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Abstract

For the task of mobility analysis of 3D shapes, we pro-

pose joint analysis for simultaneous motion part segmen-

tation and motion attribute estimation, taking a single 3D

model as input. The problem is significantly different from

those tackled in the existing works which assume the avail-

ability of either a pre-existing shape segmentation or multi-

ple 3D models in different motion states. To that end, we de-

velop Shape2Motion which takes a single 3D point cloud as

input, and jointly computes a mobility-oriented segmenta-

tion and the associated motion attributes. Shape2Motion is

comprised of two deep neural networks designed for mobil-

ity proposal generation and mobility optimization, respec-

tively. The key contribution of these networks is the novel

motion-driven features and losses used in both motion part

segmentation and motion attribute estimation. This is based

on the observation that the movement of a functional part

preserves the shape structure. We evaluate Shape2Motion

with a newly proposed benchmark for mobility analysis of

3D shapes. Results demonstrate that our method achieves

the state-of-the-art performance both in terms of motion

part segmentation and motion attribute estimation.

1. Introduction

The analysis of part mobilities is a key step towards func-

tion analysis of 3D shapes [7], finding numerous potential

applications in robot-environment interaction [17, 18]. In

this work, we approach this problem from a data-driven per-

spective: Given a 3D shape as static observation, learn to

simultaneously segment the shape into motion parts and es-

timate associated motion attributes (type and parameters).

In most existing approaches, mobility analysis is con-

ducted on the pre-segmented parts of a 3D model [6]. How-

ever, the pre-existing segmentation of a 3D model does not

necessarily conform to its mobilities. For example, in many

car models, the door is not a separate component (Fig-

ure 1(a)). This greatly limits the utility of those methods
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Figure 1: Three examples of simultaneous motion part seg-

mentation and motion attribute inference. In each example,

the left is the input point cloud; the middle demonstrates

the analyzed result (segmented motion parts are shaded in

distinct colors and their associated motions depicted with

arrows); the right shows the motion parts are moved accord-

ing to the analyzed motions.

on existing shape repositories where mobility-oriented seg-

mentation is often unavailable. Another type of method ex-

tracts mobility through comparing multiple different motion

states of a single object, e.g., a scissor with different open-

ing angles [32]. Such requirement is, unfortunately, hard

to meet for most testing shapes. Moreover, not all mobility

can be easily spot by motion state comparison. For instance,

it would be very hard to capture a rotating sphere without

very accurate slippage analysis [4]. Last but not least, ex-

isting methods can only output a single mobility for each

motion part, while in reality one part may possess multiple

motions (e.g., the seat of a swivel chair in Figure 1(c)).

We propose Shape2Motion, a method that consumes a

single 3D shape in point cloud as input, and jointly com-

putes a mobility-oriented segmentation and estimates the

corresponding motion attributes. Shape2Motion adopts a

propose-and-optimize strategy, in a similar spirit to the

proposal-based object detection from images [21]. It con-

sists of two carefully designed deep neural networks, i.e., a

mobility proposal network (MPN) followed by a mobility

optimization network (MON). MPN generates a collection

of mobility proposals and selects a few high-quality ones.
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Each mobility proposal is comprised of a motion part and its

associated motion attributes; the latter refers to motion type

(translation, rotation and translation+rotation) and motion

parameters (translation direction and rotation axis). MON

optimizes the proposed mobilities through jointly optimiz-

ing the motion part segmentation and motion attributes. The

optimized mobilities are then merged, yielding the final set

of mobilities. Figure 2 shows an overview of our method.

Our key insight in designing these networks is to fully

exploit the coupling between a motion part and its mobility

function: The movement of a functional part does not break

the shape structure. See the examples in Figure 1: the open-

ing or closing of a car door keeps it hinged on the car frame;

the folding or unfolding of a folding chair preserves the at-

tachment relations between its constituent parts. Therefore,

we propose a motion-driven approach to encode mobilities

and to measure the correctness (or loss) of motion part seg-

mentation and motion attribute inference. Given a mobil-

ity proposal, we first move the part according to the corre-

sponding motion and then inspect how much the movement

preserves the shape structure. Given the ground-truth part

mobility, we can measure the pose deviation of the moved

part from that of its ground-truth counterpart under ground-

truth motion. Motion-driven pose loss amplifies the direct

loss of segmentation and motion parameters, thus greatly

improves the training convergence.

We perform extensive evaluations of Shape2Motion over

a newly proposed benchmark for mobility analysis of 3D

shapes. Results demonstrate that our method achieves the

state-of-the-art performance both in terms of motion part

segmentation and motion attribute estimation, and show the

advantages of our design choices over several baselines.

Our work makes the following contributions:

• We propose the problem of joint analysis for motion

part segmentation and motion attribute prediction from

a single 3D shape.

• We design the first deep learning architecture to ap-

proach the above problem with two carefully designed

networks, responsible for mobility proposing and mo-

bility optimization, respectively.

• We contribute the first benchmark of 3D shape mobil-

ity analysis, encompassing both motion part segmen-

tation and motion attribute estimation.

2. Related Work

Mobility analysis of 3D shapes. Dynamic functionalities

of articulated 3D objects can be characterized by the mo-

tion of one or more of their constituent parts, which is com-

monly referred to as part mobility [7]. There have been a

few works on discovering part mobility from an input ob-

ject [30, 16, 23], or from a sequence of RGBD scans of the

dynamic motion of an articulated model [15]. Hu et al. [6]
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Figure 2: An overview of the three stages of our method.

propose a method for inferring part mobilities of a static

3D object by learning from motion sequences of parts from

different classes of objects. Common to these existing ap-

proaches is the assumption of a pre-existing part segmenta-

tion, which, however, does not necessarily conform to part

mobilities. Our method learns to simultaneously segment a

3D shape into motion parts and infer their motion attributes.

Moreover, our method does not need a motion sequence of

either object or parts, during either training or testing.

Semantics- / function- / mobility-induced segmentation

of 3D shapes. Semantic segmentation of 3D shapes has

gained significant research progress in recent year, benefit-

ing from the advanced machine learning techniques [10, 24,

27, 28] (see also the comprehensive survey in [29]), and es-

pecially from the powerful feature learning of deep-learning

models [20, 33, 25, 9]. The goal of semantic segmentation

is to decompose a 3D shape into parts which are meaningful

from the assembling or functional point of view. A semanti-

cally meaningful part does not necessarily imply a mobility.

Inferring functional parts is another promising way of

3D shape segmentation. Pechuk et al. [19] introduce a su-

pervised method to recognize the functional regions of a

shape according to a model of functionality of the shape

class. Kim and Sukhatme [11] propose to learn a classifier

of regions of shapes with functional labels such as “gras-

pable”, “liftable”, and “pushable” in a supervised manner.

Similarly, Laga et al. [13] introduce a supervised method for

labeling shape parts that with functional tags, based on both

geometric features and the context of parts. The method of

Hu et al. [8] defines weight fields over a point-sampled sur-

face, based on a learned classifier predicting the probability

of a point belonging to a specific functional region, which

could be used to infer a function-induced segmentation.

Mobility-induce segmentation is relatively less studied.

The slippage analysis approach of Gelfand and Guibas [4]

segments a triangle mesh into kinematic surfaces, which in-

dicate regions of the shape that undergo a similar type of
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Figure 3: Architecture of Motion Proposal Network (MPN). MPN contains three modules: a Motion Part Proposal Module

(green boxes), a Motion Attribute Proposal Module (blue boxes) and a Proposal Matching Module (grey box to the top-right).

motion. Each resulting segment is classified into one of a

few types of kinematic surfaces, such as planes, spheres,

and cylinders, which are not yet parts with functional mobil-

ities. There is a large body of literature on co-segmentation

of a sequence of animated meshes (e.g. [14, 22, 5]). These

works typically handle organic objects (e.g., human and an-

imal) undergoing smooth surface deformation. In contrast,

Yi et al. [32] studies mobility analysis of man-made objects

through comparing multiple different motion states of an

object, e.g., a scissor with different opening angles. Our

work infers part mobilities from a single, static 3D model,

through joinly learning motion part segmentation and mo-

tion attribute regression from a large annotated dataset.

3. Mobility Proposal Network (MPN)

Terminology and notations. Given a 3D shape repre-

sented as point cloud P = {pi}
N
i=1

(pi ∈ R
3), our goal

is to extract a set of part mobilities: M = {Mk}
K
k=1

. Each

part mobility is a tuple: Mk = 〈Pk, Ak〉, which consists of

a motion part segmentation, Pk ⊂ P , and the correspond-

ing motion attributes, Ak = 〈tk,mk〉, where tk is the mo-

tion type and mk the motion parameter of the motion. We

consider three motion types: translation (T), rotation (R),

and rotation+translation (RT). Motion parameter is a line in

R
3 along the motion axis referring to either a translation di-

rection or a rotation axis, or both. Other motion parameters,

such as motion range or joint limit, are left for future works.

Our Mobility Proposal Network (MPN) is designed to

generate a collection of quality proposals of part mobili-

ties, MP
k = {MP

k}, so that the final part mobilities could be

selected from them via an optimization stage in Section 4.

MPN itself is composed of three modules: a motion part

proposal module, a motion attribute proposal module and a

proposal matching module. The first two modules are de-

vised to propose motion part segmentations and the corre-

sponding motion attributes, respectively. The third module

is used to select a set of good-quality mobility proposals,

through matching the two kinds of proposals based on a

motion-driven filtering scheme.

3.1. Motion Part Proposal Module

Unlike the existing approaches, we do not assume the

availability of mobility-induced shape segmentation, but in-

stead try to solve it through coupling it with the inference of

motion attributes. First of all, off-the-shelf shape segmenta-

tion methods cannot be used since a semantically meaning-

ful part may not correspond to a motion part. Meanwhile, it

is quite challenging to cast motion part segmentation into a

plain labeling problem, as what is done in semantic segmen-

tation, since the possible categories of motion parts could

be extremely large, considering the combination of differ-

ent functions and various motions.

We therefore opt for a proposal-based solution and de-

vise a motion part proposal network based on the recently

proposed SGPN (Similarity Group Proposal Network) [26].

SGPN is developed for object proposal in scene segmenta-

tion. It regresses a point similarity matrix S to accentuate

point group proposals, from which object instances could be

extracted. Each entry Sij in the similarity matrix indicates

whether two points, pi and pj , belong to the same object

instance. Each row can then be viewed as an object pro-

posal. They also regress a confidence score for each object

proposal. In what follows, we explain the main adaptions

we make for our problem setting.

Similarity matrix. To achieve motion part proposing, we

define a motion-based point similarity matrix SM ∈ R
N×N
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to encode whether two points belong to the same motion

part. We train a fully-connected network to estimate SM,

based on the motion similarity matrix loss:

Lsim =
∑

pi,pj∈P,i6=j

li,j , (1)

where

li,j =

{

‖F (pi)− F (pj)‖2, mp(i, j) = 1
max{0,K − ‖F (pi)− F (pj)‖2}, mp(i, j) = 0

where mp(i, j) indicates whether pi and pj belong to the

same motion part in the ground-truth (1 means ‘yes’). F
is point-wise feature computed with PointNet++ [20]. K
is a constant that controls the degree of motion-based dis-

similarity in a proposal; we use K = 100 by default. The

rows of SM then represent N different motion part propos-

als. During testing, we use a threshold τsim to binarize the

regressed similarity matrix so that each row of the matrix

represents a binary segmentation of motion part. We set

τsim = 100 throughout our experiments.

Confidence map. To rate the quality of the motion part

proposals in SM , we regress a confidence map C ∈ R
N×1

where i-th entry corresponds to i-th motion part proposal

in SM. The ground-truth confidence values in Cgt are com-

puted as the IoU between the point set of a proposed motion

part Pi and its ground-truth counterpart P gt
i . The loss for

training the fully-connected regression network, Lconf, is the

mean-square-error (MSE) loss between C and Cgt. During

testing, only those proposals with a confidence value higher

than τconf = 0.5 are considered as valid ones.

3.2. Motion Attribute Proposal Module

Existing works usually estimate a single motion for each

motion part. In reality, however, a motion part can pos-

sess multiple different motions. Taking the models in Fig-

ure 1 for example, the front wheel of a car can rotate along

two different axes (steering and rolling); the seat of a swivel

chair goes up and down (translating) while rotating.

Instead of estimating several motions for each motion

part proposal, which can cause combinatorial explosion, we

opt for an independent motion attribute proposal, based on

a motion attribute proposal module. Given a 3D point cloud

P , this module proposes a set of motion attributes {〈t,m〉}.

Each attribute contains a motion type t and a motion axis

line m. The latter is parameterized by an anchor point pA ∈
P , a displacement vector dA, and an orientation vector vO.

By selecting a point in the point cloud as anchor, the motion

axis line m can be uniquely determined by a displacement

to the anchor dA and an orientation v
O (Figure 4(a)).

Figure 3 summarizes the network architecture of motion

attribute proposal module. It contains five branches: two for

𝑝𝐴
𝑚

𝐯𝑂𝐝𝐴
𝐫𝐯𝑂

closest 

candidate

(a) (b) (c)

Figure 4: Illustrations of anchor-based motion axis parame-

terization (a), orientation discretization (b), and orientation

prediction via classification and residual regression (c).

anchor prediction, two for orientation regression and one for

motion type prediction. Below we explain them in detail.

Anchor prediction. To spatially pin down a motion axis,

we train a network to select a point in the input point cloud

that is closest to the line along a ground-truth motion axis.

We use a binary indicator vector to encode point selection.

In addition, we regress the displacement vector between the

anchor point and the ground-truth line; see Figure 4(a). By

doing this, motion axes prediction is invariant to the shape

pose. The anchoring loss is computed as:

Lanchor = Lap + Ldis, (2)

where Lap is softmax loss for binary classification of

whether a point is anchor or not, and Ldis an L2 loss be-

tween the predicted displacement vector and ground-truth.

Orientation regression. Direct regression of orientation

is quite difficult to train. We instead turn the problem into

a classification problem through discretizing the space of

orientation into 14 candidates. For each candidate orienta-

tion, the network estimates both a classification probability

and a residual vector used to correct the error caused by the

discretization; see Figure 4(b) for illustration. The loss of

orientation regression is:

Lorien = Lclass + Lres, (3)

where Lclass is the softmax classification loss and Lres an L2

loss between the estimated residual vector and ground-truth.

Motion type prediction. Another network is trained to

classify the mobility into one of the three motion types, with

the loss Ltype being a softmax classification loss.

3.3. Proposal Matching Module

Having obtained a set of motion part proposals and a

set of motion attribute proposals, this module selects the

best combinations of the two, leading to a set of high-

quality mobility proposals. To do so, for each motion part

proposal, we find a set of motion attribute proposals that
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Figure 5: Architecture of Motion Optimization Network (MON). Given a part mobility, MON encodes both static shape

geometry (red box) and dynamic part motion (green box). It produces a refined segmentation of the motion part (removing

the points of “back fork” which are mis-labeled as “wheel” in the input) and residual vectors for correcting the motion axis.

best matches it. This is achieved by training another net-

work, which takes the feature maps of a motion part and a

motion attribute learned from the respective modules, and

regresses a matching score for them. To train this net-

work, we compute a matching score loss between a pro-

posed mobility M prop and its ground-truth counterpart M gt:

Lms = |Spred − Sgt|. Spred is the matching score predicted

by the network. Sgt = score(M prop,M gt), where score is

a scoring function measuring the similarity between a pro-

posed mobility and the ground-truth.

To measure the similarity between two mobilities, we

propose a motion-driven metric which accounts for both

the similarity of motion part segmentation and motion at-

tributes. The basic idea is to let the motion parts move

a prescribed amount according to their respective motions,

for both mobilities, and measure the degree of spatial align-

ment between the moved parts:

score(Mj ,Mk) =
1

N

∑

pi∈P

‖move(pi,Mj)−move(pi,Mk)‖2,

(4)

where move(pi,Mk) is a moving function:

move(pi,Mk) =

{

T (pi,mk, δ)/dist(pi,mk), pi ∈ Pk

0, pi /∈ Pk

which moves point pi ∈ P according to the motion defined

in Mk, if pi belongs to the point cloud of the corresponding

motion part. T (pi,mk, δ) transforms a point according to

the motion axis line by an amount of δ. δ takes 15% of the

diagonal length of P ’s bounding box for translation, and

90◦ for rotation. dist(pi,mk) is the distance from pi to

motion axis mk, which is used to normalize the movement.

4. Mobility Optimization Network

Since the proposals for motion parts and attributes are

generated separately, they could be inaccurate and insuffi-

ciently conforming with each other. Mobility Optimization

Network (MON) is trained to jointly optimize both in an

end-to-end fashion (Figure 5). Given a proposed mobility,

MON refines it through predicting a binary segmentation of

motion part out of the input shape point cloud, and regress-

ing two residual vectors for correcting the displacement dA

(w.r.t. the anchor point) and orientation v
O of the motion

axis respectively.

To account for both shape geometry and part motion,

MON takes both static and dynamic information as input.

The static branch encodes the shape point cloud with Point-

Net++ features. The dynamic branch takes as input a bunch

of moved point clouds corresponding to the motion part be-

ing refined. Specifically, we move the part about the motion

axis by three specific amounts (5%, 10% and 15% of the

diagonal length of shape bounding box for translation and

30◦, 60◦ and 90◦ for rotation). The moved point clouds are

again encoded with PointNet++ except that the point-wise

moving vectors are also encoded (using the point normal

channel). Note that the two branches do not share weights.

By integrating both static geometric features and motion-

driven dynamic features, MON achieves highly accurate

segmentation and regression.

The loss for MON is composed of two parts, a point-wise

labeling loss and the residual losses for motion axis:

LMON(P,Mk) =
∑

pi∈P

Llabel(pi)

+ Lres(r
pred
displ, r

gt
displ) + Lres(r

pred
orien, r

gt
orien),

(5)

where Llabel is a negative log-likelihood loss for labeling

and Lres takes L2 loss. The ground-truth residuals are com-

puted by comparing the predicted displacement/orienation

vectors and their ground-truth counterparts.

5. Final Mobility Extraction

During the testing phase, having obtained a set of high-

quality mobility proposals with associated matching scores,

we also need a final extraction process to merge the propos-

als as output. This process is similar to the Non-Maximum

Suppression (NMS) step employed in many proposal-based

object detection works. Different from NMS, however, we
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need to select both the motion part and its associated mo-

tion attributes. Furthermore, one part may have multiple

possible motions.

We first select motion parts: When multiple motion part

proposals overlap significantly, we keep only the one with

the highest matching score. Then for each selected motion

part, we select distinct motion attributes from those mobility

proposals whose motion part has a significantly large IoU

against that part. For translation, only one direction with

the highest score is selected, assuming a part can slide along

only one direction. For rotation, we perform a greedy selec-

tion of high score axes while ensuring the angle between

every two selected axes is larger than a threshold (45◦).

6. Details, Results and Evaluations

6.1. Network training

Training scheduling. Our network is implemented with

Tensorflow. We used Adam [12] for training and set the ini-

tial learning rate to 0.001. Our network is trained in three

stages. In the first stage, we train the Motion Part Proposal

Module and Motion Attribute Proposal Module, each for

100 epochs. The mini-batch size is 8 shapes. In the sec-

ond stage, we train the Proposal Matching Module using

the motion part proposals and motion attribute proposals

generated from the first stage, again, for 100 epochs. Here,

we use mini-batches of size 64 (4 shapes ×16 motion part

proposals). The training motion part proposals are selected

from those whose IoU against ground-truth is greater than

0.5 and within top 25%. The third stage trains the Motion

Optimization Network for 100 epoch. The training mobility

proposals are selected from those whose matching error at

most 0.05 and within top 10%. The mini-batch is 8 mobil-

ity proposals. Our networks make extensive use of Point-

Net++ [20], for which we use the default architecture and

parameters provided in the original paper. The training and

testing time is reported in the supplemental material.

Data augmentation. Given a training dataset with

ground-truth mobilities, we perform data augmentation via

generating two kinds of shape variations. We first gen-

erate a number of geometric variations for each training

shape based on the method described in [3]. Furthermore,

based on the ground-truth mobility in the training shapes,

we move the motion parts according to their correspond-

ing motion attributes, resulting in a large number of motion

variations. See the supplemental material for a few samples

of our training data augmentation.

6.2. Shape2Motion benchmark

We contribute the first benchmark for mobility analysis,

called Shape2Motion, encompassing both motion part seg-

mentation and motion attribute estimation. It contains 2440
models in 45 shape categories. These shapes are selected

from ShapeNet [2] and 3D Warehouse [1]. A overview

and detailed information of the benchmark dataset can be

found int the supplemental material. For each shape, we

manually label its motion parts and the corresponding mo-

tion attributes, using an easy-to-use annotation tool devel-

oped by ourselves. The benchmark along with the annota-

tion tool are released at: http://www.kevinkaixu.

net/projects/shape2motion.html and http:

//z.buaa.edu.cn/shape2motion.html.

Annotation tool. Mobility annotation of 3D shapes is te-

dious. To ease the process, we developed an annotation tool

with an easy-to-use user interface. The tool consists of two

parts, one for motion part annotation and one for motion at-

tribute annotation. A notable feature of our tool is that it

allows the user to visually verify the correctness of a anno-

tated mobility, by animating the annotated motion part with

the corresponding motion attributes prescribed by the user.

Using our tool, it takes 80 seconds in average to annotate a

3D shape. In the supplemental material, we provide more

details about the annotation tool.

6.3. Evaluation on Shape2Motion

We train and test our model on the Shape2Motion

dataset, with a training / testing split of 8 : 2. After data

enhancement, we obtain 11766 shapes with 32298 mobility

parts in total as training data. Figure 6 shows a couple of vi-

sual results of mobility analysis. More results can be found

in the supplemental material.

To compare with the state-of-the-art method in [32], we

train their model on the Shape2Motion dataset. This model

requires shapes in two different motion states as input both

for training and testing. To this end, we compute for each

shape another motion state according to the ground-truth

mobilities. Their method is trained to predict motion parts

and associated 3D motion flows, while our method predicts

motion parts and motion attributes. To make the two meth-

ods comparable, we convert the mobilities predicted by our

method into 3D motion flows. We measure IoU to evaluate

motion part segmentation and End-Point-Error (EPE) [31]

to evaluate 3D motion flow. The comparison is shown in Ta-

ble 1. Our method outperforms theirs because our method

can detect those mobilities which are difficult to capture by

motion state comparison. For instance, it would be very

hard to capture a rotating wheel with two motion states.

In addition, we develop a baseline method (Table 1, row

2) for directly segmenting motion parts and regressing mo-

tion attributes. Specifically, we use the instance segmenta-

tion network SGPN [26] to perform motion part segmenta-

tion. For motion attribute prediction, we design a baseline

network that takes the point cloud of a motion part as input

and regress the motion type and motion axis (more details

in the supplemental material). To facilitate comparison, we
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Figure 6: Visual results of mobility analysis. For each example, we show from left to right the input point cloud, the extracted

mobilities (motion parts and motion axes) and the point cloud with motion parts moved according to detected mobility.

IoU EPE MD OE TA

Yi et al. [32] 61.0 0.051 - - -

SGPN [26]+BL 79.4 - 0.11 3.13 0.96

Ours (w/o MON) 82.3 0.028 0.01 0.12 0.98

Ours 84.7 0.025 0.01 0.11 0.98

Table 1: Comparison on the Shape2Motion benchmark.

IoU EPE MD OE TA

Hu et al. [6] - - 0.030 8.14 -

SGPN [26]+BL 54.3 - 0.145 11.8 0.74

Ours (w/o MON) 58.6 0.074 0.028 0.78 0.93

Ours 64.7 0.061 0.024 0.12 0.93

Table 2: Comparison on the dataset of Hu et al. [6].

define three metrics for evaluating motion attributes. Min-

imum Distance (MD) and Orientation Error (OE) measure

the distance and angle between the predicted motion axis

line and the ground-truth. Type Accuracy (TA) is accuracy

of motion type prediction. Our method achieves better per-

formance for both motion part segmentation and motion at-

tribute estimation, through leveraging the synergy between

the two tasks in a joint optimization framework.

6.4. Evaluation on the dataset in [6]

We also evaluate our method on the dataset in the work

of Hu et al. [6], which contains 315 shapes in 37 categories,

with 368 mobility parts in total. We again performed data

enhancement on this dataset. Table 2 reports the compari-

son of the afore-mentioned metrics between the method of

Hu et al. [6], the SGPN+baseline method, and our method.

In the method of Hu et al., the availability of segmented

motion parts is assumed. To predict the motion attributes

(motion type and motion parameters) of a part, it takes the

part and a static part adjacent to that part as input, and per-

form prediction via metric learning. We report their perfor-

mance on two metrics, i.e., MD and OE. The results shows

our method is advantageous thanks to our powerful deep-

learning model trained effectively with the motion-driven

strategy. Since their motion types are different from ours,

we do not report TA comparison.

6.5. Analysis of parameters and networks

Effect of the parameter τsim and τconf. As mentioned in

Section 3.1, τsim is used to binarize the similarity matrix to

form a binary segmentation of motion part in each row of

the matrix. We use τsim = 100 by default. In Figure 7 (left),

we study the quality of motion part proposals over the dif-

ferent values of τsim, over four relatively difficult shape cat-

egories. For a fixed IoU threshold (0.5), we find that the re-

call rate grows fast with the increasing τsim, and then drops

as τsim continues to increase. The peak is reached around

τsim = 100. This parameter τsim is strongly correlated with

the parameter K in Equation (1), which is the margin used

in defining the hinge similarity loss.
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Figure 7: Left: Recall rate of motion parts over increasing

τsim, when IoU against ground-truth is fixed to 0.5. Right:

Recall rate over IoU.

Vehicle Bicycle Chair Motorbike

IoU (τconf > 0.3) 57.8 84.3 93.0 83.3

IoU (τconf > 0.5) 70.7 90.6 98.0 86.9

IoU (τconf > 0.7) 64.3 84.0 98.0 85.6

Table 3: Average IoU of motion part proposals over differ-

ent values of τconf on the Shape2Motion benchmark.

In Section 3.1, τconf is used to filter motion part proposals

based on the confidence map. In Table 3, we also study the

motion part quality (average IoU) over different confidence

threshold τconf. We find that the proposal quality is the best

when τconf = 0.5.

Effect of Motion Optimization Network (MON). To

evaluate the effectiveness of MON, we experiment an ab-

lated version of our network without MON, over the two

datasets. The results are reported in row 3 of Table 1 and

2. By incorporating MON, our method achieves higher per-

formance for both motion part segmentation and motion at-

tributes estimation, verifying its optimization effect.

Effect of Motion Part Proposal Module. In Figure 7

(right), we evaluate the quality of motion part proposals via

plotting the recall rate over average IoU. It can be observed

that our method can generate many high-quality motion part

proposals. It can be seen that our method achieves very high

recall rate (> 0.9) for an IoU of 0.5.

Effect of Motion Attribute Proposal Module. To verify

the effectiveness of this module, we compared to an ablated

version of our method which replaces this module by di-

rect motion attributes regression as in the SGPN+BL in Ta-

ble 1. The quality of a predicted mobility is measured as the

similarity between the mobility and its ground-truth, using

similarity score in Equation (4). In Figure 8, we plot the

distribution of motion part numbers over varying similarity

scores (quality). The plots show that our full method works

the best: The similarity of approximately 80% mobility pro-

posals is less than 0.02.

Figure 8: The distribution of motion part numbers over

varying similarity scores (quality) of proposals.

Timing The training of MPN and MON takes 31 and 35
hours for 50 epochs on a NVIDIA TITIAN X GPU, respec-

tively. The testing time per 3D shape is 0.4 seconds for

MPN and 1 seconds for MON. The total computational cost

is approximately 10 seconds for each shape.

7. Conclusion

We have presented, Shape2Motion, an approach to si-

multaneous motion part segmentation and motion attribute

estimation, using a single 3D shape as input. The method

adopts a proposal-and-optimize strategy, and consists of

two deep neural networks, i.e., a mobility proposal net-

work (MPN) followed by a mobility optimization network

(MON). A key insight in training these networks is to fully

exploit the coupling between a motion part and its mobility

function, leading to a novel concept of motion-driven train-

ing, which may be valuable also for other scenarios.

Limitations and future works. Our approach has a few

limitations, which point out the directions of future study.

Representative failure cases can be found in the supple-

mental material. First, our method works with point cloud

representation, which may not be able to represent shapes

with highly detailed structure, such as a knife with scab-

bard. However, we believe the general framework of

Shape2Motion can adapt to other shape representations.

Second, as a proposal-and-optimize framework, our method

as a whole is not end-to-end trainable. Third, our method

does not support hierarchical mobility extraction, which is

ubiquitous in real-world objects. This involves higher-order

analysis which is an interesting direction for future work.

We would also like to study the mobility analysis of scanned

real-world objects.
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