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Abstract

The greatest challenge facing visual object tracking is

the simultaneous requirements on robustness and discrim-

ination power. In this paper, we propose a SiamFC-based

tracker, named SPM-Tracker, to tackle this challenge. The

basic idea is to address the two requirements in two sep-

arate matching stages. Robustness is strengthened in the

coarse matching (CM) stage through generalized training

while discrimination power is enhanced in the fine match-

ing (FM) stage through a distance learning network. The

two stages are connected in series as the input proposals of

the FM stage are generated by the CM stage. They are also

connected in parallel as the matching scores and box loca-

tion refinements are fused to generate the final results. This

innovative series-parallel structure takes advantage of both

stages and results in superior performance. The proposed

SPM-Tracker, running at 120fps on GPU, achieves an AUC

of 0.687 on OTB-100 and an EAO of 0.434 on VOT-16, ex-

ceeding other real-time trackers by a notable margin.

1. Introduction

Visual object tracking is one of the fundamental research

problems in computer vision and video analytics. Given the

bounding box of a target object in the first frame of a video,

a tracker is expected to locate the target object in all subse-

quent frames. The greatest challenge of visual tracking can

be attributed to the simultaneous requirements on robust-

ness and discrimination power. The robustness requirement

demands a tracker not to lose tracking when the appearance

of the target changes due to illumination, motion, view an-

gle, or object deformation. Meanwhile, a tracker is required

to have the power to discriminate the target object from clut-

tered background or similar surrounding objects. These two

requirements are sometimes contradictory and hard to be

fulfilled at the same time.

Intuitively, both requirements need to be handled
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Figure 1. The series-parallel structure which connects coarse

matching and fine matching stages in the proposed SPM-Tracker.

through online training. A tracker keeps collecting posi-

tive and negative samples along the tracking process. For

generative trackers, positive samples help to model the ap-

pearance variation of the target. For discriminative track-

ers, more positive and negative samples help to find a more

precise decision boundary that separates the target from the

background. For quite a long time, online training has been

an indispensable part in tracker design. Recently, with the

advancement of deep learning and convolutional neural net-

works, deep features have been widely adopted in object

trackers [34, 9, 39, 15, 7, 30]. However, online training

with deep features is extremely time consuming. Without

much surprise, the deep version of many high-performance

trackers [9, 7, 3, 39, 34, 48, 53] cannot run in real-time any

more, even on modern GPUs.

While the excessive volume of deep features brings

speed issues to online training, their strong representational

power also opens up a possibility to completely give up on-

line training. The idea is, under a given distance measure,

to learn an embedding space, through offline training, that

can maximize the interclass inertia between different ob-

jects and minimize the intraclass inertia for the same ob-

ject [58]. Note that maximizing the interclass inertia corre-

sponds to the discrimination power and minimizing the intr-

aclass inertia corresponds to the robustness. The pioneering

work along this research line is SiamFC [2]. In addition

to the offline training, SiamFC uses cross-correlation oper-

ation to efficiently measure the distance between the target

patch and all surrounding patches. As a result, SiamFC can

operate at 86fps on GPU.

By design, the SiamFC framework faces challenges in

balancing the robustness and the discrimination power of
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the embedding and in handling the scale and aspect ra-

tio changes of the target object. Recently, SiamRPN [26]

was proposed to address the second challenge. It consists

of a Siamese subnetwork for feature extraction and a re-

gion proposal subnetwork for similarity matching and box

regression. In a follow-up work called DaSiamRPN [58],

distractor-aware training is adopted to promote the general-

ization and discriminative ability of the embedding. In these

two pieces of work, visual object tracking is formulated as

a local one-shot detection task.

In this paper, we design a two-stage SiamFC-based net-

work for visual object tracking, aiming to address both chal-

lenges mentioned above. The two stages are the coarse

matching (CM) stage which focuses on enhancing the ro-

bustness and the fine matching (FM) stage which focuses on

improving the discrimination power. By decomposing these

two equally important but somewhat contradictory require-

ments, our proposed network is expected to achieve better

performance. Moreover, both CM and FM stages perform

similarity matching and bounding box regression. Thanks

to the two-stage box refinement, our tracker achieves high

localization precision without multi-scale test.

The key innovation in this work is the series-parallel

structure that is used to connect the two stages. The

schematic diagram is shown in Fig.1. Similar to the se-

ries structure which is widely adopted in two-stage object

detection, the input of the second FM stage relies on the

output of the first CM stage. In this sense, the CM stage is

a proposal stage. Similar to the parallel structure, the final

matching score as well as the box location are the fused re-

sults from both stages. This series-parallel structure brings

a number of advantages which will be detailed in Section 3.

In addition, we propose generalized training (where objects

from the same category are all treated as the same object)

to boost the robustness of the CM stage. The discrimination

power of the FM stage is promoted by replacing the cross-

correlation layer with a distance learning subnetwork. With

these three innovations, the resulting tracker achieves supe-

rior performance on major benchmark datasets. It achieves

an AUC of 0.687 on OTB-100 and EAOs of 0.434 and 0.338

on VOT-16 and VOT-17, respectively. More importantly,

the inference speed is 120fps on a NVIDIA P100 GPU.

The rest of the paper is organized as follows. We dis-

cuss related work in Section 2. The proposed series-parallel

framework is presented in Section 3. After describing the

implementation details of SPM-Tracker in Section 4, we

provide extensive experimental results in Section 5. Finally,

we conclude the paper with some discussions in Section 6.

2. Related Work

Object trackers have conventionally been classified into

generative trackers and discriminative trackers [24], and

most modern trackers belong to the latter. A common ap-

proach of discriminative trackers is to build a binary classi-

fier that represents the decision boundary between the ob-

ject and its background [24]. It is generally believed that

adaptive discriminative trackers, which continuously update

the classifier during tracking, are more powerful than their

static counterparts.

Correlation Filter (CF) based trackers are among the

most successful and representative adaptive discriminative

trackers. Bolme et al. [4] first proposed the MOSSE fil-

ter which is capable of producing stable CFs from a single

frame and then continuously being improved during track-

ing. The MOSSE filter has aroused a great deal of inter-

est and there are a bunch of follow-up work. For exam-

ple, kernel tricks [19, 20, 10] were introduced to extend CF.

DSST [10] and SAMF [27] enabled scale estimation in CF.

SRDCF [8] was proposed to alleviate the periodic effect of

convolution boundaries.

More recently, with the advancement of deep learning,

the rich representative power of deep features is widely ac-

knowledged. There is a trend to utilize deep features in

CF-based trackers [31, 9, 7, 3]. However, this creates a

dilemma: online training is an indispensable part of CF-

based trackers, but online training with deep features is ex-

tremely slow.

In many real world applications, being real-time is

mandatory for a tracker. Facing the above mentioned

dilemma, many researchers resorted to another choice:

static discriminative trackers. With the highly expres-

sive deep features, it becomes possible to build high-

performance static trackers. This idea was successfully re-

alized by SiamFC [2]. SiamFC employs Siamese convo-

lutional neural networks (CNNs) to extract features, and

then uses a simple cross-correlation layer to perform dense

and efficient sliding-window evaluation in the search re-

gion. Every patch of the same size as the target gets a sim-

ilarity score, and the one with the highest score is identi-

fied as the new target location. There are also a great num-

ber of follow-up work [15, 52, 49], among which SA-Siam

[17, 16] and SiamRPN [26, 58] are most related to ours.

The main challenge in SiamFC-based methods is to

find an embedding space, through offline training, that is

both robust and discriminative. Zhu et al. [58] propose

distractor-aware training to emphasize these two aspects.

They use diverse categories of positive still image pairs to

promote the robustness, and use semantic negative pairs to

improve the discriminative ability. However, it is difficult to

attend to both requirements in a single network. SA-Siam

[17] and Siam-BM [16] adopt a two-branch network to en-

code images into two embedding spaces, one for semantic

similarity (more robust) and the other for appearance simi-

larity (more discriminative). This typical parallel structure

does not take advantage of the innate proposal capability of

the semantic branch.
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Figure 2. Details of the proposed series-parallel matching framework. We employ Siamese AlexNet [25] for feature extraction. The CM

stage adopts the network structure of SiamRPN [26]. RoI Align [18] is used to generate fixed-length regional features for each proposal.

The FM stage implements a relation network [50] for distance learning. Finally, results from both stages are fused for decision making.

Another challenge in SiamFC-based methods is how to

handle scale and shape changes. Almost all SiamFC-based

trackers adopt an awkward multi-scale test for scale adjust-

ment, but the aspect ratio of bounding boxes remains un-

changed throughout the tracking process. SiamRPN [26]

addresses this issue with an elegant region proposal net-

work (RPN). The capability to do box refinement also al-

lows it to discard multi-scale test. In this work, we fol-

low SiamRPN to use RPN for bounding box size adjust-

ment. The two-stage refinement allows our SPM-Tracker to

achieve an even more precise box location.

SiamRPN and DaSiamRPN [58] pose the tracking prob-

lem as a local single-stage object detection problem. Some

recent empirical studies [22] on object detection show that

two-stage design is often more powerful than one-stage de-

sign. This may be related to hard example mining [28] and

regional feature alignment [18]. In the tracking commu-

nity, Zhang et al. [55] adopt a two-stage design for long-

term tracking. However, the series structure they adopted

demands for a very powerful second stage. They use MD-

Net [34] for the second stage, which greatly slows down the

inference speed to 2fps.

3. Our Approach

3.1. Series­Parallel Matching Framework

We propose a framework for robust and discriminative

visual object tracking. The proposed SPM framework is

depicted in Fig.2. We employ a Siamese network to ex-

tract features from the target patch and the local search re-

gion. This is followed by two matching stages, namely

coarse matching stage and fine matching stage, organized

in a series-parallel structure.

Both the CM and FM stages produce similarity scores

of proposals and box location deltas. We let the CM stage

to focus on the robustness, i.e. to minimize the intraclass

inertia for the same object. It is expected to propose the

target object even when it is experiencing huge appearance

changes. A number of proposals which get the top match-

ing scores in the CM stage are then passed to the FM stage

and fixed-size regional features are extracted through RoI

Align [18]. The FM stage is designed to focus on discrim-

ination, i.e. to maximize the interclass inertia between dif-

ferent objects. It is expected to discriminate the true tar-

get from background or surrounding similar objects. Even-

tually, the matching scores and box locations from both

matching stages are fused to make the final decision.

The proposed SPM framework brings a number of ad-

vantages as outlined below.

• The robustness and the discrimination requirements

are decomposed and emphasized in separate stages. It

is easier to train two networks to achieve their respec-

tive goals than to train a single network that simultane-

ously achieves the goals for both requirements..

• The input proposals of the FM stage are all high-score

candidates from the CM stage. FM stage training ben-

efits from a balanced positive-negative ratio and hard

negative mining to enhance the discrimination power.

3645



Figure 3. Illustration of the generalized training (GT) strategy for

the CM stage. Given a template as shown on the left, the green

blocks in search image 1 indicate the positive samples used in

conventional training. The red blocks are the locations of other

objects of the same category. GT takes both green and red blocks

as positive samples. (The blue blocks indicate the ignored region.)

Best viewed in color.

Figure 4. Visualization of the cross-correlation response maps gen-

erated by SiamFC [2], SiamRPN [26], and the CM stage of our

tracker. Our tracker can robustly highlight the target object even

when it has severe deformation. Best viewed in color.

• Box regression in the CM stage allows the FM stage

to evaluate aligned patches with different scale or even

different aspect ratio from the target object. Fusion of

two-stage box regressions leads to a higher precision.

• Since only a few proposals are passed to the FM stage,

it is not necessary to use cross-correlation operation to

compute distance. We could adopt a trainable distance

measure for the FM stage.

In the following two subsections, we will discuss the CM

and FM stages in more details.

3.2. Coarse Matching Stage

The coarse matching stage looks in the search region for

candidate patches which are similar to the target patch. It is

expected to be very robust such that the target object will not

be missed even when it is experiencing drastic appearance

changes due to intrinsic or extrinsic factors. We adopt the

region proposal subnetwork as introduced in SiamRPN [26]

for this stage. Given the features extracted by a Siamese

network, pair-wise correlation feature maps are computed

for the classification branch and the regression branch. The

classification branch produces the similarity scores for the

candidate boxes while the regression branch generates the

Figure 5. Visualization of the top-K matched boxes and their simi-

larity scores output by SiamFC [2], SiamRPN [26], and our SPM-

Tracker. Our tracker generates two scores, corresponding to the

CM stage (C) and the FM stage (F). Objects of the same category

get high C-scores but only the true target gets high F-scores. It

shows that SPM-Tracker achieves the design goal.

box deltas. Similar to SiamRPN, we can discard multi-scale

test since the proposal network handles scale and shape

changes in a graceful manner.

For the CM stage, we propose generalized training (GT)

to improve the robustness. Conventionally, image pairs of

the same object drawn from two frames of a video are used

as positive samples. In DaSiamRPN [58], still images from

detection datasets are used to generate positive image pairs

through data augmentation. In this work, we additionally

treat some image pairs containing different objects as posi-

tive samples when the two objects belong to the same cate-

gory. Fig. 3 illustrates the classification labels used in our

CM stage and in other SiamFC-based trackers. This train-

ing strategy leads to exceedingly generalized embeddings

which capture high-level semantic information and there-

fore are insensitive to object appearance changes.

Fig.4 shows the response map of the CM stage and com-

pares it with that of SiamFC and SiamRPN (with distractor-

aware training). It is observed that our tracker is able to

generate strong responses even when the target object has

significant deformation. By contrast, SiamRPN [26, 58]

barely produce any response and SiamFC does not have a

precise localization.

3.3. Fine Matching Stage

The fine matching stage is expected to capture fine-

grained appearance information so that the true target can

be distinguished from background or similar surrounding

objects. The FM stage only evaluates the top K highest-

score patches from the CM stage.

As illustrated in Fig. 2, the FM stage shares features with

the CM stage. For each proposal, the regional features are

directly cropped from the shared feature maps. Consider-

ing the fact that shallow features contain detailed appear-

ance information and also result in high localization preci-

sion, we take both deep and shallow features and fuse them

by concatenation. Then, RoI Align operation [18] creates
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fixed-size feature maps for each proposal.

Since there are only a limited number of patches to be

evaluated in this stage, we can afford to use a more powerful

distance learning network, instead of the cross-correlation

layer, to measure the similarity. Additionally, such a net-

work could be trained to generate a complementary score to

the CM similarity scores. We adopt a light-weight relation

network as proposed in [50] for the FM stage. The input

of the relation network is the concatenated feature from the

image pairs. A 1 × 1 convolution layer is followed by two

fully connected layers which generate feature embedding

for classification and box regression.

Finally, the similarity scores and the box deltas from two

stages are fused by weighted sum. The candidate box with

the highest similarity score is identified as the target ob-

ject. Fig. 5 shows the top-K candidates and their similarity

scores output by different trackers. Our tracker is associated

with two scores corresponding to the CM and FM stages.

The high C-scores for all the foreground objects suggest the

robustness of SPM-Tracker and the low F-scores for non-

target objects demonstrate the discrimination power.

4. Implementation

4.1. Network Structure and Parameters

The CNN backbone used for feature extraction is the

standard AlexNet [25]. It is pre-trained on the ImageNet

dataset. Unlike other SiameFC-based trackers, we keep the

padding operations in the backbone network. This is be-

cause the RoI Align operation needs pixel alignment be-

tween feature maps and source images. The CM stage still

uses the central features without padding. In our imple-

mentation, the target image has a size of 127 × 127 × 3.

The size of its last-conv-layer feature map with padding is

16 × 16 × 256. Only the central 6 × 6 × 256 features are

used for the CM stage, which is consistent with the origi-

nal SiamFC. The FM stage extracts regional features from

conv2 (384 channels) and conv4 (256 channels) layers and

concatenates them. We use RoI Align operation to pool re-

gional features of size 6× 6× 640 for each proposal, where

6 × 6 is the spatial size and 640 is the number of chan-

nels. The two fully-connected layers in the FM stage are

lightweight, with only 256 neurons per layer.

4.2. Training

The entire network can be trained end-to-end. The over-

all loss function is composed of four parts: classification

loss and box regression loss in both the CM stage and FM

stage. For the CM stage, an anchor box is assigned a pos-

itive (or negative) label when its intersection-over-union

(IoU) overlap with the ground-truth box is greater than 0.6

(or less than 0.3). Other patches whose IoU overlap falls in

between are ignored. For the FM stage, positive (or nega-

tive) labels are assigned to candidate boxes whose IoU over-

laps are greater (or less) than 0.5. Same as in the Faster R-

CNN object detection framework [37], box regression loss

is added to positive samples in both stages. We adopt cross-

entropy loss for classification and smooth L1 loss [14] for

box regression. The overall loss function can be written as:

L = λ1Lcm cls + λ2Lcm b + λ3Lfm cls + λ4Lfm b, (1)

where Lcls denotes the classification loss and Lb denotes

the box regression loss. We set λ2 = 2 and λ1 = λ3 =
λ4 = 1 since the box regression loss of CM module is much

smaller than the others.

The training image pairs are extracted from both videos

and still images. The video datasets include VID [38]

and the training set of Youtube-BB [35]. Following DaSi-

amRPN [58], we also make use of still image datasets, in-

cluding COCO [29], ImageNet DET [38], Cityperson [56]

and WiderFace [51]. The sampling ratio between videos

and still images is 4 : 1. There are three types of im-

age pairs, denoted by same-instance, same-category, and

different-category. They are sampled at a ratio of 2 : 1 : 1.

The standard SGD optimizer is adopted for training. In

each step, the CM stage produces hundreds of candidate

boxes, among which 48 boxes are selected to train the FM

stage. The positive-negative ratio is set to 1 : 1. The learn-

ing rate is decreased from 10−2 to 10−4. We train the net-

work for 50 epochs and 160,000 image pairs are sampled in

each epoch.

4.3. Inference

During inference, we crop the template image patch from

the first frame and feed it to the feature extraction network.

The template features are cached so that we do not need to

compute it in the subsequent frames.

Given the tracking box in the last frame, a search image

patch surrounding the box location is cropped and resized

to 271 × 271. The CM stage takes the search image as

input and then outputs a number of boxes. The candidate

box that has the largest overlap with the tracking box in

the previous frame will be reserved to increase the stability.

Other boxes go through the standard proposal processing in

RPN [37]. First, boxes with low scores are filtered. Then

non-maximum suppression (NMS) is applied. The NMS

threshold is 0.5. Finally, K candidate boxes with top scores

are selected and passed to the FM stage. In this step, we

do not add shape penalties or cosine window penalties in

order to aggressively propose boxes. The number of can-

didate boxes K is set to 9, which is further analyzed in

Section 5.2. We use five anchors whose aspect ratios are

[0.33, 0.5, 1.0, 2.0, 3.0].
In the FM stage, similarity scores and refined box po-

sitions are predicted by the classification head and the box

regression head. Let uc, uf be the scores predicted by CM
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CM

Only

CM+FM

Series

CM+FM

Series-Parallel

OTB-100 (AUC) 0.643 0.632 0.670

VOT-17 (EAO) 0.279 0.296 0.323

VOT-16 (EAO) 0.359 0.343 0.391

Table 1. Ablation analysis of different architectures. Results on

three benchmark datasets are consistent, and they demonstrate the

superiority of the series-parallel structure.

and FM stages, respectively. Let Bc,Bf be the bounding

box locations after the adjustment of the CM and FM stages,

respectively. The final score and box coordinates are the

weighted sum of the results from the two modules:

u = (1−Wcls)uc +Wclsuf

B =
uc

Wboxuf + uc

Bc +
Wboxuf

Wboxuf + uc

Bf ,
(2)

where Wcls,Wbox are weights of the FM module for simi-

larity score and box coordinates. We find that good tracking

results are usually achieved when Wcls takes a value around

0.5 and Wbox takes a value of 2 or 3.

After applying cosine windows [2], the candidate box

with the highest score is selected and its size is updated by

linear interpolation with the result in the previous frame.

Our tracker can run inference at 120fps with a single

NVIDIA P100 GPU and an Intel Xeon E5-2690 CPU.

5. Experiments

The three main contributions in this work are: 1) us-

ing series-parallel structure to connect two matching stages;

2) adopting generalized training for the CM stage; and 3)

adopting a relation network for distance measurement in

the FM stage. In this section, we will first perform ablation

analyses which support our contributions, and then carry

out comparison studies with the state-of-the-art trackers on

major benchmark datasets.

5.1. Analysis of the Series­Parallel Structure

We corroborate the effectiveness of the series-parallel

structure by comparing it with two alternatives. The base-

line scheme, denoted by “CM only” in Table 1 is actually

SiamRPN [26]. Our implementation achieves a slightly bet-

ter performance than reported in their original paper (0.279

vs 0.244 on VOT-17 benchmark) because we have included

additional still images in the training. When the FM stage is

added in series, the performance (denoted by “CM+FM Se-

ries” in Table 1) is similar to the baseline (better on VOT-17

and worse on OTB-100 and VOT-16).

The proposed “CM+FM Series-Parallel” method, which

performs two-stage fusion, significantly outperforms the

other two schemes, as Table 1 shows. The reason why fu-

sion plays an important role is that the two stages pay atten-

tion to different aspects of tracker capabilities: robustness

OTB-100

AUC

VOT-17

EAO

VOT-16

EAO

S-P model 0.670 0.323 0.391

S-P model + GT 0.687 0.338 0.434

Table 2. Generalized training (GT) for the CM stage significantly

improves the performance.
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9 candidates + GT - [0.901]

(b)

Figure 6. CM module analysis: (a) AUC score vs. number of can-

didate boxes; (b) recall rate vs. overlap thresholds (the values in

brackets indicate the mean recalls over thresholds 0.5:0.05:0.7).

All experiments are carried out on OTB-100 dataset.

at the CM stage and discrimination power at the FM stage.

The matching score produced by one stage does not reflect

the other capability. The idea of fusion has been practiced in

many trackers [47, 13, 6, 17] and has shown effectiveness.

5.2. Analysis of the CM Stage

Generalized Training Strategy: To make the CM mod-

ule more robust to object appearance change, we propose to

take image pairs in the same category as positive samples

during training. This is referred to as the generalized train-

ing (GT) strategy. We compare the performance of SPM-

Tracker when it is trained with or without the GT strat-

egy for the CM stage. Improvements achieved on all three

benchmark datasets, as shown in Table 2, confirm the effec-

tiveness of this strategy. Some of the visualization results

have already been presented in Fig. 4 to show that the GT

strategy helps to locate objects with large deformation.

Number of Candidate Boxes: During inference, the CM

stage passes K top-scored candidate boxes to the FM stage.

On the one hand, the larger the K is, the higher the proba-

bility that the true target is included in the final evaluation.

On the other hand, a larger K means more false positives

will be evaluated in the FM stage, which reduces the speed

and might decrease the accuracy as well. In order to deter-

mine K, we investigate the relationship between the track-

ing performance and the number of candidate boxes. Fig.

6(a) shows how the AUC on OTB-100 changes with K. We

find that when K is larger than 7, the performance tends to

flatten. Therefore, we choose K = 9 in experiments.

Recall: Recall of candidate boxes can be used to mea-

sure the robustness. We use recall to further validate the

GT strategy and K selection in the CM stage. To ensure

fairness, we crop the template from the first frame and the

search region in the current frame is generated according
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Tracker
AUC score (OPE) Speed

OTB-2013 OTB-50 OTB-100 (FPS)

C
F

-b
as

ed
T

ra
ck

er
s

LCT [32] 0.628 0.492 0.568 27

Staple [1] 0.593 0.516 0.582 80

LMCF [46] 0.628 0.533 0.580 85

CFNet [44] 0.611 0.530 0.568 75

BACF [12] 0.656 0.570 0.621 35

ECO-hc [7] 0.652 0.592 0.643 60

MKCFup [42] 0.641 - - 150

MCCT-H [48] 0.664 - 0.642 45

S
ia

m
F

C
-b

as
ed

T
ra

ck
er

s SiamFC [2] 0.607 0.516 0.582 86

DSiamM [15] 0.656 - - 25

RASNet [49] 0.670 - 0.642 83

SiamRPN [26] 0.658 0.592 0.637 200

SA-Siam [17] 0.677 0.610 0.657 50

StructSiam [57] 0.637 - 0.621 45

MemTrack [52] 0.642 - 0.626 50

DaSiamRPN [58] 0.656 0.602 0.658 160

Siam-BM [16] 0.684 0.617 0.662 48

M
is

c.

EAST [21] 0.638 - 0.629 159

PTAV [11] 0.663 0.581 0.635 25

ACT [5] 0.657 - 0.625 30

RT-MDNet [23] - - 0.650 46

Ours 0.693 0.653 0.687 120

Table 3. Comparison with state-of-the-art real-time trackers on

OTB dataset. Trackers are grouped into CF-based methods,

SiamFC-based methods and miscellaneous. Numbers in red and

blue are the best and the second best results, respectively.

to the ground-truth box in the previous frame. Fig. 6 (b)

shows the recall vs. overlap threshold. The mean recall for

the overlap thresholds [0.5, 0.7] is also computed and listed

in brackets. It is obvious that using a single candidate box

results in significantly lower recall than using multiple can-

didates. As the number of candidate boxes increases, the

recall also increases before it saturates at around K = 9. At

the saturation point, applying the GT strategy still can boost

recall. This double confirms the power of the GT strategy.

5.3. Analysis of the FM Stage

Multi-Layer Feature Fusion: The FM stage takes regional

features cropped from the shared backbone network as in-

puts. Generally speaking, deep features are rich in high-

level semantic information and shallow features are rich in

low-level appearance information. As suggested in many

previous works [43, 45, 39, 3], multi-layer features can be

fused to achieve better performance. We follow this com-

mon practice and use conv2 + conv4 features for the FM

stage. To demonstrate the advantage of multi-layer feature

fusion, we compare the performance of SPM-Tracker with

alternative implementations which only use single layer fea-

tures. We train and test models which use conv2, conv3,

or conv4 only. On OTB-100 benchmark, these three mod-

els achieve AUC scores of 0.666, 0.675, and 0.676, respec-

tively, while our final model using conv2 + conv4 achieves
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Figure 7. The success plot and precision plot on OTB-100.

an AUC of 0.687. This experiment demonstrates that the

FM stage benefits from multi-layer feature fusion.

Replace Cross-Correlation Layer with the Relation Net-

work: An important innovation that contributes to the high

efficiency of SiamFC tracker is the cross-correlation layer

that achieves dense and efficient sliding-window evaluation

in the search region. Almost all SiamFC-based trackers

have followed this usage. We also use cross-correlation

layer in our CM stage for similarity matching and box re-

gression. But in the FM stage, there are much fewer candi-

date boxes scattered in the search region. There is not much

advantage in using cross-correlation operation. Therefore,

we replace the cross-correlation layer with a more power-

ful relation network as described in [50]. Experimental re-

sults verify our design choice. When models are trained

without the GT strategy, using cross-correlation layer in the

FM stage results in an AUC of 0.647 on OTB-100, which

is slightly better than the single stage baseline SiamRPN

(0.643), but is notably inferior to the relation-network-based

model (0.670). In addition, when GT is adopted, the AUC

score of the cross-correlation-based model is 0.655 while

that of the relation-network-based model is 0.687.

5.4. Comparison with State­of­the­Arts

Evaluation on OTB: Our SPM-Tracker is first com-

pared with the state-of-the-art real-time trackers on OTB

2013/50/100 benchmarks. The detailed AUC scores are

summarized in Table 3. Due to space limitation, we only

show the success plot and the precision plot of one pass

evaluation (OPE) on OTB-100 in Fig. 7. The SPM-

Tracker outperforms other real-time trackers on all three

OTB benchmarks by a large margin.

We also compare SPM-Tracker with some non-real-time

top-performing trackers, including C-COT [9], ECO [7],

MDNet [34], ADNet [54], TCCN [33], LSART [41], VI-

TAL [40], RTINet [53], and DRL-IS [36]. The AUC score

vs. speed curve on OTB-100 is shown in Fig. 8. SPM-

Tracker strikes a very good balance between tracking per-

formance and inference speed.

Evaluation on VOT: SPM-Tracker is evaluated on two

VOT benchmark datasets, VOT-16 and VOT-17. Table 4

shows the comparison with almost all the top-performing

trackers despite their speed. Among the real-time track-

ers, SPM-Tracker is by far the best performing one with su-
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Tracker
VOT-16 VOT-17

FPS
A R EAO A R EAO

CREST 0.51 0.25 0.283 - - - 1

MDNet 0.54 0.34 0.257 - - - 1

C-COT 0.54 0.24 0.331 - - - 0.3

LSART - - - 0.49 0.22 0.323 1

ECO 0.55 0.20 0.375 0.48 0.27 0.280 8

UPDT - - - 0.53 0.18 0.378 -

SiamFC 0.53 0.46 0.235 0.50 0.59 0.188 86

Staple 0.54 0.38 0.295 0.52 0.69 0.169 80

ECO-hc 0.54 0.30 0.322 0.49 0.44 0.238 60

SA-Siam 0.54 - 0.291 0.50 0.46 0.236 50

Siam-BM - - - 0.56 0.26 0.335 32

SiamRPN 0.56 0.26 0.344 0.49 0.46 0.244 200

DaSiamRPN 0.61 0.22 0.411 0.56 0.34 0.326 160

Ours 0.62 0.21 0.434 0.58 0.30 0.338 120

Table 4. Comparison with state-of-the-art trackers on VOT bench-

mark. Both non-real-time methods (top rows) and real-time meth-

ods (bottom rows) are included. “A” and “R” denote accuracy and

robustness. EAO stands for expected average overlap. The num-

bers in red and blue indicate the best and the second best results.

perior accuracy and EAO. Even when compared with non-

real-time trackers, SPM-Tracker achieves the best accuracy

and the EAO performance is among the best.

Excluding extra data: Compared with DaSiamRPN [58],

our tracker has used two more datasets (Cityperson [56] and

WiderFace [51]) in training. For fair comparison, we have

also trained a model excluding these two datasets. The AUC

on OTB-100 slightly drops to 0.671, but still outperforms

DaSiamRPN and Siam-BM. The EAO on VOT-16 becomes

0.432 and that on VOT-17 slightly increases to 0.347.

5.5. Qualitative Results

Successful Cases: In Fig. 9, we visualize three success-

ful tracking cases, including the very challenging jump and

diving sequences. Owing to the robustness of the CM stage,

our tracker is able to detect targets with huge deformation.

The region proposal branch allows SPM-Tracker to fit to

the varying object shapes. In these two sequences, some of

the best trackers such as ECO [7] and MDNet [34] also fail.

Figure 9. Visualization of three successful tracking sequences

from OTB-100.

Figure 10. Visualization of failure cases. The green box is ground-

truth and the red box is our tracking result.

DaSiamRPN [58] barely follows the target, but the box lo-

cations are less precise. This demonstrates the advantage of

our two-stage box refinement.

Failure Cases: We observe two types of failures in SPM-

Tracker, as shown in Fig. 10. In walking2 and liquor se-

quences, when the target is occluded by a similar object,

the tracking box may drift. The other type of failure occurs

when the ground-truth target is only a part of an object, as

in sequences bird1 and dog. SPM-Tracker seems to have

a strong sense of objectness and tends to track the entire

object even when the template only contains a part of it.

6. Conclusion

We have presented the design and implementation of a

static discriminative tracker named SPM-Tracker. SPM-

Tracker adopts a novel series-parallel structure for two-

stage matching. Evaluations on OTB and VOT benchmarks

show its superior tracking performance. In the future, we

plan to explore solutions to the drifting problem when the

target is occluded by similar objects. Possible choices in-

clude template update and forward-backward verification.

We believe that the series-parallel matching framework has

great potential and is worthy of further investigation.
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