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Abstract

This paper conducts a systematic study on the role of

visual attention in the Unsupervised Video Object Segmen-

tation (UVOS) task. By elaborately annotating three popu-

lar video segmentation datasets (DAVIS16, Youtube-Objects

and SegTrackV 2) with dynamic eye-tracking data in the

UVOS setting, for the first time, we quantitatively verified

the high consistency of visual attention behavior among hu-

man observers, and found strong correlation between hu-

man attention and explicit primary object judgements dur-

ing dynamic, task-driven viewing. Such novel observa-

tions provide an in-depth insight into the underlying ra-

tionale behind UVOS. Inspired by these findings, we de-

couple UVOS into two sub-tasks: UVOS-driven Dynamic

Visual Attention Prediction (DVAP) in spatiotemporal do-

main, and Attention-Guided Object Segmentation (AGOS)

in spatial domain. Our UVOS solution enjoys three ma-

jor merits: 1) modular training without using expensive

video segmentation annotations, instead, using more afford-

able dynamic fixation data to train the initial video atten-

tion module and using existing fixation-segmentation paired

static/image data to train the subsequent segmentation mod-

ule; 2) comprehensive foreground understanding through

multi-source learning; and 3) additional interpretability

from the biologically-inspired and assessable attention. Ex-

periments on popular benchmarks show that, even without

using expensive video object mask annotations, our model

achieves compelling performance in comparison with state-

of-the-arts.
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†Corresponding author: Jianbing Shen. This work was supported in

part by the Beijing Natural Science Foundation under Grant 4182056, the

Fok Ying Tung Education Foundation under Grant 141067, and the Spe-

cialized Fund for Joint Building Program of Beijing Municipal Education

Commission.

Figure 1. Our UVOS solution has two key steps: Dynamic Visual

Attention Prediction (DVAP, §5.2) cascaded by Attention-Guided

Object Segmentation (AGOS, §5.3). The UVOS-aware attention

from DVAP acts as an intermediate video object representation,

freeing our method from the dependency of expensive video object

annotations and bringing better interpretability.

1. Introduction

Unsupervised Video Object Segmentation (UVOS), i.e.,

automatically segmenting primary object regions from the

background in videos, has been a long standing research

challenge in computer vision [29, 30, 12, 23], and has

shown potential benefits for numerous applications, e.g., ac-

tion recognition [62] and object tracking [50]. Due to the

lack of user interactions in UVOS, it is very challenging

to automatically determine the primary foreground objects

from the complex background in real-world scenarios.

Deep learning has been actively explored for solving

UVOS recently. Despite having achieved promising results,

current deep learning based UVOS models [64, 45, 33, 67]

often rely on expensive pixel-wise video segmentation an-

notation data [86] to directly map input video frames into

corresponding segmentation masks, which are restricted

and generally lack of an explicit interpretation about the ra-
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tionale behind their choice of the foreground object(s). Sim-

ilar problems also has been experienced in a closely related

research area, video salient object detection (VSOD) [79],

which aims to extract a continuous saliency map for each

frame that highlights the most visually important area. An

biological interpretation for the choice of the salient object

regions is essential. The results from video salient object

detection are used as a vital cue or pre-processing step for

UVOS [64, 77].

In this paper, we emphasize the value of human visual

attention in UVOS (and its related task, video salient ob-

ject detection). According to studies in cognitive psychol-

ogy [39, 68, 82, 37], during visual perception, humans are

able to quickly orient attentions to the most important parts

of the visual stimuli, allowing them to achieve goals ef-

ficiently. We therefore argue that human visual attention

should be the underlying mechanism that drives UVOS. The

foreground in UVOS should be the object(s) that attracts hu-

man attention most, as the choice of the object(s) should be

consistent with human attention judgements.

To validate this novel hypothesis, we extend three pop-

ular video segmentation datasets, DAVIS16 [58], Youtube-

Objects [60] and SegTrackV 2 [44], with real human fixation

annotation in the UVOS setting. The gaze data are collected

over a total of 190 video sequences with 25,049 frames from

20 human observers using professional eye-tracking instru-

ments (§3). To the best of our knowledge, this is the first

attempt to collect UVOS-aware human attention data. Such

comprehensive datasets facilitate us to perform two essen-

tial experiments, i.e., quantifying the inter-subject consis-

tency and the correlation between human dynamic attention

and explicit object judgement (§4), in which two key obser-

vations are found from our quantitative analysis:

• There exist highly consistent attention behaviors among

human observers in the UVOS task, though the notion of

‘primary object(s)’ is sometimes viewed as ill-posed for

extremely-diverse dynamic scenes.

• There exists a strong correlation between human fixation

and human explicit judgement of primary object(s).

These findings offer an insightful glimpse into the ratio-

nale behind UVOS from human attention perspective. In-

spired by this, we decompose UVOS into two sub-tasks:

dynamic visual attention prediction (DVAP) and attention-

guided object segmentation (AGOS). Accordingly, we de-

vise a novel UVOS model with two tightly coupled com-

ponents for DVAP and AGOS (see Fig. 1). One extra ad-

vantage of such task decomposition lies in modular train-

ing and data acquisition. Instead of using expensive video

segmentation annotation, the relatively easily-acquired dy-

namic fixation data can be used to train DVAP, and ex-

isting large-scale fixation-segmentation paired annotations

(e.g., [87, 47]) can be used to train the AGOS module.1 This

1Taking the DAVIS dataset as an example, it took several minutes per-

is because AGOS learns to map an individual input frame

and fixation data to a segmentation mask, thus only needing

static image data. Roughly speaking, visual attention acts

as a middle-level representation that bridges dynamic fore-

ground characteristic modeling and static attention-aware

object segmentation. Such design naturally reflects real-

world human behavior, i.e., first orienting rough attention

to important areas during dynamic viewing, and then focus-

ing on fine-grained, pixel-wise object segmentation.

In our UVOS model, the DVAP module is built upon a

CNN-convLSTM architecture, where the convLSTM takes

static CNN feature sequence as input and learns to cap-

ture the dynamic visual attention, and the AGOS module

is based on an FCN architecture. Intuitively, DVAP informs

AGOS where the objects are located in each frame, then

AGOS performs fine-grained object segmentation. Besides,

our model also enjoys several important characteristics:

• Fully-differentiable and supervised attention mechanism.

For AGOS, the attention from DVAP is used as a neu-

ral attention mechanism, thus the whole model is fully-

differentiable and end-to-end trainable. At high level,

DVAP can be viewed as an attention network, which pro-

vides an explicit spatiotemporal attention mechanism to

AGOS and is trained in a supervised manner.

• Comprehensive foreground understanding through learn-

ing on multi-source data and sharing weights. Our exper-

iments with dynamic gaze-tracking data confirm a strong

correlation between eye movements and primary video

objects perception. Training with both fixation and seg-

mentation data allows more comprehensive foreground

understanding. Moreover, by sharing several initial con-

volutional layers between DVAP and AGOS, information

can be exchanged efficiently.

• Learning from large-scale affordable data. Deep learn-

ing models are often hungry for large-scale data, but

a large video segmentation annotation data is very ex-

pensive. Our model leverages more affordable dynamic

gaze data and existing large-scale attention-segmentation

paired image data to achieve the same goal. Our experi-

ments show that our model yields promising segmenta-

tion results without training on the ground-truth video

segmentation data.

• Biologically-inspired and assessable interpretability.

The attention learned from DVAP not only enables our

model attend to the important object(s), but also offers

an extra dimension to interpret where our model focuses

on. Such interpretability is meaningful (biologically-

inspired) and assessable (w.r.t. human gaze records).

In summary, we propose a powerful, fully differentiable,

and biologically-inspired UVOS model that fully exploits

frame to annotation with 5 specialists, while with eye-tracker equipment,

annotating each frame only takes 1∼2 seconds.
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Dataset Pub. Year #Videos #Viewers Task

CRCNS [31] TIP 2004 50 15 scene unders.

Hollywood-2 [52] TPAMI 2012 1,707 19 action recog.

UCF sports [52] TPAMI 2012 150 19 action recog.

SFU [21] TIP 2012 12 15 free-view

DHF1K [75] CVPR 2018 1,000 17 free-view

DAVIS16 (Ours)

-

2018 50 20 UVOS

Youtube-Objects (Ours) 2018 126 20 UVOS

SegTrackV 2 (Ours) 2018 14 20 UVOS

Table 1. Statistics of dynamic eye-tracking datasets. Previous

datasets are either collected for bottom-up attention during free-

viewing or related to other tasks. By contrast, we extend exist-

ing DAVIS16 [58], Youtube-Objects [60], and SegTrackV 2 [44]

datasets with extra UVOS-aware gaze data.

the value of visual attention. The proposed model produces

state-of-the-art results on popular benchmarks. We expect

this work, together with our newly collected data, to pro-

vide a deeper insight into the underlying mechanism behind

UVOS and video salient object detection, and inspire more

research along this direction.

2. Related Work

Unsupervised Video Object Segmentation. Early UVOS

methods are typically based on handcrafted features and

heuristics such as long-term point trajectory [54, 5, 17,

53, 9], motion boundary [56], objectness [43, 51, 89, 18,

59, 83, 40, 45], and saliency [13, 77, 76, 34, 27]. Later,

with the renaissance of neural network, many deep learn-

ing based models were proposed, which typically use mul-

tilayer perceptron based moving objectness detector, adopt

two-stream architecture [67, 33], or CNN encoder-decoder

structure [66, 11, 45, 46, 64]. These deep UVOS models

generally achieve promising performance, due to the strong

learning ability of deep neural networks.

Although a handful of UVOS models [13, 77, 56, 81, 27,

64] use saliency (or foreground-map, a similar notion), they

are either heuristic methods lacking end-to-end trainability

or based on object-level saliency cues, instead of an explicit,

biologically-inspired visual attention representation. None

of them quantifies the consistency between visual attention

and explicit primary video object determination. Addition-

ally, previous deep UVOS models are limited to the avail-

ability of large-scale well-annotated video data. By con-

trast, via leveraging dynamic visual attention as an inter-

mediate video object representation, our approach offers a

feasible way to alleviate this problem.

Video Salient Object Detection. VSOD is a very close

topic to UVOS. VSOD [16, 49, 79, 77, 80] aims to give a

gray saliency value for each pixel in the videos sequence.

The continuous saliency maps are valuable for a wide range

of applications, such as cropping, object tracking, and video

object segmentation. However, previous VSOD simply use

the UVOS datasets for benchmarking, which lacks a biolog-

ical evidence for such choice. In this work, through demon-

strating the consistency between human fixations and ex-

plicit object judgement, we given an in-depth glimpse into

both UVOS and VSOD, which share a unified basis, i.e.,

top-down task-driven visual attention mechanism.

Visual Attention Prediction. Human attention mechanism

plays an essential role in visual information perception and

processing. In the past decade, the computer vision com-

munity has made active research efforts on computationally

modeling such selective attention process [32]. According

to the underlying mechanism, attention models can be cat-

egorized as either bottom-up (stimuli-inspired) or top-down

(task-driven). Early attention models [42, 90, 19, 6, 22, 25,

36, 15, 20, 26, 61, 22] are based on biologically-inspired

features (color, edge, optical flow, etc.) and cognitive the-

ories about visual attention (attention shift [39], feature in-

tegration theory [68], guided search [82], etc.). Recently,

deep learning based attention models [71, 28, 55, 73, 75]

were proposed and generally yield better performance.

However, most previous methods use static, bottom-up

models and none of them is specially designed for modeling

UVOS-driven, top-down attention in dynamic scenes. Pre-

vious dynamic eye-tracking datasets [31, 52, 21, 75] were

constructed under free-viewing or other task-driven settings

(see Table 1). In this work, numerous eye gaze data on pop-

ular video segmentation datasets [58, 60, 44] are carefully

collected in the UVOS setting. Consequently, for the first

time, a dynamic, top-down attention model is learned for

guiding UVOS. With above efforts, we expect to establish a

closer link between UVOS and visual attention prediction.

Trainable Attention in Neural Networks. Recent years

have witnessed growth of research towards integrating neu-

ral networks with fully-differentiable attention mechanism.

The neural attention stimulates the human selective atten-

tion mechanism and allows the network focus on the most

task-relevant parts of the input. It has shown wide suc-

cesses in natural language processing and computer vi-

sion tasks, such as machine translation [2], image caption-

ing [85], visual question answering [88], human object in-

teraction [14], and image classification [72], to list a few.

Those neural attentions are learned in an implicit, goal-

driven and end-to-end way.

Our DVAP module can also be viewed as a neural at-

tention mechanism, as it is end-to-end trainable and used

for soft-weighting the feature of AGOS models. It dif-

fers from the others in its UVOS-aware nature, explicitly-

training ability (with the availability of ground-truth data),

and spatiotemporal application domain.

3. UVOS-Aware Eye-Tracking Data Collection

One objective of our work is to contribute extra eye-

fixation annotations to three public video segmentation

datasets [58, 60, 44]. Fig. 2 shows some example frames

with our UVOS-aware eye-tracking annotation, along with
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Figure 2. Example frames from three datasets ([58, 60, 44]) with

our eye-tracking annotation (§3). The last column shows the av-

erage attention maps of these datasets. We quantitatively verify

(§4) the high consistency between human attention behavior (2nd

column) and primary-object determination (3rd column).

visual attention distributions over each dataset.

Stimuli: The dynamic stimuli are from DAVIS16 [58],

Youtube-Objects [60], and SegTrackV 2 [44]. DAVIS16 is a

popular UVOS benchmark containing 50 video sequences

with totally 3,455 frames. Youtube-Objects is a large

dataset with 126 videos covering 10 common object cate-

gories, with 20,647 frames in total. SegTrackV 2 consists of

14 short videos with totally 947 frames.

Apparatus: Observer eye movements were recorded us-

ing a 250 Hz SMI RED250 eye tracker (SensoMotoric In-

struments). The dynamic stimuli were displayed on a 19”

computer monitor at a resolution of 1440×900 and in their

original speeds. A headrest was used to maintain a viewing

distance of about 68 cm, as advised by the product manual.

Participants: Twenty participants (12 males and 8 females,

aging between 21 and 30), who passed the eye tracker cal-

ibration with less than 10% fixation dropping rate, were

qualified for our experiment. All had normal/corrected-to-

normal vision and never seen the stimuli before.

Recording protocol: The experimenters first ran the stan-

dard SMI calibration routine with recommended settings

for the best results. During viewing, the stimulus videos

were displayed in random order and the participants were

instructed to identify the primary object occurring in each

stimulus. Since we aim to explore human attention behavior

in UVOS setting, each stimulus was repeatedly displayed

three times to help the participants better capture the video

content. Such data capturing design is inspired by the proto-

col in [21]. To avoid eye fatigue, 5-second black screen was

intercalated between each. Additionally, the stimuli were

split into 5 sessions. After undergoing a session of videos,

the participant can take a rest. Finally, a total of 12,318,862
fixations were recorded from 20 subjects on 190 videos.

4. In-depth Data Analysis

Inter-subject consistency: We first conduct experiments

to analyze eye movement consistency within subjects. To

quantify such inter-subject consistency (ISC), following the

protocols in [47], data from half of the subjects are ran-

Aspect Metric DAVIS16 [58] Youtube-Object[60] SegTrackV 2 [44]

ISC
AUC-J

0.899±0.029 0.876±0.056 0.883±0.036(chance=0.5)

ITC
AUC-J

0.704±0.078 0.733±0.105 0.747±0.071(chance=0.5)

Table 2. Quantitative results of inter-subject consistency (ISC)

and inter-task correlation (ITC), measured by AUC-Juddy.

domly selected as the test subset, leaving the rest as the

new ground-truth subset. After that, AUC-Juddy [7], a

classic visual attention evaluation metric, is employed to

the test subset to measure ISC. The experimental results

are shown in Table 2. It is interesting to find that there

exists high consistency of attention behaviors among hu-

man subjects, across all the three datasets. The correlation

scores (0.899 on DAVIS16, 0.876 on Youtube-Object, 0.883

on SegTrackV 2) are significantly above chance (0.5). The

chance level is the accuracy of a random map with value

of each pixel drawn uniformly random between 0 and 1.

This novel observation further suggests that, even though

‘unsupervised video object(s)’ is often considered as ill-

defined [70, 1, 78], there do exist some ‘universally-agreed’

visually important clues that attract human attentions stably

and consistently.

Correlation between visual attention and video object

determination: It is essential to study whether human vi-

sual attention and video primary object judgement agree

with each other, which has never been explored before.

Here we apply the experimental protocol suggested by [4]

to calculate the inter-task correlation (ITC). More specifi-

cally, we use the segmentation mask to explain the fixation

map. During the computation of AUC-Juddy metric, human

fixations are considered as the positive set and some points

sampled from other non-fixation positions as the negative

set. The segmentation mask is then used as a binary classi-

fier to separate positive samples from negative samples. The

results are reported in Table 2, showing that visual attention

does not fall on the background significantly higher than its

corresponding chance level. Taking Youtube-Objects as an

example, the correlation score 0.733 (std = 0.105) is signif-

icantly above chance using t-test (p< 0.05). This observa-

tion reveals the strong correlation between human dynamic

visual attention and video object determination.

5. Proposed UVOS Method

5.1. Problem Formulation

Denote an input video with T frames as {It ∈
R

W×H×3}Tt=1
, then the goal of UVOS is to generate the cor-

responding sequences of binary video object segmentation-

masks {St ∈ {0, 1}W×H}Tt=1
. Many recently proposed

UVOS methods [64, 46, 33, 67] learn a DNN as a map-

ping function FUVOS : RW×H×3×T 7→ {0, 1}W×H×T that di-

rectly maps the input into the segmentation masks:

{St}
T

t=1=FUVOS({It}
T

t=1). (1)
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Figure 3. Illustration of the proposed UVOS model. (a) Simplified schematization of our model that solves UVOS in a two-step manner,

without the need of training with expensive precise video object masks. (b) Detailed network architecture, where the DVAP (§5.2) and

AGOS (§5.3) modules share the weights of two bottom conv blocks. The UVOS-aware attention acts as an intermediate object representa-

tion that connects the two modules densely. Best viewed in color. Zoom in for details.

To learn such direct input-output mapping FUVOS, numer-

ous pixel-wise video segmentation annotations are needed,

which are however very expensive to obtain.

In this work, we instead propose an input-attention-

output mapping strategy to tackle UVOS. Specifically, a

DVAP module FDVAP is first designed to predict dynamic

UVOS-aware visual attentions {At∈ [0, 1]W
′
×H

′
×1}Tt=1

:

{At}
T

t=1=FDVAP({It}
T

t=1). (2)

An AGOS module FAGOS, which takes a single frame image

It and corresponding attention map At as input, is then used

to generate final segmentation result St:

St=FAGOS(It,At), t ∈ {1, 2, . . . , T}. (3)

As shown in Fig. 3 (a), {At}
T
t=1

encode both static object

infomation and temporal dynamics, enabling AGOS to fo-

cus on fine-grained segmentation in spatial domain, i.e., ap-

plying AGOS for each frame individually. Essentially, the

visual attention, as a biologically-inspired visual cue and in-

termediate object representation, links DVAP and AGOS to-

gether, and offers an explicit interpretation by telling where

our model is looking at.

5.2. DVAP Module

The DVAP module is built on a CNN-convLSTM archi-

tecture (see Fig. 3 (b)), where the CNN layers are borrowed

from the first five convolutional blocks of ResNet101 [24].

To preserve more spatial details, we reduce the stride of the

last block to 1. Given the input video sequence {It}
T
t=1

with typical 473× 473 spatial resolution, the spatial fea-

ture sequence {Xt ∈ R
30×30×2048}Tt=1

from the top-layer

of the CNN network is fed into a convLSTM for learning

the dynamic visual attention. ConvLSTM [63], proposed as

a convolutional counterpart of conventional fully connected

LSTM, introduces convolution operation into input-to-state

and state-to-state transitions. ConvLSTM is favored here as

it preserves spatial details as well as modeling temporal dy-

namics simultaneously. Our DVAP module FDVAP can be

formulated as follows:

Xt=CNN(It),Yt=convLSTM(Xt,Yt−1),At=R(Yt), (4)

where Yt indicates the 3D-tensor hidden state (with 32

channels) of convLSTM at time step t. R is a readout func-

tion that produces the attention map from the hidden state,

implemented as a 1×1 convolution layer with the sigmoid

activation function.

In the next section, we employ DVAP as an attention

mechanism to guide AGOS to concentrate more on the vi-

sually important regions. An extra advantage of such design

lies in disentangling spatial and temporal characteristics of

foreground objects, as DVAP captures temporal informa-

tion by learning from dynamic-gaze data, and thus allows

AGOS to focus on pixel-wise segmentation only in spatial

domain (benefiting from existing large-scale image datasets

with paired fixation and object segmentation annotation).

5.3. AGOS Module

The attention obtained from DVAP suggests the location

of the primary object(s), offering informative cue to AGOS

for pixel-wise segmentation, as achieved by a neural atten-

tion architecture. Before going deep into our model, we first

give a general formulation of neural attention mechanisms.

General neural attention mechanism: A neural attention

mechanism equips a network with the ability to focus on a

subset of input feature. It computes a soft-mask to enhance
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the feature by multiplication operation. Let i ∈ R
d be an

input vector, z ∈ R
k a feature vector, a ∈ [0, 1]k an atten-

tion vector, g∈R
k an attention-enhanced feature and fA an

attention network. The neural attention is implemented as:

a = fA(i), z = fZ(i), g = a⊙ z, (5)

where ⊙ is element-wise multiplication, and fZ indicates

a feature extraction network. Some neural attention mod-

els equip attention function fA with soft-max to constraint

the values of attention between 0 and 1. Since the above

attention framework is fully differentiable, it is end-to-end

trainable. However, due to the lack of ‘ground-truth’ of the

attention, it is trained in an implicit way.

Explicit, spatiotemporal, and UVOS-aware attention

mechanism: We integrate DVAP into AGOS as an attention

mechanism. Let Zt,Gt denote respectively a segmentation

feature and an attention glimpse with the same dimensions,

our UVOS-aware attention is formulated as:

Spatiotemporal attention: {At}
T

t=1 = FDVAP({It}
T

t=1),

Spatial feature enhancement:
Zt = FZ(It),

G
c

t = At ⊙ Z
c

t ,

(6)

where FZ extracts segmentation features from the input

frame It (will be detailed latter). Gc and Zc indicate the

feature slices of G and Z in d-th channel, respectively. As

seen, our UVOS-aware attention encodes spatial foreground

information as well as temporal characteristics, enabling

the AGOS module perform object segmentation over each

frame individually. For the position with an attention value

close to 0, the corresponding feature response will be sup-

pressed greatly. This may lose some meaningful informa-

tion. Inspired by [24, 72], the feature enhancement step in

Eq. 6 is enhanced with a residual form (see Fig. 3 (b)):

G
c

t = (1 +At)⊙ Z
c

t . (7)

This strategy retains the original information (even with a

very small attention value), while enhances object-relevant

features efficiently. Besides, due to the availability of the

ground-truth gaze data, our UVOS-aware attention mecha-

nism is trained in an explicit manner (detailed in §5.4).

The AGOS module is also built upon convolutional

blocks of ResNet101 [24] and modified with the ASPP

module proposed in DeepLabV 3 [10]. With an input

frame image It ∈ R
473×473×3, a segmentation feature Zt ∈

R
60×60×1536 can be extracted from the ASPP module FASPP.

The attention map At is also ×2 upsampled by bilinear in-

terpolation. Finally, our AGOS module in Eq. 6 is imple-

mented as:

Spatiotemporal attention: {At}
T

t=1 = FDVAP({It}
T

t=1),

Spatial feature enhancement:
Zt = FASPP(It),

G
c

t = (1 +At)⊙ Z
c

t .

(8)

Knowledge sharing between DVAP and AGOS: DVAP

and AGOS modules share similar underlying network ar-

chitectures (conv1-conv5 of ResNet101), while capturing

object information from different perspectives. We develop

a technique to encourage knowledge sharing between the

two networks, rather than learning each of them separately.

In particular, we allow the two modules share the weights

of the first three convolutional blocks (conv1, conv2, and

conv3), and then learn other higher-level layers separately.

This is because the bottom-layers typically capture low-

level information (edge, corner, etc.), while the top-layers

tend to learn high-level, task-specific knowledge. More-

over, such weight-sharing strategy improves our computa-

tional efficiency and decreases parameter storage.

5.4. Implementation Details

Training loss: For DAVP, given an input frame I ∈
R473×473×3, it predicts an attention map A∈ [0, 1]30×30. De-

note by P∈ [0, 1]30×30 and F∈{0, 1}30×30 the ground-truth

continuous attention map and the binary fixation map, re-

spectively. F is a discrete map, recording whether a pixel

receives human-eye fixation position, and P is obtained by

blurring F with a small Gaussian filter. Inspired by [28], the

loss function LDVAP for DAVP is designed as:

LDVAP(A,P,F) =LCE(A,P) + α1LNSS(A,F)+

α2LSIM(A,F) + α3LCC(A,P),
(9)

where the LCE indicates the classic cross entropy loss, and

LCC,LNSS, LSIM are derived respectively from three widely-

used visual attention evaluation metrics named Normalized

Scanpath Saliency (NSS), Similarity Metric (SIM) and Lin-

ear Correlation Coefficient (CC). Such combination leads

to improved performance due to comprehensive consider-

ation of different quantification factors as in [28]. We use

LCE as the primary loss, and set α1 = α2 = α3 = 0.1.

For AGOS, given I, it produces the final segmentation

prediction2 S ∈ [0, 1]60×60. Let M ∈ {0, 1}60×60 denote the

ground-truth binary segmentation mask, the loss function

LAGOS of the AGOS module is formulated as:

LAGOS(S,M) = LCE(S,M). (10)

Training protocol: We leverage both video gaze data and

attention-segmentation paired image data to train our whole

UVOS model. The training process is iteratively performed

on a video training batch and an image train batch. Specifi-

cally, in the video training batch, we use dynamic gaze data

to train the DVAP module only. Given the training video

sequence {It}
T
t=1

, let {At,Pt,Ft}
T
t=1

denote the corre-

sponding attention predictions, ground-truth continuous at-

tention maps and discrete fixation maps, we train our model

by minimizing the following loss (see Fig. 3 (a)):

Ld =
∑T

t=1

LDVAP(A
d

t ,P
d

t ,F
d

t ), (11)

where the superscript ‘d’ represents dynamic video data.

Note that we do not consider LAGOS loss to save the ex-

pensive pixel-wise segmentation ground-truth.

2We slightly reuse S for representing the segmentation prediction.
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The image training batch contains several attention-

segmentation paired image masks, which is used to train

both DVAP and AGOS modules simultaneously. Let

{I,S,F,M} denote a training sample in the image train-

ing batch, which includes a static image and corresponding

ground-truth (i.e., continuous attention map, binary fixation

map, and segmentation mask). The overall loss function

combines both LDVAP and LAGOS:

Ls = LDVAP(A
s
,P

s
,F

s) + LAGOS(S
s
,M

s), (12)

where a superscript ‘s’ is used to emphasize the static na-

ture. By using static data, the total time span of convL-

STM in DVAP is set to 1. Each video training batch uses 2

videos, each with 3 consecutive frames. Both the videos and

the start frames are randomly selected. Each image training

batch contains 6 randomly sampled images.

6. Experiments

Training data: During training, we use the video se-

quences and corresponding fixation data from the train-

ing split of DAVIS16 [58] and the whole SegTrackV 2 [44]

dataset, leading to totally 54 video sequences with 6,526
frames. Additionally, two image salient object segmen-

tation datasets, DUT-O [87] and PASCAL-S [47], offer

both static gaze data and segmentation annotations, and

are thus also used in our training phase, resulting in to-

tally 6,018 static training examples. Therefore, our model

is trained without labor-intensive pixel-wise video segmen-

tation masks, by leveraging easily-acquired dynamic gaze

data and static attention-segmentation annotation pairs. In

§6.2, we quantitatively demonstrate that, even without train-

ing on video segmentation annotations, the suggested model

is still able to achieve state-of-the-art performance.

Testing phase: Given a test video, all the frames are uni-

formly resized to 473×473 and fed into our model for ob-

taining the corresponding primary object predictions. Fol-

lowing the common protocol [66, 8, 84, 57] in video seg-

mentation, the fully-connected CRF [41] is employed to ob-

tain the final binary segmentation results. For each frame,

the forward propagation of our network takes about 0.1s,

while the CRF-based post-processing takes about 0.5s.

6.1. Performance of DVAP module

Test datasets: We evaluate our DVAP module on the test set

of DAVIS16 [58] and the full Youtube-Objects [60], with the

gaze-tracking ground-truth and there is no overlap between

the training and test data.

Evaluation metrics: Five standard metrics: AUC-Judd

(AUC-J), shuffled AUC (s-AUC), NSS, SIM, and CC, are

used for comprehensive study (see [3] for details).

Quantitative and qualitative results: We compare our

DVAP module with 12 state-of-the-art visual attention mod-

els, including 5 deep models [75, 35, 73, 55, 28] and 7 tra-

ditional models [15, 20, 26, 61, 22, 32]. Quantitative results

Dataset Methods AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑

DAVIS16

ACL [75] 0.901 0.453 0.617 0.559 2.252

OMCNN [35] 0.889 0.408 0.621 0.518 2.101

DVA [73] 0.885 0.382 0.647 0.494 1.906

DeepNet [55] 0.880 0.318 0.644 0.470 1.866

ShallowNet [55] 0.874 0.293 0.622 0.471 1.871

SALICON [28] 0.818 0.276 0.628 0.352 1.432

STUW [15] 0.892 0.363 0.636 0.508 2.019

PQFT [20] 0.685 0.202 0.584 0.191 0.821

Seo et al. [61] 0.724 0.234 0.582 0.222 0.923

Hou et al. [26] 0.782 0.263 0.581 0.273 1.119

GBVS [22] 0.882 0.294 0.617 0.442 1.683

ITTI [32] 0.820 0.249 0.621 0.354 1.332

Ours 0.909 0.504 0.667 0.620 2.507

Table 3. Quantitative comparison of visual attention models on

the test set of DAVIS16 [58] (§6.1). The three best scores are indi-

cated in red, blue and green, respectively (same for other tables).

Dataset Methods AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑

ACL [75] 0.912 0.405 0.711 0.531 2.627

OMCNN [35] 0.889 0.326 0.698 0.461 2.307

DVA [73] 0.905 0.372 0.741 0.526 2.294

DeepNet [55] 0.894 0.268 0.737 0.448 2.182

ShallowNet [55] 0.890 0.252 0.704 0.436 2.069

Youtube- SALICON [28] 0.840 0.265 0.692 0.380 1.956

Objects STUW [15] 0.869 0.264 0.666 0.388 1.876

PQFT [20] 0.730 0.170 0.646 0.210 1.061

Hou et al. [26] 0.786 0.221 0.639 0.243 1.223

Seo et al. [61] 0.763 0.210 0.605 0.224 1.118

GBVS [22] 0.881 0.244 0.706 0.395 1.919

ITTI [32] 0.837 0.214 0.709 0.339 1.638

Ours 0.914 0.419 0.747 0.543 2.700

Table 4. Quantitative comparison of different visual attention

models on Youtube-Objects [60] (§6.1).

over the test set of DAVIS16 [58] and Youtube-Objects [60]

are summarized in Tables 3 and 4, respectively. As seen,

our DVAP generally outperforms other competitors, as none

of them is specifically designed for UVOS-aware attention

prediction. Our DVAP can guide our UVOS model to accu-

rately attend to visually attractive regions in videos.

6.2. Performance of full UVOS model

Test datasets: The test sets of DAVIS16 [58] and the full

Youtube-Objects [60] are used for assessing the perfor-

mance of our full UVOS model.

Evaluation metrics: For the UVOS task, we use three stan-

dard metrics suggested by [58], i.e., region similarity J ,

boundary accuracy F , and time stability T .

Quantitative and qualitative results: The quantitative

comparison results over above two datasets are reported

in Tables 5 and 6, respectively. We can observe that the

proposed model outperforms other competitors over most

metrics across all the datasets. This is significant and

distinguishes our model from previous deep UVOS mod-

els [40, 46, 67, 33, 66, 11] since our model is trained without

precise segmentation mask ground-truths. Some qualita-

tive results are shown in Fig. 4, validating our model yields

high-quality results with interpretable dynamic attentions.
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Dataset Metric Ours PDB [64] ARP [40] LVO [67] FSEG [33] LMP [66] SFL [11] FST [56] CUT [38] NLC [13] MSG [53] KEY [43] CVOS [65] TRC [17]

DAVIS16

J

Mean ↑ 79.7 77.2 76.2 75.9 70.7 70.0 67.4 55.8 55.2 55.1 53.3 49.8 48.2 47.3

Recall ↑ 91.1 90.1 91.1 89.1 83.5 85.0 81.4 64.9 57.5 55.8 61.6 59.1 54.0 49.3

Decay ↓ 0.0 0.9 7.0 0.0 1.5 1.3 6.2 0.0 2.2 12.6 2.4 14.1 10.5 8.3

F

Mean ↑ 77.4 74.5 70.6 72.1 65.3 65.9 66.7 51.1 55.2 52.3 50.8 42.7 44.7 44.1

Recall ↑ 85.8 84.4 83.5 83.4 73.8 79.2 77.1 51.6 61.0 51.9 60.0 37.5 52.6 43.6

Decay ↓ 0.0 -0.2 7.9 1.3 1.8 2.5 5.1 2.9 3.4 11.4 5.1 10.6 11.7 12.9

T Mean ↓ 44.5 29.1 39.3 26.5 32.8 57.2 28.2 36.6 27.7 42.5 30.2 26.9 25.0 39.1

Table 5. Quantitative UVOS results on the test sequences of DAVIS16 [58]. The results selected from the public leaderboard (https:

//davischallenge.org/davis2016/soa_compare.html) maintained by the DAVIS challenge. See §6.2 for details.

Dataset Category Ours PDB [64] ARP [40] LVO [67] SFL [11] FSEG [33] FST [56] COSEG [69] LTV [54]

Airplane 87.7 78.0 73.6 86.2 65.6 81.7 70.9 69.3 13.7

Bird 76.7 80.0 56.1 81.0 65.4 63.8 70.6 76.0 12.2

Boat 72.2 58.9 57.8 68.5 59.9 72.3 42.5 53.5 10.8

Car 78.6 76.5 33.9 69.3 64.0 74.9 65.2 70.4 23.7

Cat 69.2 63.0 30.5 58.8 58.9 68.4 52.1 66.8 18.6

Youtube Cow 64.6 64.1 41.8 68.5 51.2 68.0 44.5 49.0 16.3

-Object Dog 73.3 70.1 36.8 61.7 54.1 69.4 65.3 47.5 18.2

Horse 64.4 67.6 44.3 53.9 64.8 60.4 53.5 55.7 11.5

Motorbike 62.1 58.4 48.9 60.8 52.6 62.7 44.2 39.5 10.6

Train 48.2 35.3 39.2 66.3 34.0 62.2 29.6 53.4 19.6

J Mean ↑ 69.7 65.5 46.2 67.5 57.1 68.4 53.8 58.1 15.5

Table 6. Quantitative UVOS results on Youtube-Objects [60]. Performance over each category and the average score are reported.

Figure 4. Visual results on two example videos. The dynamic attention results from our DVAP module are shown in the second row,

which are biologically-inspired and used to guide our AGOS module for fine-grained UVOS (see the last row).

Dataset Metric Ours PDB [64] FGRNE [45] FCNS [80] SGSP [48] GAFL [79] SAGE [77] STUW [16] SP [49]

DAVIS16

Fmax ↑ 0.870 0.849 0.786 0.729 0.677 0.578 0.479 0.692 0.601

MAE ↓ 0.026 0.030 0.043 0.053 0.128 0.091 0.105 0.098 0.130

Table 7. Quantitative VSOD results on the test sequences of DAVIS16 [58] with MAE and max F-measure (see §6.3).

6.3. Performance on the VSOD task

Test datasets: The test sets of DAVIS16 [58] is used for

testing our model in the VSOD setting.

Evaluation metrics: Standard F-measure and MAE met-

rics are used for quantitative evaluation [74].

Quantitative results: As shown in Table 7, our model

(without CRF binaryzation) outperforms previous VSOD

models [64, 45, 80, 48, 79, 77, 16, 49] with human read-

able attention maps. This verifies the strong correlation be-

tween VSOD and UVOS from a view of top-down attention

mechanism.

7. Conclusion

This work systematically studied the role of visual at-

tention in UVOS and its related task, VSOD. We extended

three popular video object segmentation datasets with real

human eye-tacking records. Through in-depth analysis, for

the first time, we quantitatively validated that human vi-

sual attention mechanism plays an essential role in UVOS

and VSOD tasks. With this novel insight, we proposed

a novel visual attention-driven UVOS model, where the

DVAP module, mimicking human attention behavior in the

dynamic UVOS setting, is used as a supervised neural atten-

tion to guide the subsequent AGOS module for fine-grained

video object segmentation. With the visual attention as an

intermediate representation, our model is able to produce

promising results without training on expensive pixel-wise

video segmentation ground-truths, and it gains better post-

hoc, biologically-consistent interpretability. Experimental

results demonstrated the proposed model outperforms other

state-of-the-art UVOS methods. The suggested model also

gains best performance in the VSOD setting. Therefore,

we closely connect the top-down, segmentation-aware vi-

sual attention mechanism, UVOS and VSOD tasks, and of-

fer a new glimpse into the rationale behind them.
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