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Abstract

The estimation of 3D human body pose and shape from

a single image has been extensively studied in recent years.

However, the texture generation problem has not been fully

discussed. In this paper, we propose an end-to-end learn-

ing strategy to generate textures of human bodies under the

supervision of person re-identification. We render the syn-

thetic images with textures extracted from the inputs and

maximize the similarity between the rendered and input im-

ages by using the re-identification network as the percep-

tual metrics. Experiment results on pedestrian images show

that our model can generate the texture from a single image

and demonstrate that our textures are of higher quality than

those generated by other available methods. Furthermore,

we extend the application scope to other categories and ex-

plore the possible utilization of our generated textures.

1. Introduction

The automatic generation of realistic 3D human models

is crucial for many applications, including virtual reality,

animation, video editing and clothes try-on. Among the 3D

human reconstruction approaches, generating the 3D hu-

man model from a single image receives more and more

attention. A lot of methods have been proposed in both tra-

ditional [28, 20, 11] and deep learning manner [25, 40, 49].

Even though these methods succeed in estimating the pose

and shape of the human body accurately, the generation of

texture is omitted, which is the missing part in the recon-

structing the realistic 3D human body.

Even though generating human body textures from a sin-

gle image is of vital importance, there are only two methods

which aim at solving it. [39] first extract the partially ob-

served textures from different images with DensePose [22]

∗This work was done during Jian Wang, Yunshan Zhong and Yachun

Li were interns at Megvii Technology.

Figure 1: Texture generation results on Market-1501. This

figure shows the original images (1st column), rendered 3D

models in different view points (2nd-4th columns) and ren-

dered 3D models in standing pose (5th - 7th columns). For

better visual results, these 3D models are rendered with

Blender [1].

and obtain the full textures by combining the partial ones.

Then [39] uses the full textures as ground truth and trains a

generative network to directly infer the corresponding tex-

ture from a single image. This process is computationally

expensive and requires high-quality image based dense hu-

man pose detection method for extracting the partially ob-

served textures, which would be challenging for lots of in-

the-wild images. [26] renders synthetic images with gen-

erated textures and minimize the distance between the ren-

dered image and the input image. However, [26] uses an

ImageNet-pretrained perceptual loss as the distance metric,
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which restricts the quality of their textures.

The shortcomings of existing works indicate that gen-

erating textures from a single image is challenging, which

is caused by two reasons. Firstly, the occlusion caused by

the human body makes it impossible to get the texture in-

formation from the occluded parts. Secondly, the diversity

of human poses and the background complicates the texture

extraction process. For example, the inaccuracy of available

3D pose estimation methods such as [25] makes directly

mapping the input images to 3D models difficult.

To overcome these obstacles, we introduce the re-

identification to supervise our texture generation model.

Re-identification, the person identifying and retrieving

method, is explicitly trained to minimize the distance be-

tween images from different viewpoints with the same iden-

tity. As the person identity is mainly characterized by tex-

tures, the re-identification network can serve as the dis-

tance metric for the textures partially observed from differ-

ent viewpoints. This solves the first problem. Moreover, the

re-identification network can extract the body features while

eliminating the influence of pose and background variations

[62], which solves the second problem. From the reasons

above, it can perform well as the supervision to guide the

training process of texture generation networks.

Based on the supervision of re-identification, we propose

a novel method to generate body textures from a single im-

age. Example results are shown in Fig. 1. In order to train

our model in an end-to-end way, we render images with the

SMPL body model and use the distance between features

extracted by re-identification network as the training loss

(denoted as re-identification loss). Our method shows the

strong capability to efficiently generate body textures.

In order to demonstrate the importance of re-

identification network, we compare the re-identification

loss with other loss functions which are commonly used

in image generation tasks. Our experiments indicate that

the performance of the model surpasses others in generat-

ing body textures.

Aside from generating human body textures, we expand

our method to other categories. Our method can generate

better bird textures comparing with the approach presented

in [26]. In addition, the diversity of generated textures is

higher than available 3D-scanned textures. The experiment

on the action recognition task has demonstrated that it is

beneficial to pretrain the network on dataset synthesized

with highly diversified textures.

In summary, our contribution can be distributed into

three aspects. Firstly, we introduce a new method to gen-

erate textures from a single image by incorporating the re-

identification loss. Secondly, we provide an in-depth analy-

sis to prove the effectiveness of re-identification loss in the

texture generation task. Finally, we extend our method to

broader object categories and explore the potential ability

of our method as a data augmentation strategy.

2. Related Work

Texture generation. The texture generation is an essen-

tial task for reconstructing realistic 3D models because the

texture represents crucial information for describing and

identifying object instances. Most of the recent works fo-

cus on combining texture fragments from different views.

[9, 12, 27] blend multiple images into textures with vari-

ous weighted average strategies. However, these methods

are sensitive to noises introduced by camera poses or 3D

geometry and end up with blurring and ghosting. Some

other methods [51, 42, 6, 17, 29] project images to appro-

priate vertices and faces. These approaches alleviated the

blurring and ghosting problems while they are vulnerable

to texture bleeding. Warping-based methods [64, 16, 3, 10]

incorporate warping refinement technologies to correct for

local misalignments. Specifically, [4] apply back-project

technology for 3D human body texture generation while [5]

applies a semantic prior and graph optimization strategy to

obtain finer details. These methods can build high-quality

3D textures, while images from different views or RGB-D

sensors are required.

Aside from the multi-view based texture generation, an-

other challenging problem is generating textures from a sin-

gle image. [39] proposes a new pose transfer method which

incorporates the human body texture generation module and

[26] proposed a method for recovering the textures of a spe-

cific category. Their approach is either computationally ex-

pensive or suffers from the low quality of generated tex-

tures, which is indicated in Sec. 1.

Model-based 3D human pose and shape estimation.

The model-based method estimates the human body pose

and shape from a single image by fitting parameters of a

specific body model. Earlier works like [21, 8] optimize the

pose and shape parameters of SCAPE [7] under the super-

vision of human body key-points and silhouettes. However,

SCAPE is not consistent with existing animation software,

which limits its application scope.

Most of the recent works build their approaches on a

simple yet powerful body model: SMPL (Skinned Multi-

Person Linear Model) [35]. SMPL renders the body mesh

by calculating a linear function of pose and shape param-

eters, which enables the optimization of SMPL model by

learning from massive data. [11] designed a loss function

to penalize the difference between projected 3D body joints

and detected 2D joints. This loss function also prevents the

inter-penetration between limbs and trunk. [28] infers the

3D shape and pose directly from 91 landmark predictions in

UP-3D dataset, which accelerates the SMPL by one and two

orders of magnitudes. [4] and [8] proposed a method to ob-

tain a visual hull by transforming the silhouette cones corre-
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sponding to dynamic human silhouettes, which enables the

accurate estimation of body shapes and textures.

More and more recent work applies deep learning meth-

ods to fit SMPL parameters. [47, 15, 41] predict SMPL

parameters directly by a deep neuron network and get su-

pervision from differentiable rendering of silhouettes. [48]

proposed a self-supervised method using 2D human key-

points, 3D mesh motions, and human-background segmen-

tation. [25] regresses the SMPL parameters iteratively and

incorporates the prior knowledge to guarantee the reality of

human shape and pose. [40] process the image to 12 se-

mantic segmentation parts and predict the SMPL parame-

ters from them. [49] optimizes the volumetric loss to gain

higher accuracy in body shape than previous methods.

Person re-identification. Person re-identification aims at

spotting a person of interest in different cameras [62]. From

the independence of person re-identification task in 2006

[18], it has become increasingly popular due to its wide ap-

plication. After the incorporation of CNN-based method in

[57] and [31], the performance of person re-identification

network is promoted drastically. For example, since the re-

lease of Market-1501 dataset [61] in 2015, the top-1 accu-

racy of state-of-the-art method has increased from 44.42%

in [61] to 96.6% in [53].

The core idea of deep learning in person re-identification

is to extract features of the person from the image [62].

Moreover, the features of different body parts provide more

fine-grained information than global features, thus combin-

ing local representations from parts of images has become

one of the most prevalent strategies in recent works. For

example, [14, 32, 46, 53] split the image horizontally and

learn local features in each part. [30, 60, 33] apply region

proposal methods to extract different human parts. Atten-

tion mechanism of [34, 33] shows priority in learning soft

pixel-wise parts of the body. Based on recent advances,

our approach utilizes the part-based person re-identification

method to represent spatial features, which plays a key role

in restoring detailed textures.

3. Method

Input Epoch 1 Epoch 100Epoch 50Epoch 10Epoch 5Epoch 3

Figure 2: Visualization of training process. We render the

image with textures generated in different training epochs.

The key idea of our model is to maximize the percep-

tual similarity between the input images and the images ren-

dered with generated textures. We suppose that the person

rendered with better textures shares higher similarity with

the person in input images. This is shown in Fig. 2 that

similarity between the rendered person and input image is

increasing along with the training process.

The overall training procedure is depicted as follow.

Firstly, we predict SMPL [36] parameters with HMR [25]

and calculate the body mesh from predicted parameters

(Sec. 3.1). Subsequently, the texture generator, U-Net [43],

is used to generate the texture from a single image. The

differentiable renderer, Opendr [37], is further applied to

render the human body image with the generated texture

(Sec. 3.2). After that, the input and rendered images are sent

to a pretrained person re-identification network with part-

based convolutional baseline [46] and the distance between

extracted features are minimized. In addition, to make the

face of the generated texture more realistic, we also mini-

mize the difference in the face parts between generated tex-

tures and the 3D scanned textures (Sec. 3.3). The overall

architecture of our method, which is trained in an end-to-

end way, is shown in Fig. 3.

Recently, the generative adversarial network (GAN) [19]

has been widely used in image generation tasks [24, 38] as it

can generate images that look superficially authentic to hu-

man observers. However, combining the loss with a GAN-

style discriminator will not work in our method. As there is

an obvious style gap between the rendered images and real

ones, the discriminator in GAN can always distinguish them

easily, which causes the gradient of generator diminishes.

3.1. Body Mesh Reconstruction

In our method, we render our textures on the SMPL body

model due to its outstanding realism and high computa-

tional efficiency. SMPL parameterizes human body mesh

with shape parameters β ∈ R
10, pose parameters θ ∈ R

72

and translation parameters γ ∈ R
3. The shape parameters

control how individuals vary in height, weight and body

proportions, while the pose parameters model the 3D ro-

tation of both the human body and the K = 23 joints in

axis-angle representation. The translation parameters are

optional as it controls the position of the human body mesh

in the orthogonal coordinate system. SMPL uses a differen-

tiable function M(θ, β, γ) ∈ R
3×N to give the triangulated

body mesh with N = 6890 vertices.

Although the re-identification network can reduce the in-

fluence caused by variations in body pose and translation,

these variations, especially the position and orientation of

the human body, can still interfere with the training process,

which is shown in Sec. 4.4. Thus, we still need to align the

rendered person with the input image by estimating body

shape, pose, and translation of the input image. To tackle

11848



Face Loss

HMR Opendr
Re-ID Loss

Preprocess

Texture 
Generator

Input Image x

Input Image x

Rendered Image y

Re-ID v

Rendering
Tensor mR

Texture t

3D mesh m

( , , )
SMPL

M   

 v x

 v y
2  Loss

Figure 3: Overview of the proposed framework. Firstly, the image is sent to HMR and SMPL parameters are predicted.

The 3D body mesh is calculated with HMR [25] and SMPL [36] and the rendering tensor is generated with Opendr. This step

can be finished in the preprocessing procedure. Afterward, the texture is generated directly from the U-Net and the face loss

of the generated texture is calculated. Finally, the rendered image y is generated as the product of the texture and rendering

tensor. The background of y is randomly cropped from PRW dataset [63] and CUHK-SYSU dataset [56]. The feature of

the rendered image y and the input image x (denoted as Φv(x) and Φv(y) respectively) is extracted with a pretrained person

re-identification model and the ℓ2 loss between Φv(x) and Φv(y) is calculated.

this issue, we adopt HMR, the state-of-the-art method for

the 3D body pose and shape estimation. HMR produces

the shape, pose and translation parameters for SMPL with

an iterative 3D regression module. Thus, the estimated 3D

mesh m from the image x can be expressed as follows:

m = M(β, θ, γ) = M(hmr(x)).

3.2. Texture Rendering

In this step, we generate the texture with U-Net and ap-

ply Opendr [37], a differentiable renderer, to map the gen-

erated texture to the 3D mesh. With the UV correspon-

dence provided by SMPL, the rendering function R(m, t)
of Opendr directly assigns pixels to surface on the 3D mesh

polygon and fills in the gaps with linear interpolation.

With the fixed 3D human mesh m, the rendering func-

tion R(m, t) can be viewed as a linear transformation that

maps from the space of texture t to the space of rendered

image y:

Rm = Rht×wt×c×hy×wy×c (1)

where ht and wt stand for the height and width of texture

image, hy and wy stand for the height and width of rendered

image and c stands for the size of image channels.

The rendering process can be simplified as the multipli-

cation of tensors:

y = Rm(t) = t⊗Rm (2)

The rendering tensor Rm will not change as long as the

human 3D mesh is fixed. This provides a trick for acceler-

ating the training procedure: we can predict all 3D meshes

and calculate all rendering matrices Rm of training data in

the preprocess step. In this way, we can avoid the time-

consuming process of calculating rendering tensor Rm in

the training phase.

3.3. Loss Functions

Re-identification loss. The re-identification loss is the

layer-wise feature distance between rendered image and in-

put image. Given a pair of input and rendered image {x,y},

we use the pretrained re-identification network as a feature

extractor for both x,y. We penalize the ℓ2 distance of the

respective intermediate feature activations Φv at n = 4 dif-

ferent network layers (v = 1, ..., n) after the Resnet block.

Lreid(x,y) =

n∑

v=1

‖Φv(x)− Φv(y)‖2 (3)

This loss penalizes differences in low- mid- and high-

level feature statistics, captured by respective network fil-

ters.

The setting of re-identification loss is similar to the per-

ceptual loss which is widely used for image generation

while the perceptual loss uses a network pretrained on Ima-

geNet. However, our method outperforms the model trained

on perceptual loss, which will be shown in Sec. 4.4. This

is because the re-identification network has been explicitly

trained to minimize the distance of the images of the same

person and maximize that of the different persons. As the

person identity is mostly characterized by the body texture,

the re-identification network performs better for guiding the

texture generation process.

In our proposed approach, we use the person re-

identification model with PCB [46] because of its simplic-
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ity and efficiency in extracting features from different body

parts. Other re-identification models can reach similar re-

sults while they perform badly when generating the details

of the human body, which will be shown in Sec. 4.4.

Face loss. In order to improve the realism of generated

texture, we design the face loss as the ℓ1 loss of face and

hand parts between the generated texture t and 3D scanned

texture ts from SURREAL [50]. Given the mask M of head

and hand parts, the face loss is defined in the following way:

Lface(t, ts) = ‖M⊙ (t− ts)‖1 (4)

The face loss makes the face part of the generated texture

similar to the corresponding part in the scanned texture. The

reason why we use the face loss in the training procedure

rather than simply covering the generated face parts with

scanned ones is that the former approach can eliminate the

color contrast between head and torso. From Fig. 4 we can

see the model trained without face loss produces results of

low quality. If we substitute the face part with textures in

SURREAL, there will be an obvious color contrast on the

neck.

Input No Lface Pasted face Full method

Figure 4: Results with and without face loss. For “Pasted

face”, we copy the face part of textures from SURREAL

and paste it to the texture of “No Lface”.

In all, our overall loss function is:

L = λreidLreid + λfaceLface (5)

where the λreid and λface are the weight of re-identification

loss and face loss respectively.

4. Experiments

4.1. Datasets and Metrics

Datasets. We perform our experiments on commonly-

used re-identification dataset Market-1501 [61], containing

32,668 images of 1,501 identities captured from six disjoint

surveillance cameras. All images are resized to 64 × 128
pixels. In our experiment, we select 100 person identities

for testing and the remaining 1401 for training. We also

removed all the images with unknown human labels. This

results in 30,470 training and 1,747 testing images.

Metrics. Evaluating the quality of image generation

method is a tricky task. In our experiments, we adopt a re-

dundancy of metrics and a user study to evaluate the quality

of generated textures. Following [38], we use the Structural

Similarity (SSIM) [55], Inception Score (IS) [44] and the

masked version of them: mask-SSIM and mask-IS [38].

The mask-SSIM is incorporated in order to reduce the

influence of background in our evaluation. A pose mask

is added to both the generated and the target image before

computing SSIM. In this way, we only focus on measuring

the generation quality of a person’s appearance.

Though the SSIM performs well in estimating similarity

both in body structure and textures, the Inception Score is

not useful in our problem. This is because it only rewards

the inter-class divergence and penalizes the inner-class di-

vergence, which means that it is not relevant to the with-in

class object generation [39]. We also have empirically ob-

served its instability with respect to the perceived quality

and structural similarity. Thus, we do not expect to draw

strong conclusions from it.

4.2. Implementation Details

We train texture generator with the Adam optimizer

(learning rate: 2 × 10−4, β1 = 0.9, β2 = 0.999, weight

decay: 1 × 10−5). In all experiments, the batch size is

set to 16 and the training proceeds for 120 epochs, totally

64k iterations. Every batch contains four groups while each

group constitutes of four images from the same person iden-

tity. The balancing weights λ between different losses (de-

scribed in Sec. 3.3) are set empirically to λreid = 5 × 103,

λface = 1.0.

4.3. Comparison with Available Methods

In this section, we demonstrate that the re-identification

plays an indispensable role in our method. We compare the

re-identification loss in our approach with two commonly-

used loss functions for the texture generation task: the pixel-

wise ℓ1 loss [39] and perceptual loss [26]. We show our

qualitative results in Fig. 5 and quantitative results in Ta-

ble. 1. From the qualitative result, we can conclude that

the model trained with re-identification loss performs better

than models with other loss functions. The reason why the

pixel-wise ℓ1 and perceptual loss performs bad is analyzed

in the following paragraphs.

The pixel-wise ℓ1 loss is defined as the ℓ1 loss between

the rendered and input image. The model trained with pixel-

wise ℓ1 reconstruction loss performs bad especially in gen-

erating details, such as hands and shins, of the image. This

is caused by the inaccurate estimation of human body poses

and shapes provided by HMR [25] module.

As described in [13], the perceptual loss is defined as the

ℓ2 distance between features of two images extracted from

5 intermediate layers of a VGG19 network which is pre-
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Input L1 Loss Perceptual ReID Loss Input L1 Loss Perceptual ReID Loss

Figure 5: Qualitative results. The result of different loss

functions is shown above. Each column shows (in order

from left): input images (from test set), pixel-wise ℓ1 loss,

perceptual loss, the re-identification loss

Model pixel-wise ℓ1 Perceptual ReID Loss

SSIM 0.162 0.149 0.164

mask-SSIM 0.374 0.356 0.372

Table 1: Quantitative results. The SSIM of our method is

higher than others while our mask-SSIM score is only 0.02

less than results of pixel-wise ℓ1 loss.

trained on ImageNet. The model trained with perceptual

loss ended up with an even worse result. The perceptual

quality of the torso part is poor. This is because the net-

work trained on Imagenet tends to extract general features

of objects rather than concentrating on body textures.

The SSIM and mask-SSIM score of ℓ1 reconstruction

loss are among the highest scores in all of the experiment

results, this is because the ℓ1 loss optimize the generated

texture in a pixel-to-pixel way, which is equivalent to di-

rectly optimizing the SSIM score in the training process.

While the re-ID loss does not directly optimize the SSIM

score, the SSIM score is still high using re-ID loss. This

verifies that re-ID loss is indeed effective.

The IS scores of the three models are 3.96, 4.04 and 3.96

respectively while the mask-IS scores are 2.90, 2.59 and

2.52. We do not show these results in Table 1 for the same

reason in Sec. 4.1.

4.4. Ablation Study

In this section, we carry out the following experiments

to explore the influence of different model settings. The

qualitative result is shown in Fig. 6 while the quantitative

result is shown in Table. 2.

ℓ1 loss of deep features. In the re-identification network

with PCB, the image is passed into a resnet-50 network and

a pooling layer, producing the feature g of 6 × 256 dimen-

sions. The deep feature loss is defined as the ℓ1 distance

between deep features g of re-identification network.

The result of deep feature loss is shown in the column

labeled “Deep Feature” of Fig. 6. Compared with the pro-

posed re-identification loss, this result is good while ignor-

ing some details, e.g. the patterns on clothes. This is be-

cause the deep features can hardly represent the details of

human texture as the deep features g can hold less informa-

tion than features from different layers. The qualitative re-

sult is also confirmed by the SSIM and mask-SSIM scores.

With vs. without body pose alignment. In our method,

we estimate the body pose and shape parameters of the im-

ages with HMR and render the SMPL body model with

these parameters. This can be viewed as the alignment of

pose and position of human body. Even though the re-

identification is believed to own the ability of filtering out

the influence of body posture and position, we still suppose

that the body pose alignment contributes to the texture gen-

eration process because the influence of body pose and po-

sition is inevitable [59].

In this experiment, we substitute the SMPL parameters

with the randomly chosen parameter from the walking se-

quences of the CMU MoCap database [2]. The result is

shown in the column labeled “No-pose” of Fig. 6. The ex-

periment shows that the model without pose alignment can

generate textures of acceptable quality. However, the de-

fects in arm parts indicates the significance of body align-

ment. Moreover, in the first example of Fig. 6 where human

only occupies half part of the image, the model without pose

alignment cannot recovery the human body size and loca-

tion automatically and it regards the background as a part

of the body.

The SSIM and mask-SSIM scores of the model without

pose alignment are 0.158 and 0.365 respectively, which are

lower than our method. This result indicates that the feature

extracted by the re-identification model more or less influ-

enced by the pose and position of the human body, which is

consistent with the conclusion in [59].

With vs. without body part features. In our method, we

employ PCB model [46] as the feature extraction module

of re-identification loss because it can extract features from

every part of the human body, which is supposed to be ben-

eficial for reconstructing details of human body. To demon-

strate this, we compared the performance of our method

with the model without body part features. In order to ex-

clude the influence caused by the different performances
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of re-identification network, the top-1 accuracy of the two

re-id networks are both around 92% on the Market-1501

dataset.

The result is shown in the column labeled “No-PCB” of

Fig. 6. The result with and without body part features is

mostly similar while they only differs on the arms or cloth-

ing details. This aligns well with the SSIM and mask-SSIM

results, where the scores of No-PCB is slightly lower than

proposed method. The high quality textures generated by

the model without PCB can be ascribed to the high accuracy

of re-identification model which extracts precise features.

Input No-pose No-PCBDeep Feature ReID Loss

Figure 6: Qualitative results of ablation study. The re-

sult of different model settings is shown above. Each col-

umn shows (in order from left): input images (from test set),

the ℓ1 loss on deep features, model without the pose align-

ment, re-identification loss without body part features, the

re-identification loss proposed in Sec. 3.3

Model Deep Feature No-Pose No-PCB ReID Loss

SSIM 0.155 0.158 0.159 0.164

mask-SSIM 0.354 0.365 0.369 0.372

Table 2: Quantitative results of ablation study. The SSIM

and mask-SSIM score of ReID loss is the higher than other

loss functions.

The IS scores of the four methods are 3.77, 4.07, 3.75

and 3.96 respectively while the mask-IS scores are 2.37,

2.63, 2.77 and 2.52. We do not show these results in Ta-

ble 2 for the reason in Sec. 4.1.

4.5. User Study

A commonly used way to further assess the reality of

generated texture is the user study, as human judgment is the

ultimate criterion in the generative model. However, unlike

previous works [23], our network generates the textures in-

stead of images of human, which makes it impossible for an

unprofessional user to tell which texture is better. Moreover,

the available rendering software cannot bridge the style gap

between rendered and real images, which makes a direct

comparison between them impossible. To tackle this issue,

we designed the user study aiming at comparing the gener-

ated textures with 3D-scanned textures which can be con-

sidered as the “real image” in the domain of texture. We

generated 55 image pairs and each pair contains one image

rendered with the generated texture and another one ren-

dered with the real texture from SURREAL [50]. 30 users

have to choose one image with higher quality among two

images in 2 seconds. The first 5 image pairs are used for

practice thus are ignored when computing scores.

From the result of our user study, users consider the qual-

ity of generated textures is higher than scanned textures in

32% image pairs. This shows the relatively high quality

of textures generated by our method. By reviewing our

user study, we find that the generated textures suffer from

blurring while the 3D scanning tends to preserve the de-

tails. There are two reasons behind this. Firstly, our textures

are generated from blurred images in Market-1501 dataset.

Secondly, the differential render, Opendr, only performs

well on textures of small size, which limits the resolution

of our generated textures.

4.6. Bird Texture Generation

Apart from generating textures of the human body, our

framework can also be applied to other object categories.

[26] presents a learning framework called CMR for recov-

ering the 3D shape, camera, and texture of an object from a

single image. CMR projects the 3D mesh to 2D images and

uses the perceptual loss [58] between the rendered image

and input image as the loss function. We believe our re-

identification supervised method can outperform CMR as

our loss function performs better than the perceptual loss,

which is demonstrated in Sec. 4.3.

To compare with them, we trained the re-identification

network on CUB-200-2011 dataset [52] and use it as the

perceptual metrics in the texture generation module. The

CUB-200-2011 dataset has 6,000 training and 6,000 test im-

ages from 200 birds species. Following [26], we filter out

nearly 300 images where the visible number of keypoints

are less than or equal to 6. Our experiment result is shown

in Fig. 7.

From the experiment results we can conclude that the

textures generated with re-identification loss are more ac-

curate than those generated with the perceptual loss. Par-
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Input CMR [26] Ours

Figure 7: Sample results. The textures generated by our

method is of higher quality than textures of CMR. This is

clearly shown on the heads of birds.

ticularly, our method succeeds in reconstructing details of

the input image. For example, the bird heads of our gen-

erated textures look more realistic than CMR [26]. This

experiment shows that our method holds the potential to be

applied in the texture generation task for general categories.

5. Action Recognition

SURREAL [50] provides an effective approach to gen-

erate the synthetic dataset and proves that pretraining on

synthetic dataset can enhance the performance of human

parsing and depth estimation models. However, due to the

shortage of available human body textures, the generated

dataset suffers from a lack of texture diversity. This limits

the generalize ability of models pretrained on the synthetic

datasets.

Our method provides an efficient way to generate a

large number of textures, which can be used to synthesize

datasets with higher diversity and tackle the aforementioned

issue. In order to prove this, we carry out the experiment

to compare the networks pretrained on action recognition

datasets synthesized with different textures. One dataset is

the SURREAL dataset generated with 772 scanned textures

while another dataset called SURREAL++ is generated

with 1.5k textures extracted from Market-1501. We gener-

ate SURREAL++ with the method proposed in SURREAL

using sequences of 2607 action categories from CMU Mo-

Cap dataset [2]. This makes the SURREAL++ embody

67,582 continuous image sequences containing 6.5 million

frames, which is of the same size as the SURREAL dataset.

To evaluate the generated dataset, we implement the non-

local neural networks [54] which is commonly used for ac-

tion recognition task and pretrain it on both the SURREAL

and SURREAL++ dataset. Then we fine-tune the networks

and test them on UCF101 dataset [45] to estimate the net-

works’ performance. The UCF101 dataset contains 13320

videos from 101 action categories. It uses three train/test

splits and each split contains around 9.5k training videos

and 3.7k test videos. We report our method by the average

of 3-fold cross-validation. In addition, we use the non-local

network trained on UCF101 dataset as our baseline model.

Training Data Top-1 Acc. (%) Top-5 Acc. (%)

UCF101 (baseline) 82.03 94.43

SURREAL 85.83 96.98

SURREAL++ 86.89 97.04

Table 3: Experiment results. We show the top-1 and top-5

accuracy of models trained on different datasets.

Table. 3 summarizes test results on UCF101. The model

pretrained on the SURREAL dataset and fine-tuned on

UCF101 is 3.80% higher in top-1 accuracy than the base-

line model, while the model pretrained on SURREAL++

dataset is 4.86% higher in top-1 accuracy. This result shows

that the dataset with richer texture diversity can elevate the

generalize ability of networks and such kind of diversity can

be obtained with our method.

6. Conclusion and Future Work

In this paper, we present an end-to-end framework for

generating the texture from a single RGB image. This is

achieved by incorporating the pretrained re-identification

network as the supervision for texture generation. We have

shown that re-identification network can work as a good su-

pervisor in the texture generation task due to its ability to

extract body features while reducing the influence in pose

variations. We have also proved the extensive application

potential of re-identification network in the 3D reconstruc-

tion of general categories. To provide the possible usage

of our generated body textures, we have demonstrated the

diversity in our textures can provide the pretrained model

with higher performance.

As the quality of the generated human body texture is

restricted by low-quality differentiable render, we suppose

that a high-quality renderer will enhance the performance

of our method dramatically. We also note that as our frame-

work renders a synthetic image in a similar pose as that of

the input image, the quality of texture in occluded parts is

not guaranteed. However, from the training images, we can

find another image x′ with the same identity as the input

imagex, but in a different pose. Then, we can align the pose

of rendered image y with x′ and therefore supervise the

texture generation process under another viewpoint. This

extension will be explored in the future.
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