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Abstract

We address the problem of video representation learning

without human-annotated labels. While previous efforts ad-

dress the problem by designing novel self-supervised tasks

using video data, the learned features are merely on a

frame-by-frame basis, which are not applicable to many

video analytic tasks where spatio-temporal features are pre-

vailing. In this paper we propose a novel self-supervised

approach to learn spatio-temporal features for video repre-

sentation. Inspired by the success of two-stream approaches

in video classification, we propose to learn visual features

by regressing both motion and appearance statistics along

spatial and temporal dimensions, given only the input video

data. Specifically, we extract statistical concepts (fast-

motion region and the corresponding dominant direction,

spatio-temporal color diversity, dominant color, etc.) from

simple patterns in both spatial and temporal domains. Un-

like prior puzzles that are even hard for humans to solve,

the proposed approach is consistent with human inherent

visual habits and therefore easy to answer. We conduct ex-

tensive experiments with C3D to validate the effectiveness

of our proposed approach. The experiments show that our

approach can significantly improve the performance of C3D

when applied to video classification tasks. Code is available

at https://github.com/laura-wang/video repres mas.

1. Introduction

Learning powerful spatio-temporal representations is the

most fundamental deep learning problem for many video

understanding tasks such as action recognition [4, 17, 26],

action proposal and localization [5, 33, 34], video caption-

ing [40, 42], etc. Great progresses have been made by train-

ing expressive networks with massive human-annotated

video data [37, 38]. However, annotating video data is very

laborious and expensive, which makes the learning from un-
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Figure 1. The main idea of the proposed approach. Given a

video sequence, we design a novel task to predict several nu-

merical labels derived from motion and appearance statistics for

spatio-temporal representation learning, in a self-supervised man-

ner. Each video frame is first divided into several spatial regions

using different partitioning patterns like the grid shown above.

Then the derived statistical labels, such as the region with the

largest motion and its direction (the red patch), the most diverged

region in appearance and its dominant color (the yellow patch),

and the most stable region in appearance and its dominant color

(the blue patch), are employed as supervision during the learning.

labeled video data important and interesting.

Recently, several approaches [27, 11, 24, 12] have

emerged to learn transferable representations for video

recognition tasks with unlabeled video data. In these ap-

proaches, a CNN is first pre-trained on unlabeled video data

using novel self-supervised tasks, where supervision sig-

nals can be easily derived from input data without human

labors, such as solving puzzles with perturbed video frame

orders [27, 11, 24] or predicting flow fields or disparity

maps obtained with other computational approaches [12].

Then the learned representations can be directly applied to

other video tasks as features, or be employed as initializa-

tion during succeeding supervised learning. Unfortunately,

although these work demonstrated the effectiveness of self-

supervised representation learning with unlabeled videos,

their approaches are only applicable to a CNN that accepts

one or two frames as inputs, which is not a recommended

way for tackling video tasks. In most video understanding

tasks, spatio-temporal features that can capture information

of both appearances and motions are proved to be vital in

many recent studies [2, 35, 37, 4, 38].

In order to extract spatio-temporal features, a network ar-
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chitecture that can accept multiple frames as inputs and per-

form operations along both spatial and temporal dimensions

is needed. For example, the popular C3D network [37],

which accepts 16 frames as inputs and employs 3D con-

volutions along both spatial and temporal dimensions to ex-

tract features, is becoming more and more popular for many

video tasks [33, 34, 22, 25, 42]. Vondrick et al. [39] pro-

posed to address the representation learning by C3D-based

networks, while motion and appearance are not explicitly

incorporated thus the performance is not satisfactory when

transferring the learned features to other video tasks.

In this paper, we propose a novel self-supervised learn-

ing approach to learn spatio-temporal video representations

by predicting motion and appearance statistics in unlabeled

videos. The idea is inspired by Giese and Poggio’s work

on human visual system [14], in which the representation

of motion is found to be based on a set of learned patterns.

These patterns are encoded as sequences of snapshots of

body shapes by neurons in the form pathway, and by se-

quences of complex optic flow patterns in the motion path-

way. In our work, the two pathways are the appearance

branch and motion branch respectively. Besides, the ab-

stract statistical concepts are also inspired by the biologi-

cal hierarchical perception mechanism. The main idea of

our approach is shown in Figure 1. We design several spa-

tial partitioning patterns to encode each spatial location and

its motion and appearance statistics over multiple frames,

and use the encoded vectors as supervision signals to train

the spatio-temporal representation network. The novel ob-

jectives are simple to learn and informative for the motion

and appearance distributions in video, e.g., the spatial lo-

cations of the most dominant motions and their directions,

the most consistent and the most diverse colors over a cer-

tain temporal cube, etc. We conduct extensive experiments

with C3D network to validate the effectiveness of the pro-

posed approach. We show that, compared with training

from scratch, pre-training C3D without labels using our

proposed approach gives a large boost to the performance

of the action recognition task (e.g., 45.4% v.s. 61.2% on

UCF101). By transferring the learned representations to

other video tasks on smaller datasets, we demonstrate sig-

nificant performance gains on various tasks like dynamic

scene recognition, action similarity labeling, etc.

2. Related work

Self-supervised representation learning is proposed to

leverage the huge amounts of unlabeled data to learn useful

representations for various problems, for example, image

classification, object detection, video recognition, etc. It

has been proved that lots of deep learning methods can ben-

efit from pre-trained models on large labeled datasets, e.g.,

ImageNet [7] for image tasks and Kinetics [19] or Sports-

1M [18] for video tasks. The basic motivation behind self-

supervised representation learning is to replace the expen-

sive labeled data with “free” unlabeled data.

A common way to achieve self-supervised learning is

to derive easy-to-obtain supervision signals without hu-

man annotations, to encourage the learning of useful fea-

tures for regular tasks. Various novel tasks are proposed

to learn image representations from unlabeled image data,

e.g., re-ordering perturbed image patches [9, 29], coloriz-

ing grayscale images [45], inpainting missing regions [32],

counting virtual primitives [30], classifying image rotations

[13], predicting image labels obtained using a clustering al-

gorithm [3], etc. There are also studies that try to learn im-

age representations from unlabeled video data. Wang and

Gupta [43] proposed to derive supervision labels from un-

labeled videos using traditional tracking algorithms. Pathak

et al. [31] instead obtained labels from videos using con-

ventional motion segmentation algorithms.

Recent studies leveraging video data try to learn trans-

ferable representations for video tasks. Misra et al. [27]

designed a binary classification task and asked the CNN to

predict whether the video input is in right order or not. Fer-

nando et al. [11] and Lee et al. [24] also designed tasks

based on video frame orders. Gan et al. [12] proposed

a geometry-guided network that force the CNN to predict

flow fields or disparity maps between two input frames. Al-

though these work demonstrated the effectiveness of self-

supervised representation learning with unlabeled videos

and showed impressive performances when transferring the

learned features to video recognition tasks, their approaches

are only applicable to a CNN that accepts one or two frames

as inputs and cannot be applied to network architectures

that are suitable for spatio-temporal representations. The

most related work to ours are Vondrick et al. [39] and Kim

et al. [20]. Vondrick et al. [39] proposed a GAN model

for videos with a spatio-temporal 3D convolutional archi-

tecture, which can be employed as a self-supervised ap-

proach for video representation learning. Kim et al. [20]

proposed to learn spatio-temporal representations with un-

labeled video data, by solving space-time cubic puzzles,

which is a straightforward extension of the 2D puzzles [29].

3. Our Approach

We design a novel task for self-supervised video repre-

sentation learning by predicting the motion and appearance

statistics in a video sequence. The task is bio-inspired and

consistent with human visual habits [14] to capture high-

level concepts of videos. In this section, we first illustrate

the statistical concepts and motivations to design the task

(Sec. 3.1). Next, we formally define the proposed statisti-

cal labels (Sec. 3.2 and 3.3). Finally, we present the whole

learning framework when applying the self-supervised task

to the C3D [37] network (Sec. 3.4).
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3.1. Statistical Concepts

Given a video clip, humans usually first notice the mov-

ing proportion of the visual field [14]. By observing the

foreground motion and the background appearance, we can

easily tell the motion class based on prior knowledge. In-

spired by human visual system, we break the process of un-

derstanding videos into several questions and encourage a

CNN to answer them accordingly: (1) Where is the largest

motion in the video? (2) What is the dominant direction of

the largest motion? (3) Where is the largest color diversity

and what is its dominant color? (4) Where is the small-

est color diversity, i.e., the potential background of a scene

and what is its dominant color? The approach to quantify

these questions into annotation-free training labels will be

described in details in the following sections. Here, we in-

troduce the statistical concepts for motion and appearance.

Figure 2 illustrates an example of a three-frame video

clip with two moving objects (blue circle and yellow trian-

gle). A typical video clip normally consists of much more

frames. We here instead use the three-frame clip for better

understanding of the key ideas. To accurately represent the

location and quantify “where”, each frame is divided into

4-by-4 blocks and each block is assigned to a number in an

ascending order. The blue circle moves from block four to

block seven, and the yellow triangle moves from block 12

to block 11. Comparing the moving distance, we can eas-

ily tell that the motion of the blue circle is larger than the

motion of the yellow triangle. And the largest motion lies

in block seven since it contains moving-in motion between

frame one and two, and moving-out motion between frame

two and three. As for the question “what is the dominant

direction of the largest motion?”, it can be easily observed

from Figure 2 that the blue circle is moving towards lower-

left. To quantify the directions, the full angle 360◦ is di-

vided into eight angle pieces, with each piece covering a

45◦ motion direction range. And similar to location quan-

tification, each angle piece is assigned to a number in an

ascending order counterclockwise. The corresponding an-

gle piece number of “lower-left” is five.

For the appearance statistics, the largest spatio-temporal

color diversity area is also block seven, as it changes from

the background color to the circle color. The dominant color

is the same as the moving circle color, i.e., blue. As for the

smallest color diversity location, most of the blocks stay the

same and the background color is white.

Keeping the above concepts and motivation in mind, we

next present the proposed novel self-supervised approach.

We assume that by training a spatio-temporal CNN to pre-

dict the motion and appearance statistics mentioned above,

better spatio-temporal representations can be learned, by

which the video understanding tasks could be benefited

consequentely. Specifically, we design a novel regres-

sion task to predict a group of numbers related to motion
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Figure 2. A simple illustration of statistical concepts in a three-

frame video clip. See explanations in Sec. 3.1 for more details.

and appearance statistics, such that by correctly predicting

them, the following queries could be roughly derived: the

largest motion location and the dominant motion direction

in the video, the most consistent colors over the frames and

their spatial locations, and the most diverse colors over the

frames and their spatial locations.

3.2. Motion Statistics

We use optical flow computed by classic coarse-to-fine

algorithms [1] to derive the motion statistical labels to be

predicted in our task. Optical flow is a motion representa-

tion feature that is commonly used in many video recogni-

tion methods. For example, the classic two-stream network

[35] and the recent I3D network [4], both of which use stack

of optical flow as their inputs for action recognition tasks.

However, optical flow based methods are sensitive to cam-

era motion, since they represent the absolute motion [4, 41].

To suppress the influence of camera motion, we instead seek

a more robust feature, motion boundary [6], to capture the

video motion information.

Motion Boundary. Denote optical flow horizontal com-

ponent and vertical component as u and v, respectively.

Motion boundaries are calculated by computing x- and y-

derivatives of u and v, i.e., ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

,

vy = ∂v
∂y

. As motion boundaries capture changes in the flow

field, constant or smoothly varied motion, such as motion

caused by camera view change, will be cancelled out. Only

motion boundaries information is kept, as shown in Figure

3. Specifically, for an N -frame video clip, (N − 1) ∗ 2
motion boundaries are computed. Diverse video motion

information can be encoded into two summarized motion

boundaries by summing up all these (N − 1) sparse motion

boundaries of each component as follows:

Mu = (

N−1∑

i=1

ui
x,

N−1∑

i=1

ui
y), Mv = (

N−1∑

i=1

vix,

N−1∑

i=1

viy), (1)

where Mu denotes the motion boundaries on horizontal op-

tical flow u, and Mv denotes the motion boundaries on ver-

tical optical flow v. Figure 3 shows the visualization of the

two sum-up motion boundaries images.
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Figure 3. Motion boundaries computation. For a given input video clip, we first extract optical flow across each frame. For each optical

flow, two motion boundaries are obtained by computing gradients separately on the horizontal and vertical components of the optical flow.

The final sum-up motion boundaries are obtained by aggregating the motion boundaries on u flow and v flow of each frame separately.

Spatial-aware Motion Statistical Labels. In this section,

we describe how to design the spatial-aware motion statis-

tical labels to be predicted by our self-supervised task: 1)

where is the largest motion; 2) what is the dominant orien-

tation of the largest motion, based on motion boundaries.

Given a video clip, we first divide it into several blocks us-

ing simple patterns. Although the pattern design is an inter-

esting problem to be investigated, here, we introduce three

simple yet effective patterns as shown in Figure 4. For each

video block, we assign a number to it for representing its lo-

cation. Then we compute Mu and Mv as described above.

The motion magnitude and orientation of each pixel can be

obtained by casting motion boundaries Mu and Mv from

the Cartesian coordinates to the Polar coordinates. As for

the largest motion statistics, we compute the average mag-

nitude of each block and use the number of the block with

the largest average magnitude as the largest motion loca-

tion. Note that the largest block number computed from

Mu and Mv can be different. Therefore, we use two la-

bels to represent the largest motion locations of Mu and Mv

separately. While for the dominant orientation statistics, an

orientation histogram is computed based on the largest mo-

tion block, similar to the computation motion boundary his-

togram (MBH) [6]. Note that we do not have the normaliza-

tion step since we are not computing a descriptor. Instead,

we divide 360◦ into 8 bins, with each bin containing 45◦ an-

gle range and again assign each bin to a number to represent

its orientation. For each pixel in the largest motion block,

we first use its orientation angle to determine which angle

bin it belongs to and then add the corresponding magnitude

number into the angle bin. The dominant orientation is the
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Figure 4. Three different partitioning patterns (from left to right:

1 to 3) used to divide video frames into different types of spatial

regions. Pattern 1 divides each frame into 4×4 blocks. Pattern

2 divides each frame into 4 different non-overlapped areas with

the same gap between each block. Pattern 3 divides each frame

by the two center lines and the two diagonal lines. The indexing

strategies of the labels are shown in the bottom row.

number of the angle bin with the largest magnitude sum.

Global Motion Statistical Labels. We also propose a set

of global motion statistical labels to provide complementary

information to the local motion statistics described above.

Instead of focusing on the local patch of video clips, a CNN

is asked to predict the largest motion frame. That is given an

N -frame video clip, the CNN is encouraged to understand

the video evolution from a global perspective and find out

between which two frames, contains the largest motion. The

largest motion is quantified by Mu and Mv separately and

two labels are used to represent the global motion statistics.
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Figure 5. The network architecture of the proposed method. Given a 16-frame video, we regress 14 outputs for the motion branch and 13

outputs for the appearance branch. For each motion pattern, 4 labels are generated by aggregating motion boundaries Mu and Mv: (1) ul

– the largest magnitude location of Mu. (2) uo – the corresponding orientation of ul. (3) vl – the largest magnitude location of Mv . (4) vo
– the corresponding orientation of vl. For each appearance pattern, 4 labels are predicted: (1) pd – the position of largest color diversity.

(2) cd – the corresponding dominant color. (3) ps – the position of smallest color diversity. (4) cs – the corresponding dominant color.

3.3. Appearance Statistics

Spatio-temporal Color Diversity Labels. Given an N -

frame video clip, same as motion statistics, we divide it into

several video blocks by patterns described above. For an

N -frame video block, we first compute the 3D distribution

Vi in 3D color space of each frame i. We then use the In-

tersection over Union (IoU) along temporal axis to quantify

the spatio-temporal color diversity as follows:

IoUscore =
V1 ∩ V2 ∩ ... ∩ Vi... ∩ VN

V1 ∪ V2 ∪ ... ∪ Vi... ∪ VN

. (2)

The largest color diversity location is the block with the

smallest IoUscore, while the smallest color diversity loca-

tion is the block with the largest IoUscore. In practice, we

calculate the IoUscore on R,G,B channels separately and

compute the final IoUscore by averaging them.

Dominant Color Labels. After we compute the largest

and smallest color diversity locations, the corresponding

dominant color is represented by another two labels. In the

3-D RGB color space, we evenly divide it into 8 bins. For

the two representative video blocks, we assign each pixel

a corresponding bin number by its RGB value, and the bin

with the largest number of pixels is the dominant color.

Global Appearance Statistical Labels. We also design

a global appearance statistics to provide supplementary in-

formation. Particularly, we use the dominant color of

the whole video as the global statistics. The computation

method is the same as described above.

3.4. Learning with Spatio­temporal CNNs

We adopt the popular C3D network [37] as the backbone

for video spatio-temporal representation learning. Instead

of using 2D convolution kernel k× k, C3D proposed to use

3D convolution kernel k × k × k to learn spatial and tem-

poral information together. To have a fair comparison with

other self-supervised learning methods, we use the smaller

version of C3D as described in [37]. It contains 5 convolu-

tional layers, 5 max-pooling layers, 2 fully-connected lay-

ers and a soft-max loss layer in the end to predict the action

class, which is similar to CaffeNet [16]. We followed the

same video pre-processing procedure as C3D. Input video

samples are first split into non-overlapped 16-frame video

clips. And for each input video clip, it is first reshaped into

128 × 171 and then randomly cropped into 112 × 112 for

spatial jittering. Thus, the input size of C3D is 16 × 112

× 112 × 3. Temporal jittering is also adopted by randomly

flipping the whole video clip horizontally.

We model our self-supervised task as a regression prob-

lem. The whole framework of our proposed method is

shown in Figure 5. When pre-training the C3D network

with the self-supervised labels introduced in the previous

section, after the final convolutional layer, we use two

branches to regress motion statistical labels and appearance

statistical labels separately. For each branch, two fully con-

nected layers are used similarly to the original C3D model

design. And we replace the final soft-max loss layer with a

fully connected layer, with 14 outputs for the motion branch

and 13 outputs for the appearance branch. Mean squared

4010



error is used to compute the differences between the target

statistics labels and the predicted labels.

4. Experiments

In this section, we evaluate the effectiveness of our pro-

posed approach. We first conduct several ablation studies

on the local and global, motion and appearance statistics

design. Specifically, we use motion statistics as our auxil-

iary task and appearance statistics acts the similar way. The

activation based attention map of different video samples is

visualized to validate our proposed methodology. Second,

we compare our method with other self-supervised learn-

ing auxiliary tasks on action recognition problem based on

two popular dataset UCF101 [36] and HMDB51 [23]. Our

method achieves the state-of-the-art result. Finally, we con-

duct two more experiments on action similarity [21] and

dynamic scene recognition [8] to validate the transferability

of our self-supervised spatio-temporal features.

4.1. Datasets and Evaluations

In our experiment, we incorporate five datasets: the

UCF101 [36], the Kinetics [19], the HMDB51 [23], the

ASLAN [21], and the YUPENN [8]. Unless specifically

state, we use UCF101 dataset for our model pre-training.

UCF101 dataset [36] consists of 13,320 video samples,

which fall into 101 action classes. Actions in it are all

naturally performed as they are collected from YouTube.

Videos in it are quite challenging due to the large variation

in human pose and appearance, object scale, light condition,

camera view and etc. It contains three train/test splits and in

our experiment, we use the first train split to pre-train C3D.

Kinetics-400 dataset is a very large human action dataset

[19] proposed recently. It includes 400 human action

classes, with 400 or more video clips for each class. Each

sample is collected from YouTube and is trimmed into a

10-seconds video clip. This dataset is very challenging as

it contains considerable camera motion/shake, illumination

variations, shadows, etc. We use the training split for pre-

training, which contains around 240k videos.

HMDB51 dataset [23] is a smaller dataset which con-

tains 6766 videos and 51 action classes. It also consists of

three train/test splits. In our experiment, to have fair com-

parison with others, we use HMDB51 train split 1 to fine-

tune the pre-trained C3D network and test the action recog-

nition accuracy on HMDB51 test split 1.

When pre-training on UCF101 train split 1 video data,

we set the batch size to 30 and use the SGD optimizer with

learning rate 0.001. We divide the leaning rate every 5

epochs by 10. The training process is stopped at 20 epochs.

When pre-training on the Kinetics-400 train split, the batch

size is 30 and we use the SGD optimizer with learning

rate 0.0005. The learning rate is divided by 10 for every

7 epochs and the model is also trained for 20 epochs. When

Table 1. Comparison the performance of different patterns of mo-

tion statistics for action recognition on UCF101.

Initialization Accuracy (%)

Random 45.4

Motion pattern 1 53.8

Motion pattern 2 53.2

Moiton pattern 3 54.2

finetuning the C3D, we retain the conv layers weights from

the pre-trained network and initialize three fully-connected

layers. The entire network is finetuned with SGD on 0.001

learning rate. The learning schedule is the same as the pre-

training procedure. When testing, average accuracy for ac-

tion classification is computed on all videos to obtain the

video-level accuracy.

4.2. Ablation Analysis

In this section, we analyze the performance of our local

and global statistics, motion and appearance statistics on ex-

tensive experiments. Particularly, we first pre-train the C3D

using different statistics design on UCF101 train split 1. For

local and global statistics ablation studies, we finetune the

pre-train model on UCF101 train split 1 data with human

annotated labels. For the high-level appearance and motion

statistics studies, we also finetune the C3D with HMDB51

train split 1 to get more understanding of the design.

Pattern. The objective of this section is to investigate the

performance of different pattern design. Specifically, we

use the motion statistics and appearance statistics follow the

same trend. As shown in Table 1, all the three patterns out-

perform the random initialization, i.e., train from scratch

setting, by around 8%, which strongly proves that our mo-

tion statistics is a very useful task. The performance of the

three patterns are quite similar, indicating that we have bal-

anced pattern design.

Local v.s. Global. In this section, we compare the perfor-

mance of local statistics, where is the largest motion video

block?, global statistics, where is the largest motion frame?

and their combination. As can be seen in Table 2, only

global statistics serves as a useful auxiliary task for action

recognition problem, with a improvement of 3%. And when

all the three motion patterns are combined together, we can

further get around 1.5% improvement, compared with sin-

gle pattern. Finally, all motion statistics labels can achieve

57.8% accuracy, which is a significant improvement com-

pared with train from scratch.

Motion, RGB, and Joint Statistics. We finally compare

all motion statistics, all RGB statistics, and their combina-

tion on UCF101 and HMDB51 dataset as shown in Table

3. From the table, we can find that both the appearance and

motion statistics serve as a useful self-supervised signals

for UCF101 and HMDB51 dataset. The motion statistics is
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Table 2. Comparison of local and global motion statistics for action

recognition on the UCF101 dataset.

Initialization Accuracy (%)

Random 45.4

Motion global 48.3

Motion pattern all 55.4

Motion pattern all + global 57.8

Table 3. Comparison of different supervision signals on the

UCF101 and the HMDB51 datasets.

Domain UCF101 acc.(%) HMDB51 acc. (%)

From scratch 45.4 19.7

Appearance 48.6 20.3

Motion 57.8 29.95

Joint 58.8 32.6

more powerful as the temporal information is more impor-

tant for video understanding. It is also interesting to note

that although UCF101 only improves 1% when combined

motion and appearance, the HMDB51 dataset benefits a lot

from the combination, with a 3% improvement.

4.3. Action Recognition

In this section, we compare our method with other self-

supervised learning methods on the action recognition prob-

lem. Particularly, we compare the results with RGB video

input and directly quote the number from [12]. As shown

in Table 4, our method can achieve significantly improve-

ment compared with the state-of-the-art both on UCF101

and HMDB51. Compared with methods that are pre-

trained on UCF101 dataset, we improve 9.3% accuracy on

HMDB51 than [12] and 2.5% accuracy on UCF101 than

[24]. Compared with the method proposed recently [20]

that are pre-trained on Kinetics dataset using 3D CNN mod-

els, we can also achieve 0.6% improvement on UCF101 and

5.1% improvement on HMDB51. And please note that [20]

used various regularization techniques during pre-training,

such as channel replication, rotation with classification and

spatio-temporal jittering while we do not use these tech-

niques. The results strongly support that our proposed

predicting motion and appearance statistics task can really

drive the CNN to learn powerful spatio-temporal features.

And our method can generate multi-frame spatio-temporal

features transferable to many other video tasks.

Visualization. To further validate that our proposed

method really helps the C3D to learn video related features,

we visualize the attention map [44] on several video frames

as shown in Figure 6. It is interesting to note that for similar

actions: Apply eye makeup and Apply lipstick, C3D is just

sensitive to the location that is exactly the largest motion

location as quantified by the motion boundaries as shown in

the right. For different scale motion, for example, the bal-

Table 4. Comparison with the state-of-the-art self-supervised

video representation learning methods on UCF101 and HMDB51.

Method UCF101 acc.(%) HMDB51 acc.(%)

DrLim [15] 38.4 13.4

TempCoh [28] 45.4 15.9

Object Patch [43] 42.7 15.6

Seq Ver.[27] 50.9 19.8

VGAN [39] 52.1 -

OPN [24] 56.3 22.1

Geometry [12] 55.1 23.3

Ours (UCF101) 58.8 32.6

ST-puzzle (Kinetics) [20] 60.6 28.3

Ours (Kinetics) 61.2 33.4

Figure 6. Attention visualization. From left to right: A frame from

a video clip, activation based attention map of conv5 layer on the

frame by using [44], motion boundaries Mu of the whole video

clip, and motion boundaries Mv of the whole video clip.

ance beam action, the pre-trained C3D is also able to focus

on the discriminative location.

4.4. Action Similarity Labeling

We validate our learned spatio-temporal features on

ASLAN dataset [21]. This dataset contains 3,631 video

samples of 432 classes. The task is to predict whether the

given two videos are of the same class or not. We use C3D

as a feature extractor, followed by a linear SVM to do the

classification. Each video sample is split into several 16

frames video clips with 8 frames overlapped and then go

through a feed-forward pass on C3D to extract features from

the last conv layer. The video-level spatio-temporal feature

is obtained by averaging the clip feature, followed by l2-

normalization. When testing on the ASLAN dataset, we

follow the same 10-fold cross validation with leave-one-out

evaluation protocol in each fold. Given a pair of videos,

we first extract C3D feature from each video and then com-

pute the 12 different distances described in [21]. The 12

(dis-)similarity are finally concatenated together to obtain a
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Table 5. Comparison with different handcrafted features and our

proposed four scenarios performance on the ASLAN dataset.

Features Accuracy (%)

HOF [21] 56.68

HOG [21] 59.78

STIP [21] 60.9

C3D, random initialization 51.7

C3D, train from scratch with label 58.3

C3D, self-supervised training 59.4

C3D, finetune on self-supervised 62.3

video-pair descriptor which is then fed into a linear SVM

classifier. Since the scales of each distance are different,

we normalize the distances separately into zero-mean and

unit-variance as described in [37].

As no previous self-supervised learning methods have

done experiment on this dataset, to validate that our self-

supervised task can drive C3D to learn powerful spatio-

temporal features, we design 4 scenarios to extract features

from ASLAN dataset: (1) Use the random initialization

C3D as feature extractor. (2) Use the C3D pre-trained on

UCF101 with labels as feature extractor. (3) Use the C3D

pre-trained on UCF101 with our self-supervised task as fea-

ture extractor. (4) Use the C3D finetuned on UCF101 on our

self-supervised model as feature extractor. Table 5 shows

the performance of different feature extractors. The ran-

dom initialization model can achieve 51.4% accuracy as the

problem is a binary classification problem. What surprises

us is that although our self-supervised pre-trained C3D has

never seen the ASLAN dataset before, it can still do well in

this problem and outperforms the C3D trained with human-

annotated labels by 1.1%. Such results strongly support that

our proposed self-supervised task is able to learn power-

ful and transferable spatio-temporal features. This can be

explained by the internal characteristics of the action sim-

ilarity labeling problem. Different from the previous ac-

tion recognition problem, the goal of ASLAN dataset is to

predict video similarity instead of predicting the actual la-

bel. To achieve good performance, C3D must understand

the video context, which is just what we try to drive the

C3D to do with our self-supervised method. When fine-

tuned our self-supervised pre-trained model with labels on

UCF101, we can further get around 3% improvement. It

outperforms the handcrafted features STIP [21], which is

the combination of three popular features: HOG, HOF, and

HNF (a composition of HOG and HOF).

4.5. Dynamic Scene Recognition

The performance on UCF101, HMDB51 and ASLAN

dataset shows that our proposed self-supervised learning

task can drive the C3D to learn powerful spatio-temporal

features for action recognition problem. One may won-

der that can action-related features be generalized to other

Table 6. Comparison with hand-crafted features and other self-

supervised representation learning methods for dynamic scene

recognition problem on the YUPENN dataset.

Method [10] [8] [43] [27] [12] Ours

Accuracy (%) 86.0 80.7 70.47 76.67 86.9 90.2

problems? We investigate this question by transferring the

learned features to the dynamic scene recognition problem

based on the YUPENN dataset [8], which contains 420

video samples of 14 dynamic scenes. For each video in

the dataset, first split it into 16 frames clips with 8 frames

overlapped. The spatio-temporal features are then extracted

based on our self-supervised C3D pre-trained model from

the last conv layer. The video-label representations are ob-

tained by averaging each video-clip features, followed with

l2 normalization. A linear SVM is finally used to classify

each video scene. We follow the same leave-one-out evalu-

ation protocol as described in [8].

We compared our methods with both hand-crafted fea-

tures and other self-supervised learning tasks as shown in

Table 6. Our self-supervised C3D outperforms both the tra-

ditional features and self-supervised learning methods. It

shows that although our self-supervised C3D is trained on a

action dataset, the learned weights has impressive transfer-

ability to other video-related tasks.

5. Conclusions

In this paper, we presented a novel approach for self-

supervised spatio-temporal video representation learning by

predicting a set of statistical labels derived from motion and

appearance statistics. Our approach is bio-inspired and con-

sistent with human visual systems. We demonstrated that by

pre-training on unlabeled videos with our method, the per-

formance of C3D network is improved significantly over

random initialization on the action recognition problem.

Compared with other self-supervised representation learn-

ing approaches, our method achieves state-of-the-art perfor-

mances on UCF101 and HMDB51 datasets. This strongly

supports that our method can drive C3D network to capture

more crucial spatio-temporal information. We also showed

that our pre-trained C3D network can be used as a power-

ful feature extractor for other tasks, such as action similar-

ity labeling and dynamic scene recognition, where we also

achieve state-of-the-art performances on public datasets.
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