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Abstract

Learning good feature embeddings for images often re-

quires substantial training data. As a consequence, in set-

tings where training data is limited (e.g., few-shot and zero-

shot learning), we are typically forced to use a generic fea-

ture embedding across various tasks. Ideally, we want to

construct feature embeddings that are tuned for the given

task. In this work, we propose Task-Aware Feature Embed-

ding Networks (TAFE-Nets1) to learn how to adapt the image

representation to a new task in a meta learning fashion. Our

network is composed of a meta learner and a prediction

network. Based on a task input, the meta learner generates

parameters for the feature layers in the prediction network

so that the feature embedding can be accurately adjusted for

that task. We show that TAFE-Net is highly effective in gener-

alizing to new tasks or concepts and evaluate the TAFE-Net

on a range of benchmarks in zero-shot and few-shot learning.

Our model matches or exceeds the state-of-the-art on all

tasks. In particular, our approach improves the prediction

accuracy of unseen attribute-object pairs by 4 to 15 points

on the challenging visual attribute-object composition task.

1. Introduction

Feature embeddings are central to computer vision. By

mapping images into semantically rich vector spaces, feature

embeddings extract key information that can be used for

a wide range of prediction tasks. However, learning good

feature embeddings typically requires substantial amounts of

training data and computation. As a consequence, a common

practice [8, 14, 53] is to re-use existing feature embeddings

from convolutional networks (e.g., ResNet [18], VGG [37])

trained on large-scale labeled training datasets (e.g., Ima-

geNet [36]); to achieve maximum accuracy, these generic

feature embedding are often fine-tuned [8, 14, 53] or trans-

formed [19] using additional task specific training data.

In many settings, the training data are insufficient to learn

or even adapt generic feature embeddings to a given task.

For example, in zero-shot and few-shot prediction tasks, the
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Figure 1: A cartoon illustration of Task-aware Feature Em-

beddings (TAFEs). In this case there are two binary pre-

diction tasks: hasCat and hasDog. Task-aware feature

embeddings mean that the same image can have different

embeddings for each task. As a consequence, we can adopt a

single task independent classification boundary for all tasks.

scarcity of training data forces the use of generic feature em-

beddings [26, 49, 55]. As a consequence, in these situations,

much of the research instead focuses on the design of joint

task and data embeddings [4, 12, 55] that can be generalized

to unseen tasks or tasks with fewer examples. Some have pro-

posed treating the task embedding as linear separators and

learning to generate them for new tasks [42, 29]. Others have

proposed hallucinating additional training data [50, 17, 45].

However, in all cases, a common image embedding is shared

across tasks. Therefore, the common image embedding may

be out of the domain or sub-optimal for any individual pre-

diction task and may be even worse for completely new tasks.

This problem is exacerbated in settings where the number

and diversity of training tasks is relatively small [11].

In this work, we explore the idea of dynamic feature rep-

resentation by introducing the task-aware feature embedding

network (TAFE-Net) with a meta-learning based parameter

generator to transform generic image features to task-aware

feature embeddings (TAFEs). As illustrated in Figure 1, the

representation of TAFEs is adaptive to the given semantic

task description, and thus able to accommodate the need

of new tasks at testing time. The feature transformation is

realized with a task-aware meta learner, which generates the

parameters of feature embedding layers within the classi-
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Figure 2: TAFE-Net architecture design. TAFE-Net has a task-aware meta learner that generates the parameters of the feature

layers within the classification subnetwork to transform the generic image features to TAFEs. The generated weights are

factorized into low-dimensional task-specific weights and high-dimensional shared weights across all tasks to reduce the

complexity of the parameter generation. A single classifier is shared across all tasks taking the resulting TAFEs as inputs.

fication subnetwork shown in Figure 2. Through the use

of TAFEs, we can adopt a simple binary classifier to learn

a task-independent linear boundary that can separate the

positive and negative examples and generalize to new tasks.

We further propose two design innovations to address the

challenges due to the limited number of training tasks [11]

and the complexity of the parameter generation [3]. Deal-

ing with the limited tasks, we couple the task embedding

to the task aware feature embeddings with a novel embed-

ding loss based on metric learning. The resulting coupling

improves generalization across tasks by jointly clustering

both images and tasks. Moreover, the parameter generation

requires predicting a large number of weights from a low

dimensional task embedding (e.g., a 300-dimensional vector

extracted with GloVe [33]), which can be complicated and

even infeasible to train in practice, we therefore introduce a

novel decomposition to factorize the weights into a small set

of task-specific weights needed for generation on the fly and

a large set of static weights shared across all tasks.

We conduct an extensive experimental evaluation in Sec-

tion 4. The proposed TAFE-Net exceeds the state-of-the-art

zero-shot learning approaches on three out of five standard

benchmarks (Section 4.1) without the need of additional

data generation, a complementary approach that has shown

boosted performance compared to mere discriminative mod-

els by the recent work [50]. On the newly proposed unseen

attribute-object composition recognition task [31], we are

able to achieve an improvement of 4 to 15 points over the

state-of-the-art (Section 4.2). Furthermore, the proposed

architecture can be naturally applied to few-shot learning

(Section 4.3), achieving competitive results on the ImageNet

based benchmark introduced by Hariharan et al. [17]. The

code is available at https://github.com/ucbdrive/tafe-net.

2. Related Work

Our work is related to several lines of research in zero-

shot learning as well as parameter generation, dynamic neu-

ral network designs, and feature modulation. Built on top of

the rich prior works, to the best of our knowledge, we are

the first to study dynamic image feature representation for

zero-shot and few-shot learning.

Zero-shot learning falls into the multimodal learning

regime which requires a proper leverage of multiple sources

(e.g., image features and semantic embeddings of the

tasks). Many [23, 52, 42, 55, 4, 12] have studied metric

learning based objectives to jointly learn the task embed-

dings and image embeddings, resulting in a similarity or

compatibility score that can later be used for classifica-

tion [31, 42, 26, 1, 2, 12, 39]. Conceptually, our approach

shares the matching spirit with the introduction of a binary

classifier which predicts whether or not the input image

matches the task description. In contrast to prior works, we

transform the image features according to the task and thus

we only need to learn a task-independent decision boundary

to separate the positive and negative examples similar to the

classic supervised learning. The proposed embedding loss

in our work also adopts metric learning for joint embedding

learning but with the main goal to address the limited num-

ber of training tasks in meta learning [11]. More recently,

data hallucination has been used in the zero-shot [50, 57]

and few-shot [17, 45] learning which indicate that the addi-

tional synthetic data of the unseen tasks are useful to learn

the classifier and can be augmented with the discriminative

models [50, 45]. Our (discriminative) model does not utilize

additional data points and we show in experiments that our

model can match or outperform the generative models on a

wide range of benchmarks. We believe the approaches re-
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quiring additional data generation can benefit from a stronger

base discriminative model.

TAFE-Net uses a task-aware meta learner to generate pa-

rameters of the feature layers. Several efforts [3, 16, 7] have

studied the idea of adopting one meta network to generate

weights of another network. Our task-aware meta learner

serves a similar role for the weight generation but in a more

structured and constrained manner. We study different mech-

anisms to decompose the weights of the prediction network

so that it can generate weights for multiple layers at once. In

contrast, Bertinetton et al. [3] focus on generating weights

for a single layer and Denil et al. [7] can generate only up to

95% parameters of a single layer due to the quadratic size of

the output space.

The TAFE-Net design is also related to works on dynamic

neural networks [44, 48, 43, 27] which focus on dynamic

execution at runtime. SkipNet [44] proposed by Wang et

al. introduces recurrent gating to dynamically control the

network activations based on the input. In contrast, TAFE-

Net dynamically re-configures the network parameters rather

than the network structure as in the prior works [44, 48]

aiming to learn adaptive image features for the given task.

In the domain of visual question answering, previous

works [34, 6] explore the use of a question embedding net-

work to modulate the features of the primary convolutional

network. Our factorized weight generation scheme for con-

volutional layers can also be viewed as channel-wise feature

modulation. However, the proposed parameter generation

framework is more general than feature modulation which

can host different factorization strategies [3].

3. Task-Aware Feature Embedding

As already widely recognized, feature embeddings are

the fundamental building blocks for many applications [24,

28, 13] in computer vision. In this work, we introduce task-

aware feature embeddings (TAFEs), a type of dynamic image

feature representation that adapts to the given task. We

demonstrate that such dynamic feature representation has

applications in the zero-shot learning, few-shot learning and

unseen attribute-object pair recognition.

We start with the TAFE-Net model design in Section 3.1

and then introduce the weight factorization (Section 3.2)

and the embedding loss (Section 3.3) to address the chal-

lenges with the weight generation and the limited number

of training tasks. We delay the specifications of different

task descriptions and the setup of various applications to

Section 3.4.

3.1. TAFENet Model

There are two sub-networks in TAFE-Net as shown in

Figure 2: a task-aware meta leaner G and a prediction net-

work F . The task-aware meta learner takes a task description

t ∈ T (e.g., word2vec [30] encoding or example images,

detailed in Section 3.4) and generates the weights of the

feature layers in the prediction network.

For an input image x ∈ X , the prediction network:

F(x; θt) = y, (1)

predicts a binary label y ∈ Y indicating whether or not

the input image x is compatible with the task description t.

More specifically, we adopt a pre-trained feature extractor on

ImageNet (e.g., ResNet [18], VGG [37] whose parameters

are frozen during training) to produce generic features of the

input images and then feed the generic features to a sequence

of dynamic feature layers whose parameters denoted by θt
are generated by G(t). The output of the dynamic feature

layers is named as task-aware feature embedding (TAFE) in

the sense that the feature embedding of the same image can

be different under different task descriptions. Though not

directly used as the input to F , the task description t controls

the parameters of the feature layers in F and further injects

the task information to the image feature embeddings.

We are now able to introduce a simple binary classifier in

F , which takes TAFEs as inputs, to learn a task-independent

decision boundary. When multi-class predictions are needed,

we can leverage the predictions of F(x) under different

tasks descriptions and use them as probability scores. The

objective formulation is presented in Section 3.3.

The task-aware meta learner G paramterized by η is com-

posed of an embedding network T (t) to generate a task em-

bedding et and a set of weight generators gi, i = {1...K}
that generate parameters for K dynamic feature layers in F
conditioned on the same task embedding et.

3.2. Weight Generation via Factorization

We now present the weight generation scheme for the

feature layers in F . The feature layers that produce the task

aware feature embeddings (TAFE) can either be convolu-

tional layers or fully-connected (FC) layers. To generate the

feature layer weights, we will need the output dimension

of gi (usually a FC layer) to match the weight size of the

i-th feature layer in F . As noted by Bertinetto et al. [3], the

number of weights required for the meta-learner estimation

is often much greater than that of the task descriptions There-

fore, it is difficult to learn weight generation from a small

number of example tasks. Moreover, the parametrization

of the weight generators g can consume a large amount of

memory, which makes the training costly and even infeasi-

ble.

To make our meta learner generalize effectively, we pro-

pose a weight factorization scheme along the output dimen-

sion of each FC layer and the output channel dimension of

a convolutional layer. This is distinct from the low-rank

decomposition used in prior meta-learning works [3]. The

channel-wise factorization builds on the intuition that chan-
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nels of a convolutional layer may have different or even

orthogonal functionality.

Weight factorization for convolutions. Given an input ten-

sor xi ∈ R
w×h×cin for the i-th feature layer in F whose

weight is Wi ∈ R
k×k×cin×cout (k is the filter support size

and cin and cout are the number of input and output channels)

and bias is bi ∈ R
cout , the output xi+1 ∈ R

w′
×h′

×cout of the

convolutional layer is given by

xi+1 = Wi ∗ xi + bi, (2)

where ∗ denotes convolution. Without loss of generality, we

remove the bias term of the convolutional layer as it is often

followed by batch normalization [20]. Wi = gi(t) is the

output of the i-th weight generator in G in the full weight

generation setting. We now decompose the weight Wi into

Wi = Wi
s ∗cout

Wi
t, (3)

where Wi
s ∈ R

k×k×cin×cout is a shared parameter aggre-

gating all tasks {t1, ...tT } and Wt ∈ R
1×1×cout is a task-

specific parameter depending on the current task input. ∗cout

denotes the grouped convolution along the output channel

dimension, i.e. each channel of x∗cout
y is simply the convolu-

tion of the corresponding channels in x and y. The parameter

generator gi only needs to generate Wi
t which reduces the

output dimension of gi from k × k × cin × cout to cout.

Weight factorization for FCs. Similar to the factorization

of the convolution weights, the FC layer weights Wi ∈
R

m×n can be decomposed into

Wi = Wi
s · diag(Wi

t), (4)

where Wi
s ∈ R

m×n is the shared parameters for all tasks

and Wi
t ∈ R

n is the task-specific parameter. Note that this

factorization is equivalent to the feature activation modula-

tion, that is, for an input x ∈ R
1×m,

x · (Wi
s · diag(Wi

t)) = (x ·Wi
s)⊙Wi

t, (5)

where ⊙ denotes element-wise multiplication.

As a consequence, the weight generators only need to gen-

erate low-dimensional task-specific parameters for each task

in lower dimension and learn one set of high dimensional

parameters shared across all tasks.

3.3. Embedding Loss for Meta Learner

The number of task descriptions used for training the task-

aware meta learner is usually much smaller than the number

of images available for training the prediction network. The

data scarcity issue may lead to a degenerate meta learner. We,

therefore, propose to add a secondary embedding loss Lemb

for the meta learner alongside the classification loss Lcls used

for the prediction network. Recall that we adopt a shared

binary classifier in F to predict the compatibility of the task

description and the input image. To be able to distinguish

which task (i.e., class) the image belong to, instead of using

a binary cross-entropy loss directly, we adopt a calibrated

multi-class cross-entropy loss [52] defined as

Lcls = −
1

N

N
∑

i=1

T
∑

t=1

log

[

exp(F(xi; θt)) · y
i
t

∑T
j=1

exp(F(xi; θj))

]

, (6)

where xi is the i-th sample in the dataset with size N and

yi ∈ {0, 1}T is the one-hot encoding of the ground-truth

labels. T is the number of tasks either in the whole dataset

or in the minibatch during training.

For the embedding loss, the idea is to project the latent

task embedding et = T (t) into a joint embedding space

with the task-aware feature embedding (TAFE). We adopt a

metric learning approach that for positive inputs of a given

task, the corresponding TAFE is closer to the task embed-

ding et while for negative inputs, the corresponding TAFE

is far from the task embedding as illustrated in Figure 1.

We use a hinged cosine similarity as the distance measure-

ment (i.e. φ(p, q) = max(cosine_sim(p, q), 0)) and the

embedding loss is defined as

Lemb =
1

NT

N
∑

i

T
∑

t

||φ(TAFE(xi; θt), et)− yit||
2
2. (7)

We find in experiments this additional supervision helps

training the meta learner especially under the case where the

number of training tasks is extremely limited. So far, we can

define the overall objective as

min
θ,η

L = min
θ,η

Lcls + β · Lemb, (8)

where β is the hyper-parameter to balance the two terms. We

use β as 0.1 in our experiments if not specified.

3.4. Applications

We now describe how TAFE-Net design can be utilized

in various applications (e.g., zero-shot learning, unseen

attribute-object recognition and few shot learning) and spec-

ify the task descriptions adopted in this work.

Zero-shot learning. In the zero-shot learning (ZSL) setting,

the set of classes seen during training and evaluated during

testing are disjoint [26, 1]. Specifically, let the training set

be Ds = {(x, t, y)|x ∈ X , t ∈ T , y ∈ Y}, and the testing

set be Du = {(x, u, z)|x ∈ X , u ∈ U , z ∈ Z}, where

T ∩ U = φ, |T | = |Y | and |U | = |Z|. In benchmark

datasets (e.g., CUB [46], AWA [25]), each image category is

associated with an attribute vector, which can be used as the

task description in our work. The goal is to learn a classifier

fzsl : X → Z . More recently, Xian et al. [49] proposed

the generalized zero-shot learning (GZSL) setting which is
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more realistic compared to ZSL. The GZSL setting involves

classifying test examples from both seen and unseen classes,

with no prior distinction between them. The classifier in

GZSL maps X to Y ∪ Z . We consider both the ZSL and

GZSL settings in our work.

Unseen attribute-object pair recognition. Motivated by

the human capability to compose and recognize novel vi-

sual concepts, Misra et al. [31] recently proposed a new

recognition task to predict unseen compositions of a given

set of attributes (e.g., red, modern, ancient, etc) and objects

(e.g., banana, city, car, etc) during testing and only a sub-

set of attribute-object pairs are seen during training. This

can be viewed as a zero-shot learning problem but requires

more understanding of the contextuality of the attributes.

In our work, the attribute-object pairs are used as the task

descriptions.

Few-shot Learning. In few-shot learning, there are one or a

few examples from the novel classes and plenty of examples

in the base classes [17]. The goal is to learn a classifier that

can classify examples from both the novel and base classes.

The sample image features from different categories can be

used as the task descriptions for TAFE-Nets.

4. Experiments

We evaluate our TAFE-Nets on three tasks: zero-shot

learning (Section 4.1), unseen attribute-object composition

(Section 4.2 and few-shot learning (Section 4.3). We observe

that TAFE-Net is highly effective in generalizing to new

tasks or concepts and is able to match or exceed the state-of-

the-art on all the tasks.

Model configurations. We first describe the network con-

figurations. The task embedding network T is a 3-layer FC

network with the hidden unit size of 2048 except for the

aPY dataset [9] where we choose T as a 2-layer FC network

with the hidden size of 2048 to avoid overfitting. The weight

generator gi is a single FC layer with the output dimension

matching the output dimension of the corresponding feature

layer in F . For the prediction network F , the TAFE is gen-

erated through a 3-layer FC network with the hidden size of

2048 with input image features extracted from different pre-

trained backbones (e.g., ResNet-18, ResNet-101, VGG-16,

VGG-19, etc.)

4.1. Zeroshot Learning

Datasets and evaluation metrics. We conduct our exper-

iments on 5 benchmark datasets: SUN [51], CUB [47],

AWA1 [25], AWA2 [49] and aPY [9], which have different

numbers of categories and granularity. In particular, there are

only 20 classes (i.e. tasks) available in the aPY dataset while

645 classes are available for training in the SUN dataset. The

dataset statistics are shown in Table 1.

Table 1: Datasets used in GZSL

Dataset SUN CUB AWA1 AWA2 aPY

No. of Images 14,340 11,788 30,475 37,322 15,339

Attributes Dim. 102 312 85 85 64

Y 717 200 50 50 32

Y
seen 645 150 40 40 20

Y
unseen 72 50 10 10 12

Granularity fine fine coarse coarse coarse

Following the settings proposed by Xian et al., we con-

sider both the generalized zero-shot learning (GZSL) and

the conventional zero-shot learning (ZSL). For GZSL, we

report the average per class top-1 accuracy of both un-

seen accu and seen classes accs and the harmonic mean

H = 2 × (accu × accs)/(accu + accs). For conventional

ZSL, we report the average per-class top-1 accuracy of the

unseen classes and adopt the new split provided by Xian et

al. [49].

Training details. We set the batch size to 32 and use

Adam [22] as the optimizer with the initial learning rate

of 10−4 for the prediction network and weight generators,

and 10−5 for the task embedding network. We reduce the

learning rate by 10× at epoch 30 and 45, and train the net-

work for 60 epochs. For AWA1, we train the network for 10

epochs and reduce the learning rate by 10× at epoch 5.

Baselines. We compare our model with two lines of prior

works in our experiments. (1) Discriminative baselines

which focus on mapping the images into a rich seman-

tic embedding space. We include the recent competitive

baselines: LATEM [55], ALE [1], DeViSE [12], SJE [2],

SYNC [4], DEM [54] and the newly proposed Relation-

Net [52]. (2) Generative models that tackle the data scarcity

problem by generating synthetic images for the unseen

classes using a GAN [15, 56] based approach. The gen-

erative models can combine different discriminative models

as base networks [50, 45]. We conduct comparison with f-

CLSWGAN [50], SE [41], SP-AEN [5] in this category. Our

model falls into the discriminative model category requiring

no additional synthetic data.

Quantitative results. We compare the performance of

TAFE-Net to the prior works in Table 2. Overall, our model

outperforms existing approaches including the generative

models on the AWA1, AWA2 and aPY datasets under the

ZSL setting and on the AWA1 and aPY datasets under the

GZSL setting. TAFE-Net outperforms the discriminative

models (denoted in blue in Table 2) by a large margin (e.g.,

roughly 16 points improvement on AWA1 and 17 points

on aPY) on the GZSL test. For the more challenging fine-

grained SUN and CUB datasets, we are able to improve the

results by 7 and 2 points. The results indicate that better

embeddings can aid in model generalization.
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Table 2: Evaluate TAFE-Net on five standard benchmarks under the ZSL and the GZSL settings. Models with † (f-CLSWGAN, SE and

SP-AEC) generate additional data for training while the remaining models do not. Red denotes the best performing model on each dataset

and blue denotes the prior art of discriminative models. Our model is better than all the other discriminative models and also competitive

compared to models with additional synthetic data.

Method

Zero-shot Learning Generalized Zero-shot Learning

SUN CUB AWA1 AWA2 aPY SUN CUB AWA1 AWA2 aPY

T1 T1 T1 T1 T1 u s H u s H u s H u s H u s H

LATEM [55] 55.3 49.3 55.1 55.8 35.2 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

ALE [1] 58.1 54.9 59.9 62.5 39.7 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

DeViSE[12] 56.5 52 54.2 59.7 39.8 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

SJE [2] 53.7 53.9 65.6 61.9 32.9 14.7 80.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [35] 54.5 53.9 58.2 58.6 38.3 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [4] 56.3 55.6 54.0 46.6 23.9 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

RelationNet [52] - 55.6 68.2 64.2 - - - - 38.1 61.1 47.0 31.4 91.3 46.7 30.0 93.4 45.3 - - -

DEM [54] 61.9 51.7 68.4 67.1 35.0 20.5 34.3 25.6 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1 11.1 75.1 19.4

f-CLSWGAN† [50] 60.8 57.3 68.2 - - 42.6 36.6 39.4 57.7 43.7 49.7 61.4 57.9 59.6 - - - - - -

SE† [41] 63.4 59.6 69.5 69.2 - 40.9 30.5 34.9 53.3 41.5 46.7 67.8 56.3 61.5 58.3 68.1 62.8 - - -

SP-AEN† [5] 59.2 55.4 - 58.5 24.1 24.9 38.6 30.3 34.7 70.6 46.6 - - - 23.3 90.9 37.1 13.7 63.4 22.6

TAFE-Net 60.9 56.9 70.8 69.3 42.2 27.9 40.2 33.0 41.0 61.4 49.2 50.5 84.4 63.2 36.7 90.6 52.2 24.3 75.4 36.8

Table 3: Ablation of the embedding loss on the five benchmarks

under GZSL. Harmonic mean (H) is reported.

Method SUN CUB AWA1 AWA2 aPY

TAFE-Net w/o EmbLoss 33.1 45.4 58.8 47.2 30.5

TAFE-Net 33.0 49.2 63.2 52.2 36.8

Embedding loss ablation. We provide the harmonic mean

of our models with and without the embedding loss under

the GZSL setting on five benchmark datasets in Table 3.

In general, models with the embedding loss outperform

those without the embedding loss except for the SUN dataset

whose number of categories is about 3 to 22× larger than

the other datasets. This observation matches our assumption

that the additional supervision on the joint embedding better

addresses the data scarcity (i.e. fewer class descriptions than

the visual inputs) of training the controller model.

Embedding visualization. In Figure 3, we visualize the

task-aware feature embeddings of images from the aPY

dataset under different task descriptions. As we can see,

image embeddings of the same image are projected into

different clusters conditioned on the task descriptions.

4.2. Unseen Visualattribute Composition

Besides the standard zero-shot learning benchmarks, we

evaluate our model on the visual-attribute composition task

proposed by Misra et al. [31]. The goal is to compose a set

of visual concept primitives like attributes and objects (e.g.

large elephant, old building, etc.) to obtain

new visual concepts for a given image. This is a more chal-

lenging “zero-shot” learning task, which requires the model

not only to predict unseen visual concept compositions but

also to model the contextuality of the concepts.

Datasets and evaluation metrics. We conduct the experi-

Figure 3: Task-aware Image Feature Embedding projected

into two dimensions using t-SNE [40] for two tasks (Zebra

and Donkey). Note that changing the task produces different

embeddings for the same data.

ments on two datasets: MITStates [21] (image samples in

Figure 5) and the modified StanfordVRD [29] (image sam-

ples in Figure 4). The setup is the same as Misra et al. [31].

Each image in the MITStates dataset is assigned a pair of

(attribute, object) as its label. The model is trained on 34K

images with 1,292 label pairs and tested on 19K images

with 700 unseen pairs. The second dataset is constructed

based on the bounding box annotations of the StanfordVRD

dataset. Each sample has an SPO (subject, predicate, object)

tuple as the ground truth label. The dataset has 7,701 SPO

triplets and 1,029 of them are seen only in the test split. We
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Figure 4: Samples in StanfordVRD. Each image is described by a

Subject-Verb-Object triplet. From top left to the bottom right: (ele-

phant, on, grass), (giraffe, in, street), (person, walk, dog), (pillow,

behind, person), (person, wears, jeans), (dog, has, shirt).

Table 4: Evaluation on 700 unseen (attribute, object) pairs on 19K

images of the MITStates Dataset and 1029 unseen SPO triplets on

1000 images of the StanfordVRD Dataset. TAFE-Net improves

over the baselines by a large margin.

MITStates StanfordVRD

Method AP
Top-k Accuracy

AP
Top-k Accuracy

1 2 3 1 2 3

Visual Product [31] 8.8 9.8 16.1 20.6 4.9 3.2 5.6 7.6

Label Embed (LE) [31] 7.9 11.2 17.6 22.4 4.3 4.1 7.2 10.6

LEOR [31] 4.1 4.5 6.2 11.8 0.9 1.1 1.3 1.3

LE + R [31] 6.7 9.3 16.3 20.8 3.9 3.9 7.1 10.4

Red Wine [31] 10.4 13.1 21.2 27.6 5.7 6.3 9.2 12.7

TAFE-Net 16.3 16.4 26.4 33.0 12.2 12.3 19.7 27.5

evaluate our models only on examples with unseen labels.

We extract the image features with pre-trained models on

ImageNet. We use VGG-16 and ResNet-101 as our main

feature extractors and also test features extracted with VGG-

19 and ResNet-18 for ablation. For the task descriptions, we

concatenate the word embeddings of the attributes and ob-

jects with word2vec [30] trained with GoogleNews. We also

consider one-hot encoding for the task ID in the ablation.

For evaluation metrics, we report the mean Average Pre-

cision (mAP) of images with unseen labels in the test set

together with the top-k accuracy where k = 1, 2, 3. We

follow the same training schedule as that used in the zero

shot learning experiments.

Quantitative results. We compare our model with several

baselines provided by Misra et al. [31] and summarize the

results in Table 4 on both the MITStates and StanfordVRD

datasets. Our model surpasses the state-of-the-art models

with an improvement of more than 6 points in mAP and 4

to 15 points in top-k accuracy. Nagarajan and Grauman [32]

recently proposed an embedding learning framework for

visual-attribute composition. They report the top-1 accuracy

of 12.0% on the MITStates dataset with ResNet-18 features.

Table 5: Ablation study with different task encoding and base

network features. The variance of performance of TAFE-Net under

different settings is minimal.

Task Encoding Features AP
Top-k Accuracy

1 2 3

Word2vec ResNet-101 16.2 17.2 27.8 35.7

Onehot ResNet-101 16.1 16.1 26.8 33.8

Word2vec VGG16 16.3 16.4 26.4 33.0

Onehot VGG16 16.3 16.4 25.9 32.5

Word2vec VGG19 15.6 16.2 26.0 32.4

Onehot VGG19 16.3 16.4 26.0 33.1

For fair comparison, we use the same ResNet-18 features

and obtain the top-1 accuracy of 15.1%.

Ablation on the feature extractor and task description.

We consider different feature extractors (ResNet-101, VGG-

16 and 19) and task encodings (word2vec and one-hot en-

coding) for ablation and summarize the results in Table 5.

The average precision difference between different feature

extractors are very minimal (within 0.1%) and the largest

gap in Top-3 accuracy is within 2%. This indicates that

TAFE-Net is robust in transforming the generic features into

task-aware feature embeddings. For the task encoding, the

one-hot encoding is comparable to the word2vec encoding

and even stronger when using VGG-19 features. This shows

that the task transformer network T is very expressive to

extract rich semantic information simply from the task IDs.

Visualization. In Figure 5, we show the top retrievals of

unseen attribute-object pairs from the MITStates dataset.

Our model can learn to compose new concepts from the

existing attributes and objects while respecting their context.

4.3. Fewshot Image Classification

Our model naturally fits the few-shot learning setting

where one or few images of a certain category are used as

the task descriptions. Unlike prior work on meta-learning

which experiments with few classes and low resolution im-

ages [42, 38, 10], we evaluate our model on the challenging

benchmark proposed by Hariharan and Girshick [17]. The

benchmark is based on the ImageNet images and contains

hundreds of classes that are divided into base classes and

novel classes. At inference time, the model is provided with

one or a few examples from the novel classes and hundreds

of examples from the base classes. The goal is to obtain

high accuracy on the novel classes without sacrificing the

performance on the base classes.

Baselines. In our experiments, the baselines we consider are

the state-of-the-art meta learning models: Matching Network

(MN) [42] and Prototypical Network (PN) [38]. We also
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Modern City Ancient Town

Modern Clock Ancient Clock

Sunny Valley Sunny Creek

Figure 5: Top retrievals on the unseen pairs of the MITStates dataset. Our model can learn to compose new concepts from the

existing attributes and objects while respecting their context. The second row shows some of the failure cases.

Table 6: Few-shot ImageNet Classification on ImageNet.

Our model is competitive compared to the state-of-the-art

meta learning model without hallucinator.

Method Novel Top-5 Acc All Top-5 Acc

n=1 n=2 n=1 n=2

LogReg [17] 38.4 51.1 40.8 49.9

PN [38] 39.3 54.4 49.5 61.0

MN [42] 43.6 54.0 54.4 61.0

TAFE-Net 43.0 53.9 55.7 61.9

LogReg w/ Analogies [17] 40.7 50.8 52.2 59.4

PN w/ G [45] 45.0 55.9 56.9 63.2

compare the logistic regression (LogReg) baseline provided

by Hariharan and Girshick [17]. Another line of research [45,

17] for few-shot learning is to combine the meta-learner with

a “hallucinator” to generate additional training data. We

regard these works as complementary approaches to our

meta-learning model.

Experiment details. We follow the prior works [17, 45] to

run five trials for each setting of n (the number of examples

per novel class, n = 1 and 2 in our experiments) on the five

different data splits and report the average top-5 accuracy of

both the novel and all classes. We use the features trained

with ResNet-10 using SGM loss provided by Hariharan and

Girshick [17] as inputs. For training, we sample 100 classes

in each iteration and use SGD with momentum of 0.9 as the

optimizer. The initial learning rate is set to 0.1 except for the

task embedding network (set to 0.01) and the learning rate

is reduced by 10× every 8k iterations. The model is trained

for 30k iterations in total. Other hyper-paramters are set to

the same as Hariharan and Girshick [17] if not mentioned.

Quantitative results. As shown in Table 6, our model is on

par with state-of-the-art meta learning models on the novel

classes while outperforming them on all categories. Attach-

ing a “hallucinator” to the meta learning model improves

performance in general. Our model can be easily attached

with a hallucinator and we leave the detailed study as future

work due to the time constraint.

5. Conclusion

In this work, we explored a meta learning based approach

to generate task aware feature embeddings for settings with

little or no training data. We proposed TAFE-Net, a net-

work that generates task aware feature embeddings (TAFE)

conditioned on the given task descriptions. TAFE-Net has

a task-aware meta learner that generates weights for the

feature embedding layers in a standard prediction network.

To address the challenges in training the meta learner, we

introduced two key innovations: (1) adding an additional

embedding loss to improve the generalization of the meta

learner; (2) a novel weight factorization scheme to generate

parameters of the prediction network more effectively. We

demonstrated the general applicability of the proposed net-

work design on a range of benchmarks in zero-/few- shot

learning, and matched or exceeded the state-of-the-art.
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