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Abstract

Infrared-Visible person RE-IDentification (IV-REID) is

a rising task. Compared to conventional person re-

identification (re-ID), IV-REID concerns the additional

modality discrepancy originated from the different imaging

processes of spectrum cameras, in addition to the person’s

appearance discrepancy caused by viewpoint changes, pose

variations and deformations presented in the conventional

re-ID task. The co-existed discrepancies make IV-REID

more difficult to solve. Previous methods attempt to reduce

the appearance and modality discrepancies simultaneously

using feature-level constraints. It is however difficult to

eliminate the mixed discrepancies using only feature-level

constraints. To address the problem, this paper introduces a

novel Dual-level Discrepancy Reduction Learning (D2RL)

scheme which handles the two discrepancies separately.

For reducing the modality discrepancy, an image-level sub-

network is trained to translate an infrared image into its

visible counterpart and a visible image to its infrared ver-

sion. With the image-level sub-network, we can unify the

representations for images with different modalities. With

the help of the unified multi-spectral images, a feature-level

sub-network is trained to reduce the remaining appearance

discrepancy through feature embedding. By cascading the

two sub-networks and training them jointly, the dual-level

reductions take their responsibilities cooperatively and at-

tentively. Extensive experiments demonstrate the proposed

approach outperforms the state-of-the-art methods.

1. Introduction

Person re-identification (re-ID) has recently received in-

creasing attention in the computer vision community [18,

17, 6, 7, 20, 28] because of its great importance in video

surveillance. Most current re-ID methods rely on person’s

appearance under good visible light conditions. Under poor

illumination conditions, due to poor appearance, conven-

tional re-ID models could become “blind in dark”. In prac-
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Figure 1. Illustration of the difficulty in the IV-REID task. (Left)

The modality discrepancy δm is much larger than δa, the ap-

pearance discrepancy. Thus, the modality discrepancy could re-

sult in the intra-person distance D( , ) being larger than the

inter-person distance D( , ). (Right) The performance obtained

by [23] on the RegDB dataset using only the feature-level con-

straints. “V-V” and “IR-IR” respectively denote the performance

of visible-visible and infrared-infrared re-ID. The red gap indi-

cates the performance gap between visible-visible and infrared-

infrared single-modality re-ID. The black gap denotes the perfor-

mance gap between cross-modality re-ID and single-modality re-

ID. It is clear that the re-ID problem across modalities is much

more difficult than the one with the same modality.

tice, for dealing with poor illumination, most surveillance

cameras automatically switch from the visible mode to the

infrared mode in the dark [21]. Consequently, this raises

a new task in which, given a visible (or infrared) image of

a specific person, the goal is to find the corresponding in-

frared (or visible) images of the person captured by other

spectrum cameras [21, 22, 23, 2]. This cross-modality im-

age matching task is named Infrared-Visible person RE-

IDentification (IV-REID).

Compared to the conventional re-ID task, IV-REID en-

counters additional modality discrepancy resulting from the

differences between imaging processes of different spec-

trum cameras, in addition to the person’s appearance dis-

crepancy caused by viewpoint changes, pose variations,

scale changes and deformations. The modality discrepancy

is often more significant than the appearance discrepancy.
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Figure 2. A high-level overview of our approach. Previous meth-

ods reduce the total discrepancy by converting images to the fea-

ture space and using only the feature-level constraint (the blue

dashed line). Our dual-level solution first converts images into

a unified space (the green arrows) and then embeds them into the

feature space (the orange arrow). After the image-level modal-

ity reduction by unifying image representations, the gap becomes

much smaller than the one in the original image space. Thus, the

feature-level embedding can be effective in reducing the remaining

appearance discrepancy.

The intra-person (images from the same person) distance

across visible and infrared cameras is often larger than the

inter-person (images from different persons) distance of the

same type of cameras. While the main goal of IV-REID is

still to maximize the inter-person distance and meanwhile to

minimize the intra-person distance. The co-existed modal-

ity and appearance discrepancies make IV-REID difficult

(as Figure 1 shows). As far as we know, all previous meth-

ods [21, 22, 23, 2] regard the modality discrepancy δm as a

part of the appearance discrepancy δa and attempt to reduce

the mixed discrepancy δm+δa using feature-level constraints

employed by most conventional re-ID methods. Note that

the performance gap between single-modality re-ID (“V-V”

or “IR-IR”) and cross-modality IV-REID is extremely large.

It indicates that the modality discrepancy cannot be effec-

tively eliminated using only feature-level constraints.

Figure 2 gives the main idea of the proposed method.

Because they are taken with different modalities, infrared

images and visible images have quite different appearances.

Thus, direct mappings of them into the feature space can not

be effective. For alleviating the problem, we propose to re-

duce the modality discrepancy first by unifying the image

representations using image-level conversion. More specif-

ically, we form a multi-spectral image by augmenting an in-

frared image with its visible counterpart or a visible image

with its infrared version. In the unified space, the appear-

ance discrepancy is greatly alleviated. Thus, conventional

re-ID methods can be effective in reducing the remaining

appearance discrepancy by feature-level constraints.

With the idea in mind, we propose a novel dual-level

solution, named Dual-level Discrepancy Reduction Learn-

ing (D2RL). We separate the modality discrepancy apart,

and alleviate it through the image-level discrepancy reduc-

tion sub-network TI which unifies image representations by

synthesizing multi-spectral images from the given visible or

infrared images. The appearance discrepancy is then han-

dled by the feature-level discrepancy reduction sub-network

TF , where feature embedding is more effective with the uni-

fied representation. These two sub-networks are cascaded

and jointly optimized in an end-to-end manner. To this end,

TF benefits TI to generate spectral images more discrimina-

tively, and meanwhile TI provides TF with more translated

samples. The contributions of this paper are summarized

below:

• A novel dual-level discrepancy reduction learning

scheme is introduced. We are the first to decompose the

mixed modality and appearance discrepancies and handle

them separately.

• Our end-to-end scheme enforces these two sub-networks

benefit each other. The balance between them affects the

performance.

• Extensive experiments on two datasets demonstrate the

superior performance of our proposed approach com-

pared to the state-of-the-art methods.

2. Related Work

Single-modality re-ID. The conventional re-ID researches

mainly focus on the challenges of appearance changes in

the single visible modality, such as image misalignment [6],

viewpoint variations [11] and scale changes [16, 19]. Li et

al. [6] formulated a harmonious attention CNN model for

joint learning of pixel and regional attention to optimize re-

ID performance with misaligned images. Liu et al. [11] pro-

posed a pose transferrable framework for generating sam-

ples with rich pose variations. Wang et al. [16] combined

effective embedding schemes built on multiple layers from

high- and low-level details. Wang et al. [19] cascaded

multiple super-resolution networks to overcome the resolu-

tion misalignment problem. Existing state-of-the-art single-

modality re-ID methods are very effective in reducing the

appearance discrepancy as their retrieval accuracy has al-

ready surpassed the accuracy of human [24].

Infrared-visible re-ID. For the IV-REID problem, in ad-

dition to the appearance discrepancy, the modality discrep-

ancy needs to be addressed. Existing methods attempt to re-

duce the mixed appearance and modality discrepancies us-

ing feature embedding frameworks similar to conventional

re-ID methods. Wu et al. [21] proposed a deep zero-padding

framework for shared feature learning under two different

modalities. Ye et al. [22] introduced a two-step framework

for feature learning and metric learning. They [23] also
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proposed an end-to-end dual-path network to learn com-

mon representations. Dai et al. [2] designed a network to

learn discriminative representations from different modali-

ties. Due to the modality discrepancy brought in by differ-

ent spectrum with dramatic image-level unbalance, all these

feature-level methods cannot obtain satisfactory results.

Image generation meets re-ID. Recently developed GANs

provide a powerful tool for image translation [29, 12, 1].

A lot of researches attempted to utilize GANs to generate

more training samples and then facilitate solving the con-

ventional re-ID problem. Ma et al. [13] manipulated the

foreground, background and pose information, and gener-

ated images based on manipulated information. Li et al. [7]

used the GAN to generate target-like images. There is an-

other category of researches trying to deal with the prob-

lem of the domain gap using GANs. For the conventional

re-ID task, the domain gap mainly lies in the camera style

or illumination differences. Zhong et al. [28, 27] utilized

the CycleGAN with label smooth regularization to gener-

ate person images with different camera styles. Deng et

al. [4] also exploited the CycleGAN with self-similarity and

domain-dissimilarity constraints. Li et al. [7] exploited the

CycleGAN to generate images under different illumination

conditions. With the similar idea, Wei et al. [20] proposed

a person transfer GAN to bridge the domain gap. However,

working towards the problem of different poses, illumina-

tions, and camera styles, all these methods focus on gener-

ating visible images based on visible images.

3. Proposed Method

Let X = {x |x∈R
H×W×3} and Y = {y | y ∈R

H×W×1}
denote the visible image set and the infrared image set re-

spectively, where H and W are the height and the width of

images. Each image x∈X or y∈Y corresponds to a label

l ∈ {1, 2, . . . , Np}, and Np is the number of person identi-

ties. Given an infrared (or visible) query image y (or x) and

a visible (or infrared) gallery set X (or Y ), the goal of the

IV-REID task is to propose a ranking list R of the gallery

set, in which the images with the same identity as the query

image should be ranked to the top. A common strategy is

projecting x and y to a feature space through feature em-

bedding, fx = hx(x) and fy = hy(y), where fx ∈R
d and

fy ∈ R
d, and then generating the ranking list R using the

distance between them, fT
x fy .

We propose a new strategy to replace the direct map-

ping function hx and hy . Figure 3 shows the framework

of our proposed method. It consists of two sub-networks:

(1) the image-level discrepancy reduction sub-network TI
for reducing the modality discrepancy, and (2) the feature-

level discrepancy reduction sub-network TF for reducing

the appearance discrepancy. These two sub-networks are

cascaded and jointly optimized in an end-to-end manner. In

the following, we describe their details.

3.1. Imagelevel discrepancy reduction — TI

To reduce the modality discrepancy, TI exploits two

variational autoencoders (VAEs) for style disentanglement

followed by two GANs for domain specific image genera-

tion. TI translates the visible (infrared) image x (y) to its

infrared (visible) counterpart x̂ (ŷ). Together, they form the

multi-spectral image [x, x̂] (or [ŷ,y]) to provide a unified

representation for reducing the modality discrepancy.

Style disentanglement. It consists of two encoder-decoder

pairs: VAEv={Ev, Gv} and VAEi={Ei, Gi}, that are re-

sponsible for visible and infrared modality disentanglement

respectively. For VAEv , given a visible input x ∈ X , the

encoder Ev first maps x to the latent vector z, and then the

decoder Gv reconstructs the input from the latent vector z.

The reconstructed image is x̂v→v = Gv(zv ∼ qv(zv|x)),
where qv(zv|x) is the distribution of latent information zv .

The loss for VAEv is defined as

LVAEv
(Ev, Gv) = λ0KL(qv(zv|x)||pη(z))−

λ1Ezv∼qv(zv|x) [‖x−Gv(zv)‖1] , (1)

where the hyper-parameters λ0 and λ1 control the weights

of the objective terms, and the Kullback-Leibler divergence

term (KL) penalizes deviation between the distribution of

the latent information and the prior pη(z) which is a zero-

mean Gaussian distribution. The ℓ1 loss penalizes dissimi-

larity between the image and the reconstructed image, and

also encourages sharp output images.

Domain specific image generation. Two generative adver-

sarial networks GANv = {Gv, Dv} and GANi = {Gi, Di}
are employed to generate domain specific images from the

style-free latent vector z. In GANv , the generator Gv is

expected to generate realistic visible images from the latent

vector z that can fool the discriminator Dv , while the dis-

criminator Dv is expected to discriminate real and synthetic

visible images. Adversarial losses are utilized to play the

minimax game, which can be expressed as

LGANv
(Ei, Gv, Dv) = λ2Ex∼PX

[logDv(x)]+

λ2Ezi∼qi(zi|y)[log(1−Dv(Gv(zi)))] , (2)

where the hyper-parameter λ2 controls the impact of GAN.

The discriminator is trained to maximize Equation (2) while

the generator tries to minimize it. The loss is used to en-

sure the translated images resemble images in the visible

domain.

Cycle-consistency. The cycle consistency is used to fur-

ther regularize the ill-posed unsupervised image-to-image

translation problem. Similar to CycleGAN [29], our cycle-

consistency loss is defined as

LCCv
(Ev, Gv, Ei, Gi) =

λ3Ezi∼qi(zi|xv→i) [‖x−Gv(zi)‖1] , (3)
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Figure 3. The framework of our proposed method. The image-level discrepancy reduction sub-network TI first projects inputs from the

image space (visible or infrared modality) to the unified space, where the modality discrepancy is alleviated. Then, the feature-level

discrepancy reduction sub-network TF is utilized to eliminate the remaining appearance discrepancy. The two sub-networks are cascaded

and jointly optimized in an end-to-end manner.

where the negative log-likelihood objective term ensures

a twice translated image resembles the input. The hyper-

parameter λ3 controls the weight of this objective term.

The losses LVAEi
(Ei, Gi), LGANi

(Ev, Gi, Di) and

LCCi
(Ei, Gi, Ev, Gv) can be similarly defined. More

specifically, they are defined by substituting the subscript

i for v, v for i, and y for x in Equation (1), Equation (2)

and Equation (3).

Modality unification. There are three possible options for

modality unification, i.e., unifying images to the infrared

modality, the visible modality or the multi-spectral modal-

ity. We choose to generate the multi-spectral images for

modality unification for two reasons. First, the infrared and

visible images are two representations of the same reflected

light of the same person due to different imaging processes.

They are potentially related and it is likely for them to re-

construct each other. Second, if we unify the images to the

visible or infrared modality, some distinctive information in

the visible or infrared modality may be lost.

Objective for training TI . The total loss is a combination

of the VAE loss, the GAN loss and the CC loss:

LI = LVAEv
+LVAEi

+LGANv
+LGANi

+LCCv
+LCCi

. (4)

By optimizing the above loss, we obtain a network TI which

is able to translate a visible image x into its infrared counter

part x̂ and translate an infrared image y into its visible

counter part ŷ. Thus, we can form a training set S by con-

structing multi-spectral images, uv=[x, x̂] and ui=[ŷ,y],
as the unified representations. This way, all images includ-

ing both query and gallery images are represented in the

same way and the modality discrepancy is greatly reduced.

3.2. Featurelevel discrepancy reduction — TF

Since TI has unified all the images to the same modality,

a feature embedding network could be sufficient for reduc-

ing the appearance discrepancy. For each batch, we use TI
to generate a sample set S . The feature-level discrepancy

reduction network TF plays a role of feature learning on

the unified multi-spectral images generated by TI . Given a

multi-spectral image u, sampled from S , the deep feature

extractor F : u→f maps it to the person descriptor f . In

particular, we use ResNet-50 as the backbone network of

F and follow the training strategy in [27]. The last 1000-

d fully connected (FC) layer is replaced with a new layer

named as “FC-1024”. The person descriptor f ∈R
1024 uses

the output feature vector of “FC-1024” followed by Batch

Normalization, ReLU and Dropout. The output f of the

FC-1024 layer is then fed to two independent FC layers Ht

and Hc for generating two feature vectors ft ∈ R
128 and

fc ∈ R
Np . Two types of loss functions are utilized to su-

pervise the training of TF . One is the triplet loss, employed

for identity information learning, and the other is the cross-

entropy loss, used for similarity learning. The triplet loss is

coupled with ft while the cross-entropy loss is tied with fc.

Triplet loss. It is used for similarity learning. It tries to re-

duce the feature distances between images of the same per-

son and expand the distances between images of different
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people. The triplet loss can be formulated as following:

LT
F =

∑

fa
t ,f

p
t ,fn

t ∈S

[D(fa
t ,f

p
t )−D(fa

t ,f
n
t ) + ξ]+ , (5)

where fa
t is the anchor point; f

p
t is a positive sample with

the same identity with fa
t ; and fn

t is a negative sample with

the different identity from fa
t . Note that fa

t 6= f
p
t . ξ is a

margin parameter. D(·) calculates the Euclidean distance,

and [d]+ = max(d, 0) truncates negative numbers to zero

while keeping positive numbers the same.

Cross-entropy loss. It is employed for identity learning and

is written as

LC
F = −

1

Nb

Nb∑

j=1

log pj , (6)

where Nb= |S| is the number of images in the training mini-

batch; p is the predicted probability of the input belonging

to the ground-truth class with p = softmax(Wf +b),
where W and b are the trainable weight and bias of Hc.

Objective for training TF . The loss is a combination of

the cross-entropy and triplet losses as follows:

LF = λ4L
C
F + λ5L

T
F . (7)

3.3. Endtoend joint training

We optimize our network in an end-to-end manner, by

cascading TI and TF and minimizing the combined loss:

argmin
θTI

,θTF

(1− γ)LI + γLF , (8)

where 0<γ<1 and it is a trade-off parameter for balancing

the contributions of two sub-networks TI and TF .

4. Experiments

This section reports the experiment settings, implemen-

tation details, comparisons with other methods, the ablation

study and analysis of our method.

4.1. Experiment settings

Datasets. We evaluated our method on two publicly avail-

able datasets: RegDB [15] and SYSU-MM01 [21].

• RegDB [15]. It was collected from two aligned cam-

eras (one visible and one far-infared). It contains to-

tally 412 persons. Each person has 10 visible images and

10 far-infrared images. We follow the evaluation proto-

col in [23] to randomly split the dataset into two halves,

which are used for training and testing respectively.

• SYSU-MM01 [21]. It is a large-scale dataset collected

by six cameras (four visible and two near-infared), in-

cluding both indoor and outdoor environments. It con-

tains in total 491 persons, and each person was captured

by at least two different cameras. Following [21], we

adopt the most challenging single-shot all-search mode

evaluation protocol. The training set contains 395 per-

sons, with 22,258 visible images and 11,909 infrared im-

ages. The testing set contains 96 persons, with 3,803 in-

frared images for query and 301 randomly selected visi-

ble images as the gallery set.

Evaluation metrics. The standard Cumulative Matching

Characteristics (CMC) curve and mean Average Precision

(mAP) are adopted to evaluate the performance. Note that

there is a slight difference with the conventional re-ID prob-

lem [25]. Images from one modality are used as the gallery

set while the ones from the other modality as the probe set

during testing.

4.2. Implementation details

Network architecture. The architecture of our proposed

method is shown in Figure 3. The sub-network TI is based

on UNIT1. The size of inputs and outputs is resized to

228×228×3, for both visible and infrared images. For in-

frared images, the three channels are the same. TF is based

on Open-reid2 with the difference that our inputs have four

channels.

Training strategy. In order to avoid mode collapse and

over-fitting, we pretrained the sub-network TI and TF re-

spectively with the Market-1501 dataset [25], where we

used the original images as the visible input, and the decom-

posed illuminations as the infrared input. Then, we jointly

trained them in an end-to-end manner. Note that the SYSU-

MM01 [21] dataset includes outdoor and indoor scenes. We

trained them separately. We set weight parameters of the

losses in TI as λ0=0.1, λ1=100, λ2=10, λ3=100 by fol-

lowing [12]. For the sub-network TF , we set λ4=λ5=10.

The pre-defined margin for the triplet loss is set as ξ=0.8.

The model is optimized using Adam [5] with a learning rate

of 0.0002 and the momentum terms β1=0.5, β2=0.999.

4.3. Comparison with the stateoftheart methods

To demonstrate the effectiveness of our method, we

compare our method with most of the related methods

for IV-REID. These methods include Zero-Padding [21],

TONE [22], HCML [22], BDTR [23] and cmGAN [2]. In

addition, several other learning-based methods are also in-

cluded for comparisons. The additional competing methods

contain some feature learning methods including HOG [3],

LOMO [8], one-stream and two-stream networks [21]. The

one-stream and two-stream networks are modifications of

the IDE method [26] under IV-REID settings. Their detailed

descriptions can be found in [21]. In addition, two match-

ing model learning methods, MLAPG [9] and GSM [10],

1UNIT code: https://github.com/mingyuliutw/UNIT
2Open-reid code: https://github.com/Cysu/open-reid
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Table 1. Comparison with the state-of-the-art IV-REID methods on two different datasets, RegDB and SYSU-MM01.

Approach
Constraints RegDB SYSU-MM01

Feature-level Image-level CMC-1 CMC-10 CMC-20 mAP CMC-1 CMC-10 CMC-20 mAP

LOMO [8] ✗ ✗ 0.85 2.47 4.10 2.28 1.75 14.14 26.63 3.48

MLBP [9] ✗ ✗ 2.02 7.33 10.90 6.77 2.12 16.23 28.32 3.86

HOG [3] ✗ ✗ 13.49 33.22 43.66 10.31 2.76 18.25 31.91 4.24

GSM [10] ✗ ✗ 17.28 34.47 45.26 15.06 5.29 33.71 52.95 8.00

One-stream [21] ✓ ✗ 13.11 32.98 42.51 14.02 12.04 49.68 66.74 13.67

Two-stream [21] ✓ ✗ 12.43 30.36 40.96 13.42 11.65 47.99 65.50 12.85

Zero-Padding [21] ✓ ✗ 17.75 34.21 44.35 18.90 14.80 54.12 71.33 15.95

TONE [22] ✓ ✗ 16.87 34.03 44.10 14.92 12.52 50.72 68.60 14.42

HCML [22] ✓ ✗ 24.44 47.53 56.78 20.80 14.32 53.16 69.17 16.16

BDTR [23] ✓ ✗ 33.47 58.42 67.52 31.83 17.01 55.43 71.96 19.66

cmGAN [2] ✓ ✗ – – – – 26.97 67.51 80.56 27.80

Proposed D2RL ✓ ✓ 43.4 66.1 76.3 44.1 28.9 70.6 82.4 29.2

Table 2. Ablation study on the RegDB dataset.

Method
Components RegDB

VAE CC CE triplet CMC-1 (%) mAP (%)

Baseline ✓ ✓ ✗ ✗ 28.5 23.8

D2RL (no VAE) ✗ ✓ ✓ ✓ 34.8 31.3

D2RL (no CC) ✓ ✗ ✓ ✓ 33.7 29.9

D2RL (no CE) ✓ ✓ ✗ ✓ 41.7 40.6

D2RL (no triplet) ✓ ✓ ✓ ✗ 39.5 37.4

D2RL ✓ ✓ ✓ ✓ 43.4 44.1

are also included for comparisons. Table 1 presents the re-

sults of all the methods. The methods specially designed

for IV-REID generally perform much better than the ones

that are not designed for IV-REID. Our method significantly

outperforms the state-of-the-art IV-REID methods on both

the RegDB and SYSU-MM01 datasets.

4.4. Ablation study

Our method consists of two sub-networks, the image-

level discrepancy reduction sub-network TI and the feature-

level discrepancy reduction sub-network TF , respectively

taking GAN and ResNet-50 as their backbones. TI is

mainly configured with the VAE and cycle-consistency

(CC) losses while TF is optimized with the cross-entropy

(CE) and triplet losses. For the ablation study, Table 2 re-

ports the resultant CMC-1 and mAP values on the RegDB

dataset by removing one loss at a time. Note that the

baseline is obtained by only using TF without image-level

modality unification.

Note that the first two losses, VAE (for modality disen-

tanglement) and cycle-consistency (for modality transfer),

are responsible for the image-level modality unification.

Removing either of them affects the image generation, thus

degrading the performance more significantly. When re-

moving both of them (the baseline), the performance drops

dramatically to 28.5% in CMC-1 as it can only rely on fea-

ture embedding across modalities. The triplet loss is slightly

more effective than the cross-entropy loss.

4.5. Discussions

Why reducing discrepancy separately? For IV-REID,

previous methods try to reduce the appearance and modal-

ity discrepancies together from the feature-level view. Our

method aims at reducing the appearance and modality dis-

crepancies separately. We compare a feature-level method

BDTR [23] with our proposed dual-level discrepancy re-

duction method D2RL for investigating which strategy is

more effective. We evaluate both BDTR and our method

on the RegDB dataset. First, we plot the 1024-d person de-

scriptor in the 2D feature space for visualization using the

t-SNE method [14]. Testing samples of 20 persons were

randomly selected from the RegDB dataset. Figure 4(a)

and Figure 4(b) stand for visualizations of the initial and

best results of the BDTR model respectively. We can ob-

serve that single-modality intra-person samples get closer

to each other after training, but cross-modality intra-person

samples relatively do not change too much. Figure 4(c) and

Figure 4(d) are visualizations of the initial and best results

of our proposed D2RL network respectively. From these

figures, we can find that not only the single-modality intra-

person samples get closer to each other after training, but

also some cross-modality intra-person samples move closer

(as indicated by the red cycles in Figure 4(d)).

For further validating the effectiveness of reducing dis-

crepancy separately, we conduct experiments to see how

effective the embedded features are by again comparing

BDTR and our method on the RegDB dataset. Figure 4(e)

shows the initial distribution of distances of the inter-person

and intra-person pairs for BDTR. Figure 4(f) shows the dis-

tribution after 4,800 training steps. Figure 4(g) and (h) show

the distributions before and after training for our method.

It is clear that, after training, our method can separate the

inter-person and intra-person pairs more further apart than

BDTR. It indicates that feature embedding in the unified

space is more effective than the one in the image space.

Which modality to unify? We evaluate three options for

modality unification, i.e., the visible modality, the infrared
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Figure 4. (Top) Visualization of the feature space. A total of 20 persons are randomly selected from the testing set. Samples with the same

color indicate they are of the same person. The markers “dot” and “cross” denote images from the visible and infrared domain respectively.

(a-b) are obtained using BDTR [23] on the RegDB datasetm which uses only feature-level constraints; (c-d) are obtained by our method.

(Bottom) Histogram of the feature distances. (e-f) are obtained by BDTR; (g-h) are obtained by our method.

Table 3. Comparison of different modality unification options.

RegDB SYSU-MM01

Metrics (%) mAP CMC-1 mAP CMC-1

D2RL(v) 36.4 39.1 28.4 28.1

D2RL(i) 43.6 42.9 27.8 27.4

D2RL 44.1 43.4 29.2 28.9

modality and the multi-spectral modality. We respectively

use D2RL(v), D2RL(i) and D2RL to denote these three op-

tions. Table 3 shows the results and there are several ob-

servations. First, unification to the multi-spectral modal-

ity, D2RL, performs the best. Second, compared with other

methods in Table 1, modality unification helps no mat-

ter which modality is chosen for unification. Finally, we

find that D2RL(i) performs better than D2RL(v) on the

RegDB dataset, while performing worse on the SYSU-

MM01 dataset. We attribute this phenomenon to the set-

ting for dataset evaluation. For the RegDB dataset, the

gallery consists of infrared images, implying that the in-

frared modality plays an important role. The majority of

original infrared images makes D2RL(i) more effective on

the dataset. As for the SYSU-MM01 dataset, the gallery

consists of visible images, the results go the other way

round. Our unification to the multi-spectral modality takes

advantages of both domains and is thus more robust.

Why joint training? The whole framework consists of

an image-level discrepancy reduction sub-network and a

feature-level discrepancy reduction sub-network. They play

different roles. They can be trained separately or jointly.

Table 4 compares these two options. First, joint train-

ing provides significant performance boost as the two sub-

Table 4. Comparison between joint and separate training.

RegDB SYSU-MM01

Metrics (%) mAP CMC-1 mAP CMC-1

Separate 40.7 39.9 25.7 26.1

Joint 44.1 43.4 29.2 28.9

networks benefits each other. Second, when comparing with

other methods in Table 1, even with the separate training,

our method outperforms the state-of-the-art methods.

How to balance sub-networks TI and TF? In the total

loss of the proposed method defined in Equation (8), we

use the weight γ to balance the contributions of TI and TF .

As TI focuses on the modality discrepancy reduction and

TF pays attention to the appearance discrepancy reduction,

the larger γ is, the more contribution will attribute to the

appearance reduction, in other words, the feature-level dis-

crepancy reduction sub-network.

Figure 5 shows the results of the mAP and CMC-1 val-

ues on RegDB dataset by varying the weight γ. We can find

that the re-identification accuracy varies when the weight γ

changes, and there exists a suitable value to balance the con-

tributions of TI and TF . Although TI alleviates the modal-

ity discrepancy, it could also brings in noisy information.

Thus, the balance between TI and TF is important.

4.6. Visualization of results

The ability of modality unification. To demonstrate the

effectiveness of our image-level discrepancy reduction sub-

network TI , we show some visual results of image transla-

tion in Figure 6. For each of the RegDB and SYSU-MM01

datasets, we show six groups of images. Each group has
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Figure 5. Curves of mAP (left) and CMC-1 (right) with respect to

the hyper-parameter γ on RegDB dataset.

                

(a) RegDB (b) SYSU-MM01

Figure 6. Examples of translated images generated by TI on (a)

RegDB and (b) SYSU-MM01. For each dataset, from left to right,

the four images of a row are the original visible image, the gener-

ated infrared image, the original infrared image, and the generated

visible image respectively. The original visible and infrared im-

ages of the same row have the same identity.

four images: the original visible image, the generated in-

frared image, the original infrared image and the generated

visible images. From the visual examples, we can observe

that the sub-network TI is good at translating visible im-

ages to infrared ones, and the effectiveness of translating

infrared images to visible ones is acceptable. However,

some generated images could have color distortion, such as

the sixth person of Figure 6(a). We can also find that the

translation results of the RegDB dataset looks better than

those of the SYSU-MM01 dataset. It is because the SYSU-

Top-10 RankingQuery

x̂

x

ŷ

y

GT

x̂

x

ŷ

y

Figure 7. Visualization of failure cases. (Top) The query set is

[ŷ;y] and the gallery set is [x; x̂]; (Bottom) The query set is [x; x̂]
and the gallery set is [ŷ;y].

MM01 dataset is more colorful, and the person images are

not aligned well with different postures and scales. It may

lead to difficulties for the image-level discrepancy reduc-

tion sub-network to be trained well. However, note that the

final goal is not to generate images with good visual appear-

ances, but to have good retrieval results. From the results in

Table 1, the translated images do help a lot on IV-REID.

Failure cases. We select the two worst query results (in

which none of the top-10 results is correct) for illustrating

the failure cases. For each query, the two rows respectively

show the ranking list of generated images and the list of cor-

responding original images. It shows that, for some cases,

the generated images could be bad and image-level modal-

ity unification can not work well on these queries.

5. Conclusions

In this paper, we present Dual-level Discrepancy Reduc-

tion Learning network (D2RL) for the IV-REID task that

exhibits both modality discrepancy and appearance discrep-

ancy. Unlike previous IV-REID methods, instead of han-

dling the mixed discrepancy with feature embedding, we

propose to handle the discrepancies separately. We propose

an image-level sub-network for modality unification, which

generates a unified multi-spectral representation by image

translation. With the unified representations, a feature-level

sub-network can better reduce the appearance discrepancy

by feature embedding. The proposed method shows signif-

icant improvement against the state-of-the-art methods.
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