

power, which learns specific patterns or features from the

synthetic data and transfers them to the real world. Through

this thought, we do not need any manual labels of real data.

Unfortunately, the generated synthetic data are very differ-

ent from real-world data (such as in color style, texture and

so on), which is treated as “domain gap”. Even in real life,

the domain gap is also very common. For example, Shang-

hai Tech Part B and WorldExpo’10 are captured in different

locations from different cameras, which causes that the data

of them are quite different. Thus, it is an important task that

how to transfer effective features between different domain-

s, which is named as a “Domain Adaptation” (DA) problem.

In this work, we propose a crowd counting method vi-

a domain adaptation, which can effectively learn domain-

invariant feature between synthetic and real data. To be

specific, we present a SSIM Embedding (SE) Cycle GAN

to transform the synthetic image to the photo-realistic im-

age. Then we will train a SFCN on the translated data. Fi-

nally, we directly test the model on the real data. The entire

process does not need any manually labeled data. Fig. 7
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Figure 7. The flowchart of the proposed crowd counting via domain adaptation. The light green region is SSIM Embedding (SE) Cycle

GAN, and light orange region represents Spatial FCN (FCN). Limited by paper length, we do not show the adaptation flowchart of real

images to synthetic images (R→S), which is similar to S→R.

demonstrates the flowchart of the proposed method.

5.1. SSIM Embedding Cycle GAN

Here, we recall the crowd counting via domain adap-

tation by mathematical notations. The purpose of DA is

to learn translation mapping between the synthetic domain

S and the real-world domain R. The synthetic domain S
provides images IS and count labels LS . And the real-

world domain R only provides images IR. In a word, given

iS ∈ IS , lS ∈ LS and iR ∈ IR (the lowercase letters repre-

sent the samples in the corresponding sets), we want to train

a crowd counter to predict density maps of R.

Cycle GAN. The original Cycle GAN [44] is proposed

by Zhu et al., which focuses on unpaired image-to-image

translation. For different two domains, we can exploit Cycle

GAN to handle DA problem, which can translate the syn-

thetic images to photo-realistic images. As for the domain

S and R, we define two generator GS→R and GR→S . The

former one attempts to learn a mapping function from do-

main S to R, and vice versa, the latter one’s goal is to learn

the mapping from domain R to S . Following [44], we intro-

duce the cycle-consistent loss to regularize the training pro-

cess. To be specific, for the sample iS and iR, one of our ob-

jective is iS → GS→R(iS) → GR→S(GS→R(iS)) ≈ iS .

Another objective is inverse process for iR. The cycle-

consistent loss is an L1 penalty in the cycle architecture,

which is defined as follows:

Lcycle(GS→R, GR→S ,S,R)

= EiS∼IS [‖GR→S(GS→R(iS))− iS‖1]

+ EiR∼IR [‖GS→R(GR→S(iR))− iR‖
1
].

(1)

Additionally, two discriminators DR and DS are mod-

eled corresponding to the GS→R and GR→S . Specifically,

DR attempts to discriminate that where the images are from

( IR or GS→R(IS)), and DS tries to discriminate the im-

ages from IS or GR→S(IR). Take DR for example, and

the training objective is adversarial loss [11], which is for-

mulated as:

LGAN (GS→R, DR,S,R)

= EiR∼IR [log(DR(iR)]

+ EiS∼IS [log(1−DR(GS→R(iS))].

(2)

The final loss function is defined as:

LCycleGAN (GS→R, GR→S , DR, DS ,S,R)

= LGAN (GS→R, DR,S,R)

+ LGAN (GR→S , DS ,S,R)

+ λLcycle(GS→R, GR→S ,S,R),

(3)

where λ is the weight of cycle-consistent loss.

SSIM Embedding Cycle-consistent loss. In the crowd

scenes, the biggest differences between high-density re-

gions and other regions (low-density regions or back-

ground) is the local patterns and texture features. Unfortu-

nately, in the translation from synthetic to real images, the

original cycle consistency is prone to losing them, which

causes that the translated images lose the detailed informa-

tion and are easily distorted.

To remedy the aforementioned problem, we introduce

Structural Similarity Index (SSIM) [39] into the tradition-

al CycleGAN, which is named as “SE Cycle GAN”. SSIM

is an indicator widely used in the field of image quality as-

sessment, which computes the similarity between two im-

ages in terms of local patterns (mean, variance and covari-

ance). About the SSIM in crowd counting, CP-CNN [36] is

the first to evaluate the density map using SSIM, and SANet

[7] adopt SSIM loss to generate high-quality density maps.

Similar to the traditional cycle consistency, our goal is:

GR→S(GS→R(iS)) ≈ iS . To be specific, in addition to L1

penalty, the SSIM penalty is added to the training process.

The range of SSIM value is in [−1, 1], and larger SSIM

means that the image has more higher quality. In particu-

lar, when the two images are identical, the SSIM value is
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Table 5. The performance of no adaptation (No Adpt), Cycle GAN and SE Cycle GAN (ours) on the five real-world datasets.

Method DA
SHT A SHT B UCF CC 50

MAE MSE PSNR SSIM MAE MSE PSNR SSIM MAE MSE PSNR SSIM

NoAdpt ✗ 160.0 216.5 19.01 0.359 22.8 30.6 24.66 0.715 487.2 689.0 17.27 0.386

Cycle GAN[44] ✔ 143.3 204.3 19.27 0.379 25.4 39.7 24.60 0.763 404.6 548.2 17.34 0.468

SE Cycle GAN (ours) ✔ 123.4 193.4 18.61 0.407 19.9 28.3 24.78 0.765 373.4 528.8 17.01 0.743

Method DA
UCF-QNRF WorldExpo’10 (MAE)

MAE MSE PSNR SSIM S1 S2 S3 S4 S5 Avg.

NoAdpt ✗ 275.5 458.5 20.12 0.554 4.4 87.2 59.1 51.8 11.7 42.8

Cycle GAN[44] ✔ 257.3 400.6 20.80 0.480 4.4 69.6 49.9 29.2 9.0 32.4

SE Cycle GAN (ours) ✔ 230.4 384.5 21.03 0.660 4.3 59.1 43.7 17.0 7.6 26.3

equal to 1. In the practice, we convert the SSIM value into

the trainable form, which is defined as:

LSEcycle(GS→R, GR→S ,S,R)

= EiS∼IS [1− SSIM(iS , GR→S(GS→R(iS)))]

+ EiR∼IR [1− SSIM(iR, GS→R(GR→S(iR)))],

(4)

where SSIM(·, ·) is standard computation: the parameter

settings are directly followed by [39]. The first input is the

original image from domain S or R, and the second input

is the reconstructed image produced by the two generators

in turns. Finally, the final objective of SE Cycle GAN is

defined as:

Lours(GS→R, GR→S , DR, DS ,S,R)

= LGAN (GS→R, DR,S,R)

+ LGAN (GR→S , DS ,S,R)

+ λLcycle(GS→R, GR→S ,S,R)

+ µLSEcycle(GS→R, GR→S ,S,R),

(5)

where λ and µ are the weights of cycle-consistent and S-

SIM Embedding cycle-consistent loss, respectively. During

the training phase, the µ is set as 1, other parameters and

settings are the same as Cycle GAN [44].

Density/Scene Regularization. For a better domain

adaptation from synthetic to real world, we design two

strategies to facilitate the DA model to learn domain-

invariant feature and produce the valid density map.

Although we translate synthetic images to photo-realistic

images, some objects and data distributions in the real world

are unseen during training the translated images. As a pixel-

wise regression problem, the density may be an arbitrary

value in theory. In fact, in some preliminary experiments,

we find some backgrounds in real data are estimated as

some exceptionally large values. To handle this problem,

we set a upper bound MAXS , which is defined as the max

density in the synthetic data. If the output value of a pixel

is more than MAXS , the output will be set as 0. Note that

the network’s last layer is ReLU, so the output of each pixel

must be greater than or equal to 0.

Since GCC is large-counter-range and diverse dataset,

using all images may cause the side effect in domain adapta-

tion. For example, ShanghaiTech does not contain the thun-

der/rain scenes, and WorldExpo’10 does not have the scene

that can accommodate more than 500 people. Training all

translated synthetic images can decrease the adaptation per-

formance on the specific dataset. Thus, we manually select

some specific scenes for different datasets. The concrete s-

trategies are described in the supplementary. In general, it

is a coarse data filter not an elaborate selection.

5.2. Experiments

5.2.1 Performance on Real-world Datasets

In this section, we conduct the adaptation experiments from

GCC dataset to five mainstream real-world datasets: Shang-

haiTech A/B [43], UCF CC 50 [14], UCF-QNRF [15] and

WorldExpo’10[41]. For the best performance, all models

adopt the Scene/Density Regularization mentioned in Sec-

tion 5.1.

Table 5 shows the results of the No Adaptation (No Adp-

t), Cycle GAN and the proposed SSIM Embedding (SE)

Cycle GAN. From it, we find the results after adaptation

are far better than that of no adaptation, which indicates the

adaptation can effectively reduce the domain gaps between

synthetic and real-world data. After embedding SSIM loss

in cycle GAN, almost all performances are improved on five

datasets. There are only two reductions of PSNR on Shang-

hai Tech A and UCF CC 50. In general, the proposed SE

Cycle GAN outperforms the original Cycle GAN. In ad-

dition, we find the results on Shanghai Tech B achieve a

good level, even outperforms some early supervised meth-

ods [43, 35, 31, 36, 20]. The main reasons are: 1) the real

data is strongly consistent, which is captured by the same

sensors; 2) the data has high image clarity. The two char-

acteristics guarantee that the SE CycleGAN’s adaptation on

Shanghai Tech B is more effective than others.

Fig. 8 demonstrates three groups of visualized results on

Shanghai Tech dataset. Compared with no adaptation, the

map quality via Cycle GAN has a significant improvemen-

t. From Row 1, we find the predicted maps are very close

to the groundtruth. However, for the extremely congested

scenes (in Row 2 and 3), the results are far from the ground

truth. We think the main reason is that the translated im-

ages lose the details (such as texture, sharpness and edge)
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GT: 49 Pred: 75.27Pred: 70.59 Pred: 47.35

GT: 565 Pred: 257.2 Pred: 640.4 Pred: 603.5

GT: 1154 Pred: 779.2 Pred: 1351.6 Pred: 1217.4

Input Image Ground Truth NoAdpt CycleGAN Adpt SE CycleGAN Adpt (Ours)

Figure 8. The demonstration of different methods on SHT dataset. “GT” and “Pred” represent the labeled and predicted count, respectively.

Figure 9. The comparison of Cycle GAN and SE Cycle GAN.

in high-density regions.

5.2.2 Analysis of SE & DSR

SSIM Embedding. SSIM Embedding can guarantee the

original synthetic and reconstructed images have high struc-

tural similarity(SS), which prompts two generators’ transla-

tion for images maintain a certain degree of SS during the

training process. Fig. 9 illustrates the visualizations of two

adaptations, where the first row is original images, the sec-

ond and third row are translated images of Cycle GAN and

SE Cycle GAN. Through comparison, the latter is able to

retain local texture and structural similarity.

Density/Scene Regularization. Here, we compare the

performance of three model (No Adpt, Cycle GAN and SE

Cycle GAN) without Density/Scene Regularization (DSR)

and with DSR. Table 6 reports the performance of with or

without DSR on SHT A dataset. From the results in first

column, we find these two adaptation methods cause some

side effects. In fact, they do not produce the ideal translated

images. When introducing DSR, the nonexistent synthetic

scenes in the real datasets are filtered out, which improves

the domain adaptation performance.

Table 6. The results under different configurations on SHT A.

Method w/o DSR with DSR

NoAdpt 163.6/244.5 160.0/216.5

Cycle GAN [44] 180.1/290.3 143.3/204.3

SE Cycle GAN 169.8/230.2 123.4/193.4

6. Conclusion

In this paper, we are committed to improving the per-

formance of crowd counting in the wild. To this end, we

firstly develop an automatic data collector/labeler and con-

struct a large-scale synthetic crowd counting dataset. Ex-

ploiting the generated data, we then propose two effective

ways (supervised learning and domain adaptation) to sig-

nificantly improve the counting performance in the wild.

The experiments demonstrate that the supervised method

achieves the state-of-the-art performance and the domain

adaptation method obtains acceptable results. In the fu-

ture work, we will focus on the crowd counting via domain

adaptation, and further explore that how to extract more

effective domain-invariant features between synthetic and

real-world data.
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