
Object Instance Annotation with Deep Extreme Level Set Evolution

Zian Wang1 David Acuna2,3,4∗ Huan Ling2,3∗ Amlan Kar2,3 Sanja Fidler2,3,4

1Tsinghua University 2University of Toronto 3Vector Institute 4NVIDIA

wza15@mails.tsinghua.edu.cn {davidj, linghuan, amlan, fidler}@cs.toronto.edu

Abstract

In this paper, we tackle the task of interactive object seg-

mentation. We revive the old ideas on level set segmentation

which framed object annotation as curve evolution. Care-

fully designed energy functions ensured that the curve was

well aligned with image boundaries, and generally “well

behaved". The Level Set Method can handle objects with

complex shapes and topological changes such as merging

and splitting, thus able to deal with occluded objects and

objects with holes. We propose Deep Extreme Level Set Evo-

lution that combines powerful CNN models with level set

optimization in an end-to-end fashion. Our method learns

to predict evolution parameters conditioned on the image

and evolves the predicted initial contour to produce the

final result. We make our model interactive by incorporat-

ing user clicks on the extreme boundary points, following

DEXTR [29]. We show that our approach significantly out-

performs DEXTR on the static Cityscapes dataset [16] and

the video segmentation benchmark DAVIS [34], and per-

forms on par on PASCAL [19] and SBD [20].

1. Introduction

Interactive object segmentation is a well studied prob-

lem with the aim to reduce the time and cost of annotation.

Having semi-automatic tools is particularly important when

labeling large volumes of data such as video [34, 29], or 3D

medical imagery [1]. While learning from weak labels such

as image level tags or single point clicks is lending itself

as a fruitful alternative direction [5], having access to more

accurate annotations is still a necessity in order to achieve

high-end performance on downstream tasks [41].

Early work on interactive annotation incorporated user

strokes on both the foreground and background and used

graph cut optimization to find objects [36, 6, 12]. Contour-

based approaches such as Intelligent Scissors [31] traced ob-

ject boundaries as optimal paths along edges, guided by the

user’s mouse cursor. In Polygon-RNN [9, 3], the authors pre-

dicted polygon annotations with a CNN-RNN architecture

that outputs one vertex at a time. Human-level performance

∗authors contributed equally

Deep Extreme Level Set Evolution

Level Set Branch Motion Branch Modulation Branch

Interactive Instance Segmentation

Level Set Evolution

∂L

∂θ

φ = φ+∆t
∂φ

∂t

Figure 1: We introduce Deep Extreme Level Set Evolution (DELSE),

which combines powerful CNN image feature extraction with Level Set

Evolution. Our approach is end-to-end differentiable, and produces “well

behaved” object contours. DELSE further exploits extreme points [29] for

the purpose of interactive annotation.

was achieved with only a few user clicks per object. How-

ever, by assuming that an object is a closed cycle, the model

cannot easily deal with objects cut in half due to occlusion,

or wiry or donut like shapes that have holes.

An attractive alternative is to exploit the power of CNN-

based architectures and treat object segmentation as a pixel-

wise labeling task. In recent work [29], the authors proposed

DEXTR, an approach that requires the user to only click

on the four extreme boundary points. These are consumed

as input to DeepLab, which is then shown to produce high

quality object masks. However, pixel-wise approaches do

not typically model pixel dependencies and may thus lead to

spurious holes, small scattered islands, or overall irregular

shapes. Fixing these is a time consuming task.

In our work, we revive the old idea of using level set

methods for object segmentation [32, 8]. These find closed

contours that align accurately with the image boundaries,

and ensure that the resulting curve is regular and well be-

haved through a carefully designed energy function. Unlike

parametric representations such as Active Contour Mod-

els [23, 8, 30], or approaches like Polygon-RNN++[3], level

set methods can handle object boundaries with complex

topologies such as corners and cusps, and are able to deal

with topological changes like merging and splitting. While

the literature on level set methods for segmentation is vast,

most of the prior work either uses weak image gradients as

observations [23, 7, 24], or exploit level sets as a postpro-

cessing step to denoise CNN predictions [38].

7500

We propose an approach that combines a powerful CNN

architecture with Level Set Evolution in an end-to-end

fashion. Our model employs a multi-branch architecture

that learns to predict level set evolution parameters con-

ditioned on a given input image, and evolves a predicted

initial contour to segment the object. We additionally

make our methods interactive by incorporating both, ex-

treme points following [29], and motion vectors by hav-

ing annotators drag and drop erroneous points. We show-

case our method on a variety of datasets and tasks, and

show that it significantly outperforms state-of-the-art base-

lines on the Cityscapes dataset [16], and achieving state-

of-the-art results for the task of video-based object anno-

tation on the DAVIS dataset [34]. Code is available at

https://github.com/fidler-lab/delse.

2. Related Work

Level Set Methods for Segmentation: Implicit represen-

tations of curves, rather than explicit (i.e. active contours

models [23, 8]), naturally handle complex object topolo-

gies such as holes or splitting. In the Level Set formula-

tion [32, 8], the curve iteratively evolves by moving along

the descent of the level set energy, which includes the exter-

nal energy coming from the data and internal energy coming

from the curve. Edge based methods [23, 15, 7, 24, 8] mostly

employ edge features in the external energy and evolve an

initial curve to fit object boundaries. Instead of using edges,

region based methods [35, 33, 10] utilize region homogene-

ity to segment objects. Exploiting texture, color and shape

information has also been extensively studied [18]. Given

the recent advances of deep learning in image segmenta-

tion [11, 13, 39, 4, 28], we proposed to combine a convo-

lutional neural network with a carefully designed level set

evolution scheme, thus exploiting the advantages of both.

Recent work on image segmentation has also combined

the traditional active contour models with deep neural net-

works. [37] crops out patches around the initial curve and

employ a CNN to predict the movement for curve evolution,

patch by patch. For the task of building footprint extrac-

tion, [30] employs CNN features to predict the parameters of

the active contour models. The authors propose a structured

prediction formulation to train the model end-to-end by op-

timizing for an approximation to IoU. [14] extends this to

encourage the active contour to match building boundaries.

However, these methods need careful curve initialization and

suffer from the typical drawbacks of parametric curves. [38]

uses level set evolution as a postprocessing step to a CNN,

and trains on unlabeled data processed in a semi-supervised

fashion. [21] adds the level set energy in the loss function

and uses a CNN to directly predict the level set function for

salient object detection. Recent works also utilize motion of

pixels for segmentation, which shares similarities with level

set evolution. [27] employs deep CNNs to learn an affinity

matrix and refines the segmentation output via spatial propa-

gation. [22] adds a recurrent pathway onto deep CNNs and

reconstructs neural cells by iterative extension. In [2], the au-

thors use level set evolution during training to denoise object

annotations. Our key contribution is a deep level set model

for instance segmentation which can be trained end-to-end

and naturally incorporates a human in the loop.

Interactive Annotation has been addressed with a variety

of methods, ranging from graph-cut based approaches with

simple image potentials such as [36, 6, 12], to recent work

that employs powerful CNN architectures [9, 3, 29]. In [29],

the authors incorporate user-provided extreme boundary

points as input to DeepLab [11]. Contour-based interac-

tive segmentation models include Intelligent Scissors [31],

which find optimal paths along the boundary guided by the

user’s mouse cursor. Polygon-RNN [9, 3] predicts a polygon

around the object with a CNN-RNN architecture. [26] pre-

dicts a spline outlining an object using Graph Convolutional

Networks. In [17], the classical level set energy is augmented

with user’s clicks. We here build on top of the DeepLab-v2

architecture [11] and exploit user-clicked extreme points as

in [29]. Our approach is an end-to-end trainable level set

framework for interactive object segmentation.

3. Background on Level Sets

Let C(s) : ΩP ! R
2 denote a parametric curve, where

s 2 ΩP = [0, 1] is the parameterization interval. The level

set method implicitly represents a curve using the zero cross-

ing of a level set function (LSF) �(x, y):

C = {(x, y)|�(x, y) = 0} (1)

The minimization of the energy can be viewed as an evolu-

tion along the descent of the energy. Let C(s, t) denote a

curve that depends on a time parameter t 2 R. The curve

evolution can then be formally defined as:

@C(s, t)

@t
= V ~N (2)

This can also be expressed by the evolution of the level set

function �(x, y, t) by

@�

@t
= �V |r�|, (3)

where ~N is the unit vector in the inward normal direction

of the curve and V indicates the velocity along the normal

direction. Evolution of the LSF is performed iteratively.

Let �(x, y, t), t 2 R denote the evolution of LSF, where

we use �i(x, y) to denote �(x, y, i) for simplicity. For i 2
{0, 1, · · · , T � 1}, the T -step iterative update is:

�i+1(x, y) = �i(x, y) +∆t
@�i

@t
, (4)

where ∆t is the time step, @�
@t

is the update term derived

from the level set energy, �0(x, y) is the initial LSF, and

�T (x, y) is the corresponding output after T evolution steps.

7501

Level Set
Evolution

Encoder
CNN

Modulation
Branch

Level Set
Branch

Motion
Branch

Motion Editing m(x, y)

φ0(x, y)

~V (x, y)

φi+1 = φi +∆t
∂φi

∂t

φT (x, y)

Figure 2: Architecture of DELSE: Extreme points are encoded as a heat map and concatenated with the image, and passed to the encoder CNN. A

multi-branch architecture is used to predict the initial curve and parameters used in level set evolution. The Level Set Branch predicts initial level set function

and evolve it using parameters predicted in the Motion and Modulation branches to get the final curve. The model is differentiable and trained end-to-end. For

interactive annotation, we assume that the annotator drags and drops a wrong boundary point, producing a motion vector which is incorporated into the model.

For the task of object segmentation, one aims to find the

boundary curve C that separates the foreground object from

the background in an image. In the level set method, curve C
is represented implicitly by LSF �, and the foreground and

background regions are denoted as {(x, y) 2 ΩI |�(x, y) >
0} and {(x, y) 2 ΩI |�(x, y) < 0}, respectively.

4. Deep Extreme Level Set Evolution (DELSE)

Given an input image I , our goal is to employ a neural

network to predict both the initial LSF �0 as well as the

update terms used in level set evolution. We then evolve

the initial LSF for T steps to generate the final LSF as our

segmentation result. The whole evolution process is differ-

entiable and thus can be trained end-to-end. To make our

model interactive, we follow [29] and make use of extreme

points P (i.e. left-most, right-most, top, and bottom pixels

of an object) as an additional input to our model. Extreme

points have been shown as minimal yet very effective input

to guide the network. The proposed DELSE model for object

instance segmentation is illustrated in Fig. 2.

In what follows, we describe the prediction of initial

LSF in Section 4.1, and prediction of the level set terms in

Section 4.2. Section 4.3 presents our training scheme.

4.1. Initial Level Set Function Prediction

Traditional level set methods require a human to la-

bel a rough boundary as an initialization, which is time-

consuming. In our proposed model, we take the four extreme

points as input and utilize the CNN model to automatically

generate a rough estimate of the initial level set function �0,

which is more efficient.

Following [29], we place a Gaussian around each ex-

treme point to get a heatmap, and concatenate it with the

RGB image as the fourth channel. The four-channel input

is propagated through an encoder CNN and the extracted

feature map is then fed into the Level Set Branch to regress to

the initial LSF. A popular type of LSF is the signed distance

function (SDF) of the curve. Instead of predicting the SDF,

we choose the truncated signed distance function (TSDF) as

our LSF with a threshold D (D = 30 in our work), where

�TSDF (x, y) = sgn(�SDF (x, y)) min{|�SDF (x, y)|, D}.

This reduces the variance of the output and makes the train-

ing process more stable. The Level Set Branch aims to pre-

dict the initial LSF �0,✓(x, y) to be as close to �TSDF (x, y)
as possible. We use the subscript ✓ to indicate that � is

predicted and thus a function of the network’s parameters ✓.

4.2. DELSE Components

The core of the level set methods is the definition of the

level set terms, which define the rules for the level set evo-

lution. The level set evolution typically consists of several

different update terms which can be roughly divided into

two categories: (1) External terms that attract the curve to a

desired location based on the data evidence, such as edges

with strong gradients; and (2) Internal regularization terms

on the curve’s shape, e.g. curvature and length of the curve.

In our work, we carefully design three different terms that

best exploit deep neural networks to perform efficient level

set evolution, which we describe next.

Motion Term: Since deep neural networks have the abil-

ity to extract both low-level details and high-level semantics,

we employ a CNN to predict the external term used in level

set evolution. Specifically, we feed the feature map into a

branch which we refer to as the Motion Branch, to predict

the motion map ~V✓(x, y). The motion map consists of a

vector at each pixel, and forms a vector field indicating the

direction and magnitude of the motion of the curve. Ideally,

the direction of the curve’s motion during evolution should

efficiently minimize the level set energy. We use the neg-

ative gradient of the ground-truth distance function as the

ground-truth direction ~Ugt of the motion map. We borrow

this term from [4] who used it to help a CNN predict the

energy of a watershed transform. We can compute it as:

~Ugt(x, y) = �
r�DT (x, y)

|r�DT (x, y)|
(5)

where �DT denotes distance transform of GT boundary.

Consider a curve evolving in the vector field ~V✓. Accord-

ing to the level set equation, the update term, i.e. motion

term for LSF can be written as

h@�i

@t

i

motion
= �h~V✓,r�ii (6)

7502

We use a subscript to indicate that the gradient update will

consist of several terms. Traditionally, edge based terms

such as Laplacian of Gaussian features and expansion force

such as the balloon term [15] have been used to attract curves

to object boundaries. The motion term above has the func-

tionality of both. It can learn to act as an edge detector to

make the evolved boundary more precise, and can act as the

expansion force that prevents the curve from collapsing. It

also has the following advantages. Firstly, since the tradi-

tional active contours have the tendency to shrink, the initial

LSF is usually initialized outside the object. The proposed

motion term allows the initial LSF to be both inside and

outside of the object. Secondly, people are usually interested

in the geometry of the curve and the level set evolution only

uses the projection of ~V✓ onto the normal direction of the

curve. Thus, small angular errors (smaller than 90�) of ~V✓ is

tolerable and will still facilitate the evolution process.

Curvature Term: We further regularize the predicted

curve by moving it in the direction of its curvature. In most

cases this will help to smooth the curve and eliminate the

noise on the boundary. However, in practice, some objects

may have sharp corners, and thus directly applying this reg-

ularization may hurt the model’s performance. To address

this, we introduce the Modulation Branch to predict a mod-

ulation function m✓(I, P) 2 [0, 1] to selectively regularize

the curve. Let denote the curvature. The curvature term

for the level set can thus be written as
h@�i

@t

i

curvature
= m✓ |r�i| (7)

= m✓ |r�i| div
⇣ r�i

|r�i|

⌘

.

This gives the flexibility to the model to preserve the real

sharp corners around the object and only remove the noise

that damages the shape of the curve.

Regularization Term: A desirable shape of LSF �(x, y)
could be a signed distance function of the corresponding

contour. During the evolution of LSF, however, irregularites

may occur and will cause instability and numerical errors in

the final result. In this paper, we follow the remedy proposed

in [25], and introduce the distance regularization term to

restrict the behavior of LSF. Mathematically, the additional

regularization term is
h@�i

@t

i

reg
= div

⇣

p0(|r�i|)
r�i

|r�i|

⌘

(8)

div is divergence and p a double-well potential function:

p(s) =

8

>

>

<

>

>

:

1

(2⇡)2
(1� cos(2⇡s)), if s 1

1

2
(s� 1)2, if s � 1

The function p(s) has two local minima at s = 1 and s = 0.

With the regularization term, |r�| is regularized to be either

close to 0 or close to 1, thus helping to maintain the signed

distance property of the LSF. In our DELSE, the Level Set

Branch aims to predict the truncated signed distance function

as LSF, which exactly matches with the regularization term.

The level set evolution of our full DELSE can finally be

described as the sum of all three terms:
@�i

@t
=� h~V✓,r�ii+ � ·m✓ |r�i| div

⇣ r�i

|r�i|

⌘

(9)

+ µ · div
⇣

p0(|r�i|)
r�i

|r�i|

⌘

where ~V✓ is the direction map predicted by the network, m✓

is the predicted modulation function, and � and µ weight

different terms. With the initial LSF �0,✓ predicted by the

network, the level set evolves T steps with a time step ∆t as

mentioned in Eq. 4. The evolution process is differentiable

and can thus be trained end-to-end.

4.3. Network Training

To facilitate training, we first pre-train the three branches

of our model, and then jointly train the model using our

formulation. We provide details in this section. The training

process is also summarized in Algorithm 1.

Multi-Task Pre-training: During pre-training, three

types of losses are jointly optimized with a multi-task loss:

Lpre(✓) = L0(✓) + ↵LT (✓) + � Ldirect(✓) (10)

where ↵,� are the weights of the different loss terms. We

describe different loss terms next.

Level Set Branch Supervision: The level set branch pre-

dicts the initial LSF �0,✓. During the pre-training process,

we employ the mean square error as our objective function

L0(✓) =
X

(i,j)

(�0,✓(i, j)� �gt(i, j))
2 (11)

where �gt is the truncated signed distance function of the

ground-truth contour.

Modulation Branch Supervision: During pre-training,

we simulate initial LSF �̃0 to train this branch. We do this

by shifting ground-truth LSF �gt with a distance ∆h,

�̃0(x, y) = �gt(x, y) +∆h (12)

where ∆h is uniformly sampled from [�5, 5]. The randomly

shifted LSF will zoom in or out of the ground-truth contour.

We then evolve the �̃0 for T steps and generate the output

LSF �̃T after T steps based on the predicted term m✓ and
~V✓. During pre-training, the model learns to fix the random

shift and predicts the correct position of the object boundary.

We employ a weighted binary cross entropy loss to super-

vise the output H(�̃T), where

H(s) =

(

1, s � 0

0, s < 0
(13)

7503

Algorithm 1 DELSE Training Algorithm

Input: I (images), P (extreme points), M (GT masks)

1: for Ii, Pi,Mi ∈ I,P,M do . Pre-training Loop

2: �0, ~V , m ← CNNθ(Ii, Pi) . Forward Pass

3: L0 ← LevelSetLoss(�0,Mi)

4: Ldirect ← DirectionLoss(~V ,Mi)
5:

6: �̃0 ← LSFSimulation(Mi)
7: for j ← 0 to T − 1 do . Level Set Evolution

8: �̃i+1 = �̃i +∆t
∂φ̃i

∂t

9: LT ← EvolutionLoss(�̃T ,Mi)
10:

11: Lpre ← L0 + ↵LT + �Ldirect . Calculate Loss

12: Update Network: ✓ ← ✓ − ⌘
∂Lpre

∂θ

13:

14: for Ii, Pi,Mi ∈ I,P,M do . Joint Training Loop

15: �0, ~V , m ← CNNθ(Ii, Pi)
16: for j ← 0 to T − 1 do

17: �i+1 = �i +∆t
∂φi

∂t

18: LT ← EvolutionLoss(�T ,Mi)

19: Update Network: ✓ ← ✓ − ⌘
∂LT

∂θ

is the Heaviside function. Since it only has effect on the

zero level set, we replace it with the approximated Heaviside

function with a parameter ✏

H✏(s) =
1

2

⇣

1 +
2

⇡
arctan

�s

✏

�

⌘

. (14)

Thus the loss can be written as

LT (✓) =
X

(i,j)

�wp Mgt(i, j) log H(�̃T,✓(i, j)) (15)

� wn

�

1�Mgt(i, j)
�

log(1�H(�̃T,✓(i, j)))

where wp and wn are weights for the positive (foreground)

and negative (background) classes, respectively. Here, Mgt

denotes the ground-truth segmentation mask. Since the

whole process is differentiable, the network learns to gener-

ate the modulation function m✓ for the curvature term.

Motion Branch Supervision: The gradient of the motion

branch during pre-training comes from two parts. First,

using the simulated initial LSF �̃ and the loss LT mentioned

above, the network can automatically learn the direction and

magnitude of the vector field. Second, following [4], we

utilize mean square error in the angular domain to enforce

additional constraints on the direction of motion vectors,

Ldirect(✓) =
X

(i,j)

⇣

cos�1
D ~V✓(i, j)

| ~V✓(i, j)|
, ~Ugt(i, j)

E⌘2

. (16)

This loss helps the network to learn the correct direction of

the vector field, but leaves the magnitude unsupervised.

End-to-end Joint Training: After pre-training, we di-

rectly evolve the predicted initial LSF �0,✓ for T steps to get

the final output �T,✓. Then we use the weighted binary cross

entropy loss in Eq. 15 to supervise the output �T,✓.

4.4. Interactive Annotation by Motion Field Editing

We aim to give additional control to the annotator to

interactively correct any mistakes produced by the model.

In DEXTR [29], the annotator iteratively clicks on a correct

boundary point in order to guide the model make a better

prediction. The authors simply add corrected points to the

channel containing extreme points. We here additionally

enable the annotator to drag and drop an erroneous boundary

point onto the correct one. In the language of the level set

method, one can think of this as providing a corrected motion

vector. This motion vector is then exploited in our model to

re-predict the level set energy. We thus refer to this approach

as motion field editing. We first describe how we simulate

human interaction during training, and then provide details

of how the model incorporates this information.

Human-in-Loop Simulation: To train our model to ex-

ploit human corrections we need to simulate these during

training. Specifically, we find the most erroneous predicted

boundary point (x, y)⇤pred as argmax�T (x,y)=0 �DT (x, y),
with �DT a distance transform of the ground-truth contour.

The corresponding GT contour point (x, y)gt is found as

argmin(x,y)gt ||(x, y)
⇤

pred � (x, y)gt||
2. Simulated correc-

tion is defined as dragging a point (x, y)⇤pred to (x, y)gt.

Motion Field Editing: We incorporate the resulting 2D

vector into our model in two different places. First, we fol-

low [29] and add the corrected point to the channel contain-

ing the extreme points. Secondly, we create two Gaussian

heatmaps around the location of the erroneous point, en-

coded in two separate channels. The � of the Gaussian is set

to be ||(x, y)⇤pred� (x, y)gt|| in both channels, indicating the

magnitude of the corrected vector. We then multiply the two

channels with |x⇤

pred � xgt| and |y⇤pred � ygt|, respectively,

where we normalize these values with the norm of the mo-

tion vector. This indicates the magnitude of change in each

axis. We tried several different ways of encoding the motion

vector, and this yielded the best results. The encoded vector

is concatenated with the predicted motion field ~V✓(x, y), and

a new motion field is re-predicted using a residual convolu-

tional block. In particular, this block consists of 6 residual

convolutional layers with 128 channels followed by a con-

volutional layer with 2 channels. With the newly predicted

motion field, we simply re-run level-set evolution to get the

repredicted segmentation mask. Fig. 2 visualizes the model.

5. Experimental Results

We evaluate our method on several datasets: PASCAL

[19], SBD [20], Cityscapes [16], DAVIS 2016 [34].

Implementation Details: Our DELSE employs ResNet-

101 as the encoder CNN and a PSP module [40] for each

of the three prediction branches. Additionally, considering

that curve evolution relies on both low-level information and

high-level semantics, we follow [3] and further add skip-

connections in the encoder CNN to aggregate both low-level

7504

Model Bicycle Bus Person Train Truck Motorcycle Car Rider mIoU

DEXTR* 71.92 87.42 78.36 78.11 84.88 72.41 84.62 75.18 79.11

DELSE* 74.32 88.85 80.14 80.35 86.05 74.10 86.35 76.74 80.86

DEXTR [29] 76.36 88.58 82.44 76.40 87.53 75.20 87.17 79.06 81.59

Level Set Regression 76.05 88.21 82.40 78.69 86.50 74.31 87.17 78.99 81.54

DELSE 77.83 89.56 83.42 82.45 88.11 77.16 88.29 79.98 83.35

Table 1: Performance (mIoU) on Cityscapes-Stretching. Method with * is without extreme points annoation.

Model Bicycle Bus Person Train Truck Motorcycle Car Rider mIoU

Polygon-RNN++ [3] 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

DELSE* 67.15 83.38 73.07 69.10 80.74 65.29 81.08 70.86 73.84

Table 2: Performance (mIoU) on Cityscapes-Hard. DELSE* is without extreme points annotation.

Model F mean(1 pix) F mean(2 pix)

DEXTR* 54.00 68.60

DELSE* 60.29 74.40

DEXTR 60.65 73.85

Level Set Regression 58.87 72.08

DELSE 64.35 77.62

Table 3: Boundary evaluation on Cityscapes-Stretching. Method

with * is without extreme points annotation.

and high-level features. We use 3x3 conv filters with batch

normalization and ReLU activations. We refer to the feature

map with skip-connection architecture as skip features.

On DAVIS and PASCAL, we use image resolution of

512x512 following DEXTR [29]. We use the GT box to

crop the image, where we expand it by 50 pixels in each

direction as in [29]. On Cityscapes, we use input resolution

of 224x224 following PolygonRNN++ [3] and we expand

the box by 10 pixels due to the large number of tiny instances.

The derivatives in DELSE are computed by mimicking

the central difference scheme. We use T = 5 evolution

steps for both training and inference. The ratio of evolution

terms is chosen to be � = 1, µ = 0.04, respectively, while

the parameter ✏ for the approximated Heaviside function is

set to 1. We weigh various losses during pre-training with

↵ = 100,� = 1, respectively. The model is pre-trained

for 20 epochs and jointly trained for 60 epochs. The initial

learning rate is set to 3e-4, and decayed by 0.3 every 20

epochs. We use SGD with momentum of 0.9 and use a batch

size of 12. Training on PASCAL takes around 30 GPU hours,

and inference time is 160 milliseconds per object instance.

Evaluation Metrics: We utilize two quantitative measures

to evaluate our model: 1) Intersection-over-union (IoU), and

2) since getting accurate boundaries is crucial, we use the

metric proposed in [34] to additionally evaluate accuracy

around the boundaries. The boundary metric uses a given

threshold to compute precision and recall along the con-

tour of the predicted mask and then computes F-measure as

a trade-off between both. The official boundary threshold

in [34] is quite loose, thus not well reflecting the perfor-

mance of different models. On DAVIS, in addition to the

official boundary threshold, we perform a multi-scale eval-

uation by ranging the threshold from 1 to 10 pixels. Since

Model F mean(1 pix) F mean(2 pix)

Polygon-RNN++ * 46.57 62.26

DELSE* 48.59 64.45

Table 4: Boundary evaluation on Cityscapes-Hard. DELSE* is

without extreme points annotation.

Model PASCAL PASCAL + SBD

DEXTR 90.5 91.5

Level Set Regression 87.7 88.7

DELSE 90.5 91.3

Table 5: Performance (mean IoU) on PASCAL and SBD.

the Cityscapes dataset is finely annotated and there is a con-

siderable number of small instances, we set the boundary

threshold to be 1 and 2 pixels.

Baselines: We compare DELSE with Polygon RNN++ [3]

and DEXTR [29] as they represent the current state-of-the-

art methods for object annotation. We also compare against

our own baseline which we refer to as Level Set Regression,

which regresses to LSF. Note that Polygon-RNN++ takes the

bounding box as input (2 clicks), thus requiring less human

guidance than our/DEXTR models which exploit extreme

points (4 clicks). For a fair comparison, we run DEXTR and

DELSE on Cityscapes with only the cropped image as input.

We follow [29] to find the optimal segmentation threshold

for both DEXTR and DELSE.

5.1. Datasets

Cityscapes: The Cityscapes dataset contains 5000 finely

annotated images of driving scenes, including 2975 images

for training, 500 for validation and 1525 for testing. Eight

object classes are provided with per-instance annotation. To

make a fair comparison, we follow the same split as in [9, 3].

We evaluate in two different settings. In one, we stretch the

cropped bounding box image into a square, and denote this

dataset as Cityscapes-Stretching. However, in Polygon-

RNN++ [3], the authors enlarged the bounding box to be

square and then cropped the image inside it. This makes

for a considerably harder prediction task since the image

crop may now contain multiple objects. In some cases this

may lead to ambiguities about which object is required to be

labeled, thus somehow artificially decreasing performance.

We denote this setting as Cityscapes-Hard. We compare

with PolygonRNN++ [9, 3] on Cityscapes-Hard to allow

7505

Figure 3: Qualitative results on Cityscapes. Note that our model takes ground-truth boxes as input, following the setting of Polygon-RNN.

Figure 4: Qualitative results for occluded objects on Cityscapes. Top row: ground-truth, Bottom row: Prediction from DELSE.

for a fair comparison, and compare with DEXTR [29] on the

Cityscapes-Stretching dataset.

PASCAL and SBD: The PASCAL VOC dataset [19] con-

tains 3507 instances in training and 3427 instances in the

val set. Semantic Boundaries Dataset (SBD) [20] consists

of instance-level annotation for 11355 images taken from

the PASCAL VOC 2011 dataset. We follow [29] and used

additional annotation from SBD to augment the PASCAL

training set and evaluate on the PASCAL val set. The aug-

mented training set contains 10582 images in total.

DAVIS 2016: The DAVIS dataset consists of 3455 finely

annotated frames in 50 video sequences. We follow the

official split and evaluation metrics and perform frame-by-

frame segmentation to evaluate our method.

5.2. Evaluation in Automatic Mode

IoU metrics: The IoU performance of our model on

Cityscapes is shown in Tables 1, 2. Results show that DELSE

outperforms state-of-the-art methods in both the bounding

box input and extreme points. On PASCAL, we follow [29]

and conduct experiments on both official splits and splits

augmented with additional annotation from SBD [20]. Per-

formance is reported in Table 5. Our model significantly

improves over our baseline, i.e. Level Set Regression method

and performs on par with DEXTR. As shown in Fig. 6, labels

in PASCAL are quite noisy which may harm the performance

of our model for two main reasons. Firstly, as a curve-based

method, DELSE is sensitive to the boundary quality of train-

ing samples. As such, the coarsely annotated boundaries on

PASCAL makes learning a complex function even harder.

Secondly, evaluation on PASCAL val dataset ignores pixels

on the boundary which is indeed a crucial part to evaluate

the performance of curve-based models.

Boundary metrics: The quality of the predicted bound-

aries is important for object annotation. Tables 3 and 4 com-

pare our model vs state-of-the-art on the Cityscapes dataset.

Results show that our model more accurately annotates ob-

ject boundaries. However, we point out that we conduct a

threshold search for both pixel-wise methods (DELSE and

DEXTR), while this is not possible for Polygon-RNN++,

leading to a disadvantage in this evaluation.

On DAVIS 2016, we perform multi-scale evaluation of

different models, i.e. changing the threshold from 1 to 10 pix-

els. The results are shown in Fig. 5. Our method outperforms

all baselines in the strictest regime. This shows that DELSE

consistently produces better segmentation boundaries.

Qualitative Results: Examples of qualitative results on

the Cityscapes dataset are shown in Fig. 3. We remind the

reader that our model exploits ground-truth boxes for pre-

diction. Compared to Polygon-RNN++ which predicts a

single polygon around the object, our DELSE is able to suc-

cessfully handle objects with multiple components. Fig. 4

visualizes a few examples. We show qualitative results of

different evolution terms in Fig. 7. The motion map shows

the ability to fit the curve to precise boundaries. It is inter-

esting to note that the modulation function automatically

learns to perform as an inverse edge detector on the salient

object, which is similar to the terms used in traditional level

set methods. Notice that the initial LSF is already quite close

to the groundtruth, which largely reduces the steps required

for evolution. With the curve evolution, some of the flaws

are fixed and the boundaries are improved overall.

Ablation Study: We conduct an ablation study on in-

dividual components in DELSE including the motion and

modulation terms, and skip features. The results are shown

7506

Model J mean J recall F mean F recall

DEXTR 82.4 94.2 84.5 93.5

Level Set Regression 81.7 90.9 83.4 91.4

+ Motion Term 84.0 94.9 84.7 94.0

+ Modulation Term 84.8 95.0 87.5 95.1

+ Skip Features 85.6 95.1 87.8 94.8

– Extreme Points 83.9 93.6 85.0 92.7

Table 6: Performance and ablation study on DAVIS 2016. J is

short for the Jaccard (IoU) metric.

Noise of Input J mean J recall F mean F recall

±0% 85.6 95.1 87.8 94.8

±5% 85.1 95.1 87.4 94.8

±10% 84.9 95.0 86.9 94.7

Table 7: Evaluation of noisy input on DAVIS 2016.

1 2 3 4 5 6 7 8 9 10

Boundary Threshold

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

F
 m

e
a
n

DEXTR

Level Set Regression

+ Motion Branch

+ Modulation Branch

+ Skip Features

Figure 5: Multi-scale boundary evaluation on DAVIS 2016.

Model mIOU F mean

DELSE (Full data) 83.35 77.62

DELSE* (10 of 16 cities) 82.45 75.85

Motion Editing Clicks mIOU F mean

1 84.73 79.64

2 85.97 81.34

3 86.83 82.52

Extreme Points Clicks mIOU F mean

1 83.60 78.27

2 84.49 79.67

3 84.94 80.53

Table 8: Interactive correction on Cityscapes. Corrections are used

with DELSE*, which is trained on 10 out of 16 cities.

in Table 6. We start with Level Set Regression, which con-

tains only the Level Set Branch that directly regresses LSF.

After adding the Motion Branch and using level set evolu-

tion to get the final result, the IoU performance increases by

2.3% and 1.3% w.r.t. mean boundary metric. Adding the

Modulation Branch and applying selective regularization on

the curvature term leads to a further boost of 0.8% in mIoU

and 2.8% for the boundary metric. Results indicate that the

motion term plays an important role in improving mIoU, and

adding the modulation function increases the boundary qual-

ity. These results are consistent with the function of different

terms, and prove the effectiveness of our proposed level set

evolution scheme. Using skip features also increases the

performance of the model. This is reasonable as the level set

terms rely on both low-level details and high-level semantics

to find the precise boundaries. Multi-scale evaluation results

in Fig. 5 further show the impact of different components.

Figure 6: Qualitative results on PASCAL. (Left: GT, green indi-

cates void pixels excluded in evaluation. Right: Prediction.)

Figure 7: Qualitative results on DAVIS 2016. (From left to right:

image, initial LSF, motion map, modulation function, final result.)

5.3. Interactive Image Annotation

We evaluate the interactive methods on the Cityscapes

dataset. To train the human-in-the-loop model, we split

the 16 cities from the training set into 10 used for training

the original DELSE, and the remaining 6 to fine-tune the

interactive model. We do this because DELSE trained on the

full training set has too few errors on the same set.

We show results for up to 3 correction clicks, where we re-

predict segmentation after every click. Results are reported

in Table 8. Notice that both boundary clicks and motion edit-

ing increase performance, indicating ability of incorporating

human guidance. In addition, motion editing outperforms the

regime where only boundary clicks are provided, whereby

adding only a small overhead on interaction.

Noisy Annotator: In this experiment we simulate a lazy

annotator loosely clicking on extreme points. We do this by

uniformly adding certain amount of noise to the ground-truth

extreme points. Results shown in Table 7 indicate that our

model is quite robust to noise.

6. Conclusion
We presented Deep Extreme Level Set Evolution for inter-

active object annotation. Our approach combines the power

of convolutional networks with traditional curve evolution

techniques in an end-to-end fashion. DELSE is shown to

outperform existing state-of-the-art approaches on several

benchmarks. It produces crisp object boundaries, highlight-

ing its value as an interactive annotation tool.

Acknowledgements. We gratefully acknowledge support from Vec-

tor Institute, the Tsinghua University Initiative Scientific Research Program,

and NVIDIA for donation of GPUs. S.F. also acknowledges the Canada

CIFAR AI Chair award at Vector Institute. We thank Jun Gao for help and

advice, and Relu Patrascu and Priyank Thatte for infrastructure support.

7507

References

[1] http://medicaldecathlon.com/.

[2] D. Acuna, A. Kar, and S. Fidler. Devil is in the edges: Learn-

ing semantic boundaries from noisy annotations. In CVPR,

2019.

[3] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive

annotation of segmentation datasets with polygon-rnn++. In

CVPR, 2018.

[4] M. Bai and R. Urtasun. Deep watershed transform for instance

segmentation. In CVPR, pages 2858–2866, 2017.

[5] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.

What’s the point: Semantic segmentation with point supervi-

sion. arXiv:1506.02106, 2016.

[6] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in nd images. In

ICCV, 2001.

[7] V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric

model for active contours in image processing. Numerische

Mathematik, 66(1):1–31, Dec 1993.

[8] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active

contours. IJCV, 22(1):61–79, 1997.

[9] L. Castrejón, K. Kundu, R. Urtasun, and S. Fidler. Annotating

object instances with a polygon-rnn. In CVPR, 2017.

[10] T. F. Chan and L. A. Vese. Active contours without edges.

IEEE Transactions on Image Processing, 10(2):266–277, Feb

2001.

[11] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected

crfs. CoRR, abs/1606.00915, 2016.

[12] L.-C. Chen, S. Fidler, A. Yuille, and R. Urtasun. Beat the

mturkers: Automatic image labeling from weak 3d supervi-

sion. In CVPR, 2014.

[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentation with deep convolutional

nets and fully connected crfs. In ICLR, 2015.

[14] D. Cheng, R. Liao, S. Fidler, and R. Urtasun. Darnet: Deep

active ray network for building segmentation. In CVPR, 2019.

[15] L. D. Cohen. On active contour models and balloons. CVGIP:

Image Understanding, 53(2):211 – 218, 1991.

[16] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding. In

CVPR, 2016.

[17] D. Cremers, O. Fluck, M. Rousson, and S. Aharon. A proba-

bilistic level set formulation for interactive organ segmenta-

tion. In SPIE, 2007.

[18] D. Cremers, M. Rousson, and R. Deriche. A review of statis-

tical approaches to level set segmentation: Integrating color,

texture, motion and shape. IJCV, 72(2):195–215, Apr 2007.

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 88(2):303–338, June 2010.

[20] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.

Semantic contours from inverse detectors. In ICCV, 2011.

[21] P. Hu, B. Shuai, J. Liu, and G. Wang. Deep level sets for

salient object detection. In CVPR, volume 1, page 2, 2017.

[22] M. Januszewski, J. Kornfeld, P. H. Li, A. Pope, T. Blakely,

L. Lindsey, J. Maitinshepard, M. Tyka, W. Denk, and V. Jain.

High-precision automated reconstruction of neurons with

flood-filling networks. Nature Methods, 2018.

[23] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active

contour models. IJCV, 1(4):321–331, 1988.

[24] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and

A. Yezzi. Conformal curvature flows: From phase transitions

to active vision. Archive for Rational Mechanics and Analysis,

134(3):275–301, Sep 1996.

[25] C. Li, C. Xu, C. Gui, and M. D. Fox. Distance regularized

level set evolution and its application to image segmentation.

IEEE Trans. Image Proc., 19(12):3243–3254, Dec 2010.

[26] H. Ling, J. Gao, A. Kar, W. Chen, and S. Fidler. Fast interac-

tive object annotation with curve-gcn. In CVPR, 2019.

[27] S. Liu, S. De Mello, J. Gu, G. Zhong, M.-H. Yang, and

J. Kautz. Learning affinity via spatial propagation networks.

In NIPS, pages 1520–1530. 2017.

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[29] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool.

Deep extreme cut: From extreme points to object segmenta-

tion. In CVPR, 2018.

[30] D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai,

R. Liao, and R. Urtasun. Learning deep structured active

contours end-to-end. In CVPR, 2018.

[31] E. N. Mortensen and W. A. Barrett. Intelligent scissors for

image composition. In SIGGRAPH, pages 191–198, 1995.

[32] S. Osher and J. A. Sethian. Fronts propagating with curvature-

dependent speed: Algorithms based on hamilton-jacobi for-

mulations. J. Comput. Phys., 79(1):12–49, Nov. 1988.

[33] N. Paragios and R. Deriche. Geodesic active regions for

supervised texture segmentation. In ICCV, volume 2, pages

926–932 vol.2, Sept 1999.

[34] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In CVPR, 2016.

[35] R. Ronfard. Region-based strategies for active contour models.

IJCV, 13(2):229–251, Oct 1994.

[36] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. In

SIGGRAPH, 2004.

[37] C. Rupprecht, E. Huaroc, M. Baust, and N. Navab. Deep

active contours. arXiv preprint arXiv:1607.05074, 2016.

[38] M. Tang, S. Valipour, Z. V. Zhang, D. Cobzas, and M. Jäger-

sand. A deep level set method for image segmentation. CoRR,

abs/1705.06260, 2017.

[39] Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmen-

tation for autonomous driving with deep densely connected

mrfs. In CVPR, 2016.

[40] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. CoRR, abs/1612.01105, 2016.

[41] A. Zlateski, R. Jaroensri, P. Sharma, and F. Durand. On the

importance of label quality for semantic segmentation. In

CVPR, June 2018.

7508

