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Abstract

The goal of early action prediction is to recognize ac-

tions from partially observed videos with incomplete action

executions, which is quite different from action recognition.

Predicting early actions is very challenging since the par-

tially observed videos do not contain enough action infor-

mation for recognition. In this paper, we aim at improv-

ing early action prediction by proposing a novel teacher-

student learning framework. Our framework involves a

teacher model for recognizing actions from full videos,

a student model for predicting early actions from partial

videos, and a teacher-student learning block for distilling

progressive knowledge from teacher to student, crossing d-

ifferent tasks. Extensive experiments on three public action

datasets show that the proposed progressive teacher-student

learning framework can consistently improve performance

of early action prediction model. We have also reported the

state-of-the-art performances for early action prediction on

all of these sets.

1. Introduction

Early action prediction, i.e., predicting the label of

actions before they are fully executed, is one of the

most fundamental tasks in video analysis with many real-

world applications in surveillance, self driving, and human-

computer interaction etc. Different from the traditional ac-

tion recognition task that intends to recognize actions from

full videos, early action prediction aims to predict the label

of actions from partially observed videos with incomplete

action executions.

As shown in Figure 1, recognizing actions from partial

videos is very challenging, especially when the depicted ac-

tions are performed at very early stages (e.g., when 10% of
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Figure 1: Schematic diagram showing our motivation of

proposing distilling knowledge from action recognition sys-

tem for early action prediction.

an action is executed). However, the recognition would be-

come much easier if the actions are fully executed and ob-

served [16, 24]. Videos with different observation ratios of-

ten contain different degree of action context. How to mine

as much action knowledge as possible from these partially

or fully observed videos for prediction is one of the major

challenges in the community.

Many works have been proposed to exploit the partially

and fully observed videos for early action prediction. For

instance, Kong et.al. [21] assume that the prediction confi-

dences are monotonically increasing as more video frames

are observed. Hu et.al. [16] intends to learn a soft label

for the video of each progress level so that the full and

partial videos can be learned in a unified regression frame-

work. More recently, Kong et.al. [24] learns a reconstruc-

tion map from all partially observed videos to full videos.

These works mainly develop a joint learning framework to

learn early action predictor from partial and full videos, they

do not seek to distill some disriminative action knowledge

from the full videos to improve the early action prediction

with partial videos. As illustrated in Figure 1, the action
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knowledge gained from full videos can be used to drive the

early action prediction with partial videos.

In this paper, we formulate a novel knowledge distilla-

tion framework for early action prediction. Our framework

involves a teacher model for recognizing actions from ful-

l videos, a student model for predicting early actions from

partial videos, and a teacher-student learning block for dis-

tilling knowledge from teacher to student. To the best of

our knowledge, we are the first to explicitly formulate a

teacher-student learning framework for early action predic-

tion, particularly for casting it as a problem of progres-

sive knowledge distillation across different tasks, with both

mean square error (MSE) and maximum mean discrepancy

(MMD) loss considered in an unified framework to distill

local progress-wise and global distribution knowledge, re-

spectively. The experimental results show that the proposed

progressive teacher-student learning framework is benefi-

cial for early prediction of actions, especially when the ac-

tions are performed at very early stages.

In summary, the main contributions of this work are

three-fold: 1) a novel teacher-student learning framework

for distilling progressive action knowledge from action

recognition model (teacher) to early action prediction mod-

el (student), across different tasks; 2) based on the pro-

posed teacher-student learning, an early action prediction

system integrating the early action prediction task with ac-

tion recognition in the spirit of knowledge distillation; and

3) extensive experimental analysis on early action predic-

tion with RGB-D and RGB videos on three datasets, show-

ing that our early action prediction system achieves state-

of-the-art performances and the proposed teacher-student

learning framework can efficiently improve the prediction

performance by knowledge distillation.

2. Related Work

Action recognition. Action recognition has been widely

studied in the community. The existing methods are main-

ly developed for extracting some discriminative action fea-

tures from videos with complete action executions. Some

representative handcrafted features like Cuboids [7] [44]

[6], interest point clouds [4], 3DHOG [20], SIFT [33], and

dense trajectory [41] etc. are developed for characteriz-

ing the spatio-temporal motion information, which is crit-

ical for describing human actions. Recently, with the rise

of deep learning, many deep learning based methods, in-

cluding 3D CNN [39] [5] [12] [40] [13] and two stream

CNN [36] [8] [46] etc., are proposed to encode the spatio-

temporal information and achieve satisfactory recognition

results in many datasets, including UCF-101 [37] and Ki-

neticts [5] datasets. Besides these advances for recogniz-

ing actions from RGB videos, action recognition with depth

camera has also made some encouraging progress in these

years. Some researchers found that combining the multi-

modality features extracted from RGB, depth and skeleton

sequences can capture more useful action information and

obtain a better recognition performance [45] [17] [35] [31].

However, these action recognition approaches are specifi-

cally developed for the after-the-fact prediction of human

action (i.e. when actions are entirely observed), and they

didn’t seek to build models for predicting early actions at

different progress levels, which in particular requires mod-

eling the intrinsic expressive power of partial videos.

Early action prediction. Different from action recogni-

tion, where actions are assumed to be fully executed and ob-

served, early action prediction aims to recognize actions be-

fore they are completely executed [32, 25, 23, 24, 2, 16, 22].

Actions at early stage are very difficult to be recognized

due to the lacking of sufficient information. Ryoo [32] in-

tended to recognize ongoing actions by observing some ev-

idences from the features accumulated over time. Lan et

al. [25] employed a max-margin framework to predict ac-

tions from a hierarchical feature representation. Kong et

al. [23] developed a structured SVM formulation to capture

the temporal evolution of human actions. Hu et al. [16]

proposed a soft regression framework to learn a robust ac-

tion predictor from both the partial videos and full videos.

Aliakbarian et al. [2] introduced a multi-stage LSTM archi-

tecture to model context-aware and action-aware informa-

tion. Recently, Kong et al. [24] proposed a deep sequential

context networks (DeepSCN), with an aim to reconstruct

the features of full videos from those extracted from partial

videos. None of these works are proposed to exploit the

action recognition task for early action prediction, which

could discover some informative action knowledge for ear-

ly action prediction. With that in mind, we develop a nov-

el teacher-student learning framework to distill knowledge

from an action recognition model, for the purpose of im-

proving early action prediction.

Knowledge distillation. Recent studies show that the

knowledge learned by a teacher network can be used to im-

prove the performance of student network [14, 27, 1, 43].

In the literature, teacher network often refers to a heavi-

ly, cumbersome model and student network refers a simple,

lightweight model. Both the teacher and student network-

s are oriented for addressing the same task. For example,

Romero et al. [1] proposed to minimize the MSE between

the outputs of teacher and student models. Yim et al. [42]

used a Gram matrix loss to distill knowledge for improving

image classification. Li el at. [27] showed that minimizing

Gram matrix loss in neural style transfer [9] is equivalent

to minimize the MMD loss [11]. These works are main-

ly developed for distilling knowledge in static images and

within the same task. In contrast, we aim to transfer the

sequential knowledge gained in recognition model, to im-

prove our prediction performance. Thus, our method seeks

to transfer knowledge across different video analysis tasks.
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Figure 2: The overall framework of our progressive teacher-student learning for early action prediction.

3. Our Approach

We tackle the same problem as in [16, 24, 22], i.e., to

learn a common early action predictor for predicting early

actions. Following the existing setting in [16, 24, 21, 32, 25,

26], we assume that each training video contains complete

action execution and uniformly partition it into N shorter

segments. The first n segments (n = 1, 2, ..., N ) form a

partial video with a progress level of n, whose observation

ratio is defined as n/N . Let’s denote xn as the feature ex-

tracted from the partial video of progress level n.

In this work, we focus on developing a teacher-student

learning framework to improve an early action prediction

model (referred as student) with the assistance of an action

recognition model (referred as teacher). In the following,

we first describe our teacher and student models and then

show how to distill useful knowledge from the teacher mod-

el to improve our student model.

3.1. Teacher and Student Networks

Student model. Hu et. al. [16] observed that explicit-

ly learning the temporal dependencies among the videos of

different progress levels is beneficial for early action pre-

diction. Here, we follow this observation and employ a s-

tandard 1-layer long short-term memory (LSTM) [15] ar-

chitecture as our student prediction model to predict early

actions at any progress level.

Teacher model. Here, we specify our teacher model by

a 1-layer bidirectional LSTM (BiLSTM) [10] architecture,

which has been widely used for addressing the video recog-

nition problem. We use the BiLSTM model as our teacher

model for two aspects. First, it can provide a latent feature

representation for the videos of any progress level, which is

consistent with the student model. Second, since the BiL-

STM has a forward LSTM and a backward LSTM layer,

which can receive information from the historical frames

and future frames, respectively, the latent features obtained

by BiLSTM often contain more discriminative action infor-

mation than those obtained by the student LSTM model,

especially for the actions at very early stages. However, the

BiLSTM model is not applicable for early action prediction,

as the frames after the current observation is often unreach-

able in practice. Even though, we demonstrate that it could

still be used for early action prediction. In particular, it can

be treated as a teacher model to guide our student learning.

To this end, we propose a teacher-student learning method

to make use of the rich latent features obtained by the teach-

er model for improving our early action prediction.

3.2. Progressive Teacher­student Learning

With the teacher model described previously, our goal is

to distill some useful knowledge from the teacher model to

facilitate the student prediction model learning. Here, we

achieve the knowledge distillation by developing a teacher-

student learning block, which would link the progress-wise

latent feature representations obtained by the teacher net-

work and student network, as illustrated in Figure 2. In

the following, we describe our formulation for the teacher-

student learning block in detail.

Teacher-student learning block. Let us denote the latent

feature representations of the teacher and student networks

over all the progress levels for the i−th video sample by Si

and Ti, respectively. Here, Si and Ti are two D ×N -sized

matrices. D indicates the feature dimension and N is the

total number of progress levels used for early action predic-

tion. Then, our knowledge distillation can be achieved by

minimizing

L =
1

I

I∑

i=1

(LC(Si,yi) + LTS(Si,Ti)) (1)

where LTS indicates the knowledge distillation (KD) loss

and LC is the prediction loss of the student model. yi indi-

cates the ground truth action label for the i-th video sample.
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KD Loss LTS(Si,Ti). We define the KD loss as αLMSE+
βLMMD, where LMSE is used to distill knowledge in a

progress-wise manner by computing the mean square error

(MSE) between the latent features of teacher and student

models. Thus, it can capture some local action knowledge

with respect to the videos at each individual progress level

for distillation. The loss LMMD is employed to measure the

maximum mean discrepancy (MMD) between the teacher

recognition model (with full videos) and the early action

prediction model (with partial videos). Minimizing LMMD

can distill knowledge for the videos of all the progress levels

from a global distribution perspective.

We formulated LMSE as ‖Si ⊙ w − Ti ⊙ w‖2
F

. w is

a weight vector indicating the contribution of MSE losses

with respect to the videos of each individual progress level.

⊙ is an element-wise multiplication operator, multiplying

each column of Si with the corresponding element of w.

Minimizing LMSE is to decrease the discrepancy between

the knowledge gained by the teacher and student models for

the videos of each individual progress level.

In contrast, MMD is widely used to measure the distance

between two distributions [11]. Here, the loss LMMD is

employed to control the global distribution discrepancy for

the videos of all the progress levels. Our MMD loss can be

defined as

LMMD(Si,Ti)=‖
1

N

N∑

n=1

φ(Si(:, n))−
1

N

N∑

n=1

φ(Ti(:, n))‖
2

2

(2)

φ is a function mapping the latent feature representation to

Reproducing Kernel Hilbert Space (RKHS), which corre-

sponds to a kernel function k(x,y) =< φ(x), φ(y) >. We

follow the suggestions in [27] and set it as a specific second

order polynomial kernel function k(x,y) = (x⊤y)2. Then

the MMD loss can be equivalently rewritten as:

LMMD(Si,Ti) = ‖GSi −GT i‖2F (3)

Here, GSi and GTi are Gram matrices:

GSi = SiS
⊤

i ,GTi = TiT
⊤

i (4)

where G∗ ∈ R
D×D, (·)⊤ stands for matrix transposition.

Note that the representations Si and Ti are l2 normalized at

each progress level to avoid significant discrepancy.

Overall, the KD Loss can be expressed as

LTS(Si,Ti) = α‖Si ⊙w − Ti ⊙w‖2F

+β‖SiS
⊤

i − TiT
⊤

i ‖2F (5)

where α and β are used to control the impact of MSE loss

and MMD loss respectively when combined with the pre-

diction loss in Eq. (1).

Prediction loss. As for prediction, we treat the early action

prediction as a problem of recognizing actions from ongo-

ing videos (partial or full) with unknown progress levels.

For simplification, we directly feed the latent feature repre-

sentation of student LSTM model into a FC layer (with a

parameter WF ) to conduct prediction. Note that the clas-

sifier weight WF is shared for all the videos of different

progress levels. Then our prediction loss can be defined as:

LC(Si,yi) =

N∑

n=1

l(pn

i ,yi) (6)

Here, l(pn
i
,yi) is the standard cross-entropy loss between

prediction results pn
i

and the ground truth action label yi at

the progress level n, where pn
i
= softmax(WFSi(:, n)).

Model learning. In our teacher-student learning frame-

work, the teacher model is assumed to be previously pre-

pared, which means that it is trained from the training data

and then fixed for learning the student model1. Similar to

other teacher-student learning framework [1], we also em-

ploy a two-stage optimization method to obtain a robust es-

timation for the student model. At the first stage, we directly

minimize the KD loss over the LSTM parameters (without

FC layer), without taking into account the prediction loss,

which requires the student to predict the latent features of

the teacher network. We empirically find that training the

LSTM layer in this way can provide a good initialization

for tuning the student model. At the second stage, we learn

the LSTM parameter and classifier together by minimizing

L in Eq. (1). Our experiments in Section 5 show that the s-

tudent model learned in this way can achieve better results.

4. Experiments

We tested our method for early action prediction with

RGB-D and RGB videos on three benchmark datasets: N-

TU RGB-D action [34], SYSU 3DHOI [17], and UCF-101

set [37]. In the following, we will describe the implementa-

tion details, and experimental results with detailed analysis.

4.1. Implementation details

For early action prediction on the RGB-D action datasets

(i.e., NTU RGB-D and SYSU 3DHOI sets), we followed the

settings in [16] and partition each video clip into N = 40
shorter segments. While for the prediction on RGB action

dataset (i.e., UCF-101 set), we used the settings in [24] and

divided each full video into N = 10 shorter segments.

Details for feature extraction. For extracting visual fea-

tures from videos in RGB-D dataset (NTU and SYSU), we

followed the implementations in [16] and uniformly sam-

pled 16 frames from each video clip, from which a set of im-

age patches containing the actors are cropped, in order to re-

duce the influence of cluttered backgrounds. These patches

1Indeed, we do not observe any improvement on the prediction perfor-

mance by training the teacher recognition model and student student model

jointly. Please refer to Section 5 for details.
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Figure 3: Some frame examples from the NTU RGB-D, SYSU 3DHOI and UCF-101 datasets, The first two rows present

RGB and depth frames from NTU set. The next two rows provide some examples from SYSU 3DHOI set. And the last row

gives examples from the UCF-101 set.

are then concatenated (after resized) along the temporal di-

mension to form a 16×299×299-sized tensor. We then fine-

tuned a 16-channel-InceptionResNetV22 [38] model based

on the tensors generated from RGB and depth videos, re-

spectively. Since all the actions in SYSU set involve human-

object interactions, we followed the suggestion in [18] and

extracted CNN features from the image patches of human

body parts. For extracting features from 3D skeleton se-

quences, we followed the pre-processing step in [34] and

transformed the 3D locations of human joints from camera

coordinate system to body coordinate system. We sampled

10 frames from each partial or full skeleton sequence and

then fed them into a RNN model to extract corresponding

features. Finally, the features extracted from RGB, depth,

and skeleton data were concatenated to obtain representa-

tion {xn}
N
n=1

for the videos of each progress level.

For extracting features from videos in unconstrained

RGB action set UCF-101, we used the 3D ResNeXt-101

[13] pre-trained on Kinetics dataset [19] to extract some

spatio-temporal features without finetuning on the training

data3. More specifically, we sampled 16 frames from each

video clip (partial or full) and then re-sized them into a

3×16×112×112-sized tensor. Finally, these tensors were

fed into the 3D ResNeXt-101 to extract visual features.

Details for teacher-student learning. We trained a 1-layer

sequence-sequence Bi-LSTM network as our teacher mod-

el, where the dimension of hidden layer in each direction

(forward and backward) was set as 256. Hence, the dimen-

sion of the latent features output by teacher model is 512.

2https://github.com/Cadene/pretrained-models.pytorch
3We do not observe any improvement on the performance by finetuning

3D ResNeXt-101 in our experiments.

We employed the cross-entropy loss over all the progress

levels as the loss of our teacher learning. For the student

model, we trained a 1-layer sequence-sequence LSTM net-

work with the size of the hidden layer set as 512, in order to

match with the latent features output by teacher model. We

set w as that in [16], as we experimentally find that learn-

ing it from scratch can only earn a minor improvement. The

weights (α, β) for controlling MSE and MMD loss were set

to (0.1, 0.02), (25, 0.002), (4, 0.02) on NTU RGB-D, SYSU

3DHOI, and UCF-101, respectively. The learning rate and

batch sizes were set to 0.01 and 30 for SYSU dataset, 0.1

and 256 for both NTU and UCF-101 datasets, respectively.

Dropout was utilized in student model to mitigate overfit-

ting. We used SGD optimizer [3] with a momentum rate

0.9 to train both teacher and student networks. All the ex-

periments were conducted in PyTorch [30].

4.2. NTU RGB­D Action Dataset

To the best of our knowledge, the NTU RGB-D action

dataset [34] is by far the largest public set for 3D action

recognition and prediction. It contains more than 56,000

video samples with about 4 million frames from 60 action

categories. All of these action samples were recorded by

Kinect v2 devices from three different views. For collecting

this set, 40 subjects were asked to perform certain actions

several times. Some action frames can be found in Figure

3. This set is very challenging for early action prediction

mainly due to its larger scales in quantity, greater diversity

in action categories and more complexity in human-human

interaction and human-object interaction. Moreover, many

actions considered in this set are easily confused with each

other at the beginning stages. Taking the actions “eating”
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Figure 4: Comparison results on the (a) NTU RGB-D Action, (b) SYSU 3DHOI and (c) UCF-101 sets. [*] in the legend of

the figure stands for the AUC(%) performance obtained by the corresponding method.

Table 1: Prediction results (%) on the NTU RGB-D Action set.

Observation ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

KNN [16] 7.45 9.56 12.25 16.04 20.89 25.97 30.85 34.49 36.15 37.02 21.90

RankLSTM [28] 11.54 16.48 25.66 37.74 47.96 55.94 60.99 64.41 66.05 65.95 43.13

DeepSCN [24] 16.80 21.46 30.51 39.93 48.73 54.61 58.18 60.18 60.01 58.62 43.24

MSRNN [16] 15.17 20.33 29.53 41.37 51.64 59.15 63.91 67.38 68.89 69.24 46.56

STUDENT 25.99 33.68 43.91 56.20 65.59 72.12 76.16 78.82 80.09 80.53 59.24

Ours 27.80 35.85 46.27 58.45 67.40 73.86 77.63 80.06 81.47 82.01 60.97

and “drinking” for example, both of them have the moments

of fetching object and holding it up. For experiments, we

followed exactly the cross-subject setting in [34, 16] and

used the samples performed by 20 certain subjects to train

our model. The samples performed by the rest subjects are

employed to evaluate the learned model. In total, we have

40,320 full videos for training and 16,560 full videos for

testing, which means that we have a total of 662,400 partial

and full samples to test the trained model.

The detailed prediction results are presented in Figure

4(a) and Table 1, where we denote the student model with-

out distilling knowledge from teacher model as STUDEN-

T. As shown, with the help of a teacher model, the per-

formances of our student model are improved at all of the

40 progress levels, especially for the actions at very early

stage. For instance, when only using the first 30% segments

for prediction, our system achieves an accuracy of 46.27%,

outperforming the STUDENT model by 2.36%. We also

observe that the accuracy of prediction actions from full

videos is 82.01%, which is 1.48% higher than STUDEN-

T. This demonstrates that the knowledge distillation frame-

work is also beneficial for the action recognition task. From

the perspective of area under the curve (AUC), which s-

tands for the average prediction accuracy, it increases from

59.24% to 60.97% with an improvement of 1.73%, as com-

pared to STUDENT, which means that more than 11,400

mis-predicted action samples are correctly predicted when

using our progressive teacher-student learning method.

Table 1 shows the comparison of our method with other

state-of-the-art methods [16, 24, 28]. It could be observed

that our method outperforms the competitors by a large mar-

gin (more than 14% in terms of AUC), which is a significant

breakthrough for early action prediction on this challenging

dataset. The results demonstrate the effectiveness of our

early action prediction system with knowledge distillation.

4.3. SYSU 3DHOI dataset

The SYSU 3D Human-Object Interaction (3DHOI)

dataset [17] was captured by Kinect v1, with 480 RGB-

D sequences from 12 action categories, including “playing

phone”, “calling phone”, “pouring”, “drinking”, etc. Each

action involves a kind of human-object interactions. Simi-

lar to the NTU RGB-D action set, the collectors invited 40

actors to perform 12 human-object interaction actions with

six different objects. Some frame examples can be found in

Figure 3. This set is challenging for early action prediction

as the actions are quite similar to each other, especially at

the beginning stages. For instance, the actions of “calling

phone” and “playing phone” have the same movement of

picking up a phone. Thus, it is not easy for the system to

accurately infer action by only observing a small part of se-

quences. Following the same evaluation setting with [16],

sequences performed by the first 20 subjects were used for

training and the rest for testing. For evaluation, each full se-

quence was uniformly partitioned into 40 segments. There-

fore, we have a total of 9,600 video clips (both full and par-

tial) to test the learned prediction models in this set.

Figure 4(b) and Table 2 present the detailed prediction

results on this set. As shown, our method obtains an AUC

of 75.35%, outperforming all of the competitors including

STUDENT, RankLSTM [28], DeepSCN [24], and MSRN-

N [16]. As expected, the proposed teacher-student learning
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Table 2: Prediction results (%) on the SYSU 3DHOI set.

Observation ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

KNN [16] 35.83 42.50 50.42 55.00 57.92 61.25 63.33 65.00 63.33 62.08 54.74

RankLSTM [28] 48.75 57.08 65.42 71.25 73.75 75.42 77.08 77.50 77.92 76.67 68.59

DeepSCN [24] 45.50 51.75 57.58 58.83 60.50 67.17 73.42 73.83 75.08 74.67 62.18

MSRNN [16] 47.50 56.67 66.67 75.42 78.33 80.42 81.67 82.50 81.67 79.58 71.61

STUDENT 54.58 61.25 67.08 72.92 73.75 77.50 80.42 82.50 84.58 84.17 71.87

Ours 59.58 63.33 68.33 75.00 78.33 81.67 84.17 86.25 87.50 87.92 75.35

framework has consistently improved the performance of

our student model by a large margin (about 3.5%), espe-

cially for the prediction of actions at very early stages. By

only observing the first 10% videos, our system can obtain

an accuracy of 59.58%, which clearly exceeds the perfor-

mances obtained by our student model without teacher stu-

dent learning and other competitors. These aspects demon-

strate that the proposed progressive teacher-student learning

framework can efficiently facilitate the learning of early ac-

tion prediction model.

4.4. UCF­101 dataset

The UCF-101 set is unconstrained RGB video based

dataset, which has been widely used for action recognition.

It consists of 13,320 full videos from 101 action classes,

such as ”Playing Guitar” and ”Basket-ball Dunk”. Most

of the considered actions involve human-object interaction,

body-motion, human-human interaction and sports. Figure

3 presents some frame examples in this set. For evaluation,

we employed the same settings as [22, 16] and used the first

15 groups of videos for training, the next 3 groups for val-

idation, and the rest for testing. In this setting, we have

3,682 full action videos for test and each video is split into

N = 10 segments, which means that we need to predict the

actions of 36,820 clips in this experiment.

The detailed prediction results are presented in Figure

4(c) and Table 3. As expected, the results obtained in this

study are consistent with those obtained on the NTU RGB-

D action and SYSU 3DHOI sets. Our proposed teacher-

student learning framework can consistently improve the

prediction performance of our student model and outper-

forms the other state of the arts [22, 16, 24]. It is worth

noting that our system can obtain an accuracy of 83.3% for

predicting partial videos with a progress level of 10%, out-

performing the state of the art approach [16] by a margin of

5.32%. When more video frames are provided, the accuracy

will keep rising until all frames are observed. Overall, the

prediction accuracies obtained on this set are much higher

than those on the NTU RGB-D and SYSU 3DHOI sets, e-

specially for the prediction of actions at very early stages.

This is because that many actions in this set can be recog-

nized by only observing the scene context depicted in each

single frame, e.g., “playing billiards” and “archery”.

Table 4: More evaluation on the influence of MSE and M-

MD losses. S stands for STUDENT without knowledge

distillation, L stands for local knowledge distillation with

MSE, G stands for global knowledge with MMD.

Observation ratio 10% 30% 50% 70% 100% AUC

SYSU

S 54.58 67.08 73.75 80.42 84.17 71.87

S+L 57.08 67.08 75.83 80.42 85.83 73.53

S+G 57.50 66.67 76.67 80.42 85.00 73.08

S+L+G 59.58 68.33 78.33 84.17 87.92 75.35

UCF-101

S 81.64 87.53 89.33 90.20 90.63 88.39

S+L 83.19 88.43 90.22 91.20 90.98 89.27

S+G 83.57 88.02 90.14 90.63 90.71 89.01

S+L+G 83.32 88.92 90.85 91.28 91.47 89.64

5. Ablation study

Here, we provide more evaluation results on the SYSU

3DHOI and UCF-101 sets.

Influence of MSE and MMD loss. Note that our KD loss

for the teacher-student learning consists of two components,

MSE and MMD, where MSE is employed to capture local

progress-wise knowledge, and MMD is used to distill global

distribution knowledge. Here, we study their influence and

report the results in Table 4. As can be seen, distilling action

knowledge, either local or global, is always beneficial for

early action prediction. And a proper combination of them

can obtain the best performance in most of the test cases.

Evaluation on the model optimization. In this paper, we

have used a two-stage optimization method for determining

the student parameters (denoted by Two). Intuitively, we

can also directly optimize the objective function L in a one-

stage manner (denoted by One). Here, we report the results

of using the two strategies in Table 5. As shown, both opti-

mization methods can improve our early action prediction,

compared to the STUDENT only. We also note that the

two-stage optimization approach can obtain better results

than the one-stage training in our experiments. Especially

on the SYSU 3DHOI set, the two-stage based method has a

performance gain about 1.8%, which means that more than

140 samples are correctly predicted by the student model.

Visualization for the benefits of introducing teacher-

student learning. Here, we use t-SNE [29] to visualize

the latent features output by our teacher model and studen-

t model with/without teacher-student learning, respectively.
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(a) Teacher (b) Student without teacher-student learning (c) Student with teacher-student learning

Figure 5: Visualization results. Samples from different actions are marked by different colors and numbers.

Table 3: Prediction results (%) on the UCF-101 set.

Observation ratio 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% AUC

DBOW [32] 36.29 51.57 52.71 53.13 53.16 53.24 53.24 53.34 53.45 53.53 51.37

IBOW [32] 36.29 65.69 71.69 74.25 74.39 75.23 75.36 75.57 75.79 75.79 70.01

MTSSVM [23] 40.05 72.83 80.02 82.18 82.39 83.21 83.37 83.51 83.69 82.82 77.41

DeepSCN [24] 45.02 77.64 82.95 85.36 85.75 86.70 87.10 87.42 87.50 87.63 81.31

Mem-LSTM [22] 51.02 80.97 85.73 87.76 88.37 88.58 89.09 89.38 89.67 90.49 84.10

MSRNN [16] 68.00 87.39 88.16 88.79 89.24 89.67 89.85 90.28 90.43 90.70 87.25

STUDENT 81.64 85.23 87.53 88.59 89.33 89.79 90.20 90.36 90.58 90.63 88.39

Ours 83.32 87.13 88.92 89.82 90.85 91.04 91.28 91.23 91.31 91.47 89.64

Table 5: More evaluation on the optimization strategies. S

stands for STUDENT without teacher-student learning.

Observation ratio 10% 30% 50% 70% 100% AUC

SYSU

S 54.58 67.08 73.75 80.42 84.17 71.87

One 57.08 66.25 77.08 82.50 85.42 73.57

Two 59.58 68.33 78.33 84.17 87.92 75.35

UCF-101

S 81.64 87.53 89.33 90.20 90.63 88.39

One 83.41 88.51 90.47 91.31 91.23 89.51

Two 83.32 88.92 90.85 91.28 91.47 89.64

Table 6: Comparison on with vs. without joint learning.

Observation ratio 10% 30% 50% 70% 100% AUC

SYSU
with 53.33 66.25 74.58 81.67 84.58 72.49

without 59.58 68.33 78.33 84.17 87.92 75.35

UCF-101
with 83.60 88.35 89.82 90.20 90.85 89.07

without 83.32 88.92 90.85 91.28 91.47 89.64

The results on the test videos from the SYSU 3DHOI set

are shown in Figure 5. The teacher model performs better in

separating samples of different action types than the studen-

t model, which illustrates that teacher model contains more

powerful action information. By distilling these knowledge

to the student model, the samples are better separated by our

student model as illustrated in Figure 5(b) and Figure 5(c).

This also demonstrates that some useful knowledge are dis-

tilled by our model to improve early action prediction.

Joint learning of teacher and student. During our model

training, the teacher model was pre-trained and then fixed,

we also test the case of jointly learning teacher and student

networks simultaneously. The results are reported in Table

6. It is interesting to note that jointly learning teacher and

student model obtains an inferior performance in our ex-

periments, which could be attributed to the intractability of

optimizing two highly non-convex problem simultaneously.

6. Conclusion

In this paper, we present a novel teacher-student learn-

ing framework for early action prediction. In the frame-

work, the progressive knowledge gained in an action recog-

nition model (teacher) is explicitly distilled for facilitat-

ing the learning of early action prediction model (student)

learning. We achieve knowledge distillation by minimizing

the local progressive-wise and global distribution knowl-

edge discrepancy between the teacher and student models.

Extensive experiments on two RGB-D action sets and one

unconstrained RGB action set have been reported to demon-

strate the efficacy of the proposed framework.
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