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Abstract

In this paper, we propose UnOS, an unified system for

unsupervised optical flow and stereo depth estimation using

convolutional neural network (CNN) by taking advantages

of their inherent geometrical consistency based on the rigid-

scene assumption [31]. UnOS significantly outperforms

other state-of-the-art (SOTA) unsupervised approaches that

treated the two tasks independently. Specifically, given two

consecutive stereo image pairs from a video, UnOS esti-

mates per-pixel stereo depth images, camera ego-motion

and optical flow with three parallel CNNs. Based on these

quantities, UnOS computes rigid optical flow and com-

pares it against the optical flow estimated from the FlowNet,

yielding pixels satisfying the rigid-scene assumption. Then,

we encourage geometrical consistency between the two es-

timated flows within rigid regions, from which we derive

a rigid-aware direct visual odometry (RDVO) module. We

also propose rigid and occlusion-aware flow-consistency

losses for the learning of UnOS. We evaluated our results

on the popular KITTI dataset over 4 related tasks, i.e. stereo

depth, optical flow, visual odometry and motion segmenta-

tion.

1. Introduction
Estimating stereo depth [23] and optical flow [19] are

two fundamental problems in computer vision. Jointly con-

sidering the two provides dense 3D scene flow [34], which

enables numerous applications such as autonomous driving

[34], robot navigation [7, 12] and video analysis [42, 25].

Current state-of-the-art (SOTA) strategies for both tasks

rely on the advance of CNNs with supervised learning, e.g.

PSMNet [5] and PWCNet [40], which depend heavily on

the availability of training data[11, 32]. However, videos

are from various scenes when considering open-world prob-

lems [58], so it is not practical to collect dense ground truths

for these tasks at every place. Therefore, lots of efforts and

progresses have been made recently in unsupervised learn-

ing of stereo depth/matching [57], monocular depth estima-

tions [60] and optical flow [38] with CNNs by just providing

Figure 1. Comparison between UnOS and other unsupervised

methods. (a) left image, (b) optical flow from [33], (d) UnOS

optical flow, (c) stereo depth from [14], (e) UnOS stereo, It can be

seen for both optical flow and stereo depth, UnOS generated re-

sults are more regularized and have sharper boundaries following

scene structures as shown in zoomed regions (best view in color).

stereo pairs or videos. These methods vastly improve the

generalization ability of the learned models. Nevertheless,

in those works, the two tasks were mostly treated indepen-

dently in their pipeline, although it has shown to be very

useful to consider both of the tasks as a whole in the aspect

of 3D scene flow in traditional methods [43, 35, 41].

This paper completes this missing piece of unsupervised

learning by proposing joint learning of the two tasks, which

explores their geometrical relationship during training, and

boosts the performance on both sides as illustrated in Fig. 1.

We provide an overview of our system in Fig. 2. During

training, given two consecutive stereo image pairs, i.e. (Lt,

Rt) and (Ls, Rs), UnOS jointly outputs stereo depth esti-

mation (Dt), camera ego-motion (Tt→s) and optical flow

(Ft→s) from StereoNet, MotionNet and FlowNet respec-

tively. Then, a rigid-aware direct visual odometry (RDVO)

module is applied after the MotionNet, which refines and

updates the camera motion (Tu
t→s). Next, we use Dt and

T
u
t→s to compute rigid flow F

r
t→s representing the motion

induced solely by the camera, which is compared against

Ft→s and yields a rigid mask M. In addition to the individ-

ual loss for each network, Fr
t→s and Ft→s are encouraged

to be consistent within rigid regions M, yielding more ro-

bust estimation for both tasks.

Our contributions are summarized as below,
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Figure 2. UnOS system. Given two consecutive stereo pairs, optical flow Ft→s, stereo depth Dt, camera motion Tt→s are predicted from

three networks. Potentially rigid pixels are then discovered, and a rigid-aware direct visual odometry (RDVO) module is designed to refine

the camera motion. All of the information is sent to our full set of losses LUnOS with rigid awareness, occlusion (Occ.) awareness and

flow-depth consistency (Details in Sec. 4.1). Please note that here the term FlowNet refers to the network for estimating optical flow which

we used PWCNet [40] in our work.

1. We design an unified framework for unsupervised

learning of optical flow and stereo depth, named as

“UnOS”, by explicitly encouraging their geometrical

consistency with automatically found rigid regions,

yielding SOTA performance on both tasks.

2. We design a rigid-aware direct visual odomotry

(RDVO) module that carefully handles rigid regions

using optical flow matching, yielding more accurate

camera motion estimations.

3. We jointly include the properties of rigidity and oc-

clusion in our training schema, which is effective for

learning the CNNs.

UnOS significantly improves over other unsupervised

stereo depth and optical flow methods. For example, on

KITTI 2012 benchmark, UnOS reduces the optical flow er-

ror from a previous unsupervised method [33] by 50%. For

stereo depth, it also outperforms the SOTA method taken

stereo video as an input [57]. UnOS also achieves bet-

ter performance for unsupervised moving object segmen-

tation when comparing against [52]. The code and models

of our method can be found at https://github.com/

baidu-research/UnDepthflow .

2. Related Work
Stereo matching and optical flow estimation have long

been important problems for computer vision. Here we

summarize the closely related works using deep CNNs due

to space limitation. We refer readers to survey papers on

both tasks [9, 16] for broader understanding.

Supervised optical flow and stereo depth. In general, the

two tasks share the same methodology for finding dense

pixel correspondences, where stereo depth is a more con-

strained problem. Therefore, here we review them as a

whole since an optical flow method can be easily extended

to stereo matching by limiting the search within a dispar-

ity line. Based on CNNs, early works [55, 8, 28, 39, 15]

started to learn matching for stereo using various losses with

image patches as input, which might be time consuming

during both training and inference. Recently, works like

SPyNet [36] was designed to find 2D optical flow by ex-

plicitly using image warping in the architecture to enable

efficient learning. PWCNet [40] built a 3D cost volume

calculated within a local region. Despite the limited range

in matching, PWCNet achieved SOTA optical flow results

thanks to the coarse-to-fine scheme used.

To fully exploit the limited dimension and matching

range in stereo depth, researchers built more specific ar-

chitectures and losses. GCNet [23] proposed to generate

a 3D cost volume by densely comparing the feature at a

pixel from the reference image to all possible matching pix-

els at the target image. The network finds the best match-

ing through a soft-argmin operation. PSMNet [5] adopted

pyramid spatial pooling and hourglass networks for exploit-

ing image context. Later work [6] appended a post process-

ing module, yielding better recovered details. These net-

work architectures provide strong foundation for develop-

ing unsupervised learning methods.

Unsupervised optical flow. To reduce the requirements

for large amount of training data, unsupervised optical flow

learning was introduced recently in [38] and [22], where the

basic idea was to use the spatial transform network [20] to

backprop the photometric matching error from comparing

the original and warped target images. Later works [46, 33]

improved their results by explicitly handling the occlusions.

In our case, we introduce geometrical regularization by

jointly considering stereo depth, which produces further im-

provements.

Unsupervised monocular and stereo depth. Unsuper-

vised learning of depth was first introduced for monocu-

lar images based on the supervision via stereo image pairs.

Specifically, recent works [50, 10] adopted a CNN to take a

single image as input and predict its disparity, where the su-

pervision came from the photometric comparison. It was

later improved by using inherent geometrical regulariza-

tions [14, 29]. Zhou et al. [60] incorporated camera ego-

motion into the training pipeline using structure from mo-
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tion (SfM) [48], which made depth learning possible from

monocular videos. Later works improved the performance

by regularizing scene structures [53], refining camera ego-

motion [45, 30], and jointly using stereo and monocular

video for learning [26, 13]. Here, our RDVO is motivated

by Differentiable Direct Visual Odometry (DDVO) [45].

However, rather than using photometric distance in solv-

ing relative camera pose, RDVO relies on estimated optical

flow within rigid regions for pixel matching.

Due to the success of monocular depth estimation, re-

searchers extended the corresponding losses to the problem

of stereo depth estimation [14, 59], where the correspond-

ing network architectures were borrowed from those shown

to be effective with supervised learning such as GCNet [23].

These methods showed significant performance boost over

the traditional unsupervised stereo algorithms based on lo-

cal patch-wise matching and smoothing [18, 4, 27]. In our

case, we adopt more light-weight PWCNet for stereo depth

estimation by limiting the matching space.

Most recently, leveraging video for unsupervised stereo

depth estimation was also proposed by Zhong et al. [58],

where a RNN was used to implicitly aggregate the informa-

tion from previous frames. Therefore, a video sequence is

necessary for testing. In our case, we explicitly account for

the depth transformation between consecutive frames with

camera motion and optical flow in training, and only need a

stereo pair for testing.

Joint unsupervised learning of depth and flow. Under-

standing depth and flow jointly from a video is commonly

known as 3D scene flow estimation [43, 44], where 2D op-

tical flow is explained with 3D scene structures and cam-

era geometry. Recently traditional methods for scene flow

estimation using stereo videos rely on bottom-up super-

pixel piece-wise planar matching [34], or top-down recog-

nition [2, 49]. Taniai et al. [41] accelerated these algorithms

with per-pixel scene flow understanding by jointly enforc-

ing consistency among stereo depth, camera motion and op-

tical flow. However, there were no learning components in-

troduced in their systems.

Within the scope of unsupervised deep learning, joint

depth and optical flow learning was studied based on

monocular videos. GeoNet [54] used a residual FlowNet to

refine the rigid flow from depth and ego-motion to the full

optical flow, but no explicit geometry consistency was con-

sidered and it did not explicitly distinguish between static

and moving regions. EPC [52] discovered rigid regions and

encourage consistency between depth and flow estimations,

but it did not do joint learning. Recent work [37] pieced the

optical flow and rigid flow together and did iterative learn-

ing for refinement. DF-net [61] also proposed a consistency

loss between rigid flow and optical flow. However, neither

of them [37, 61] showed much improvements on the flow

task due to the intrinsic limitation of the monocular depth

accuracy. As mentioned in Sec. 1, including stereo depth es-

timations in our system fundamentally facilitates the learn-

ing of the two tasks.

3. Learning with self-supervision

In order to make the paper self-contained, we first intro-

duce the preliminaries for unsupervised stereo depth [14],

monocular depth [60] and optical flow [38] estimation,

which share similar underlying idea of supervision by syn-

thesis.

Finding corresponding pixels. As introduced in Sec. 1, we

take consecutive stereo image pairs, (Lt, Rt) and (Ls, Rs)

as inputs, where L,R indicate the left and right image re-

spectively, and t, s indicate the target and source image. The

networks estimate a stereo depth map Dt using (Lt, Rt), a

relative camera pose Tt→s ∈ SE(3), and an optical flow

map Ft→s using (Lt, Ls). For each pixel pt in a target im-

age Lt, we can find the corresponding source pixels by,

prs = π(K[Tt→sφ(pt|K,Dt)]),

pfs = pt + Ft→s(pt),

pxss = pxt − f ·B/Dt(pt) (1)

where prs represents the pixel found atLs based on the rigid

scene assumption and camera motion, pfs represents the

pixel found at Ls through optical flow, and pss represents

the pixel found at Rt via stereo disparity (the superscript x
specifies the horizontal component). Here, φ(pt|K,Dt) =
Dt(pt)K

−1h(pt) is a back-projection function mapping a

2D pixel to a 3D point. h(pt) is the homogeneous coor-

dinate of pt. π([x, y, d]) = [x/d, y/d]T returns 2D non-

homogeneous coordinates. K is the camera intrinsic ma-

trix, and f,B are the focal length and baseline of the stereo

image pair.

Supervise with view synthesis. Given the corresponding

pixel pairs pt and p∗s (∗ could be r, f or s in Eq. (1)),

we may generate synthesized target images L̂∗t from var-

ious source images using a differentiable bilinear interpo-

lation [20], and the system can be trained by minimizing

photometric error. The corresponding loss function term is

defined as,

L∗v(O) =
∑

pt

V∗(pt,O)|Lt(pt)− L̂∗t(pt,O)|. (2)

where V∗(pt,O) is a visibility mask, indicating whether pt
can find a valid matching pixel given certain information O

and a source image. O could be depth Dt or optical flow

Ft→s. Here, the visibility mask V∗ is computed by forward

warping of the reverse optical flow as proposed in [46].

Thus, adopting different matching pairs triggers different

unsupervised learning pipelines, e.g. using prs, pss or pfs
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Figure 3. An example of our rigid potential. (a) Image. (b) Flow consistency map. (c) Visibility mask Vf . (d) Rigid potential. (e) Ground

truth rigid mask. We can see flow consistency falsely indicates rigid potential in occluded regions.

induces mono-depth [60], stereo-depth [14], and optical-

flow [38] respectively. Using both prs and pss leads to deep

visual odometry with stereo video [26].

Regularization with edge-aware smoothness. Pixel color

matching alone is unstable and ambiguous. Therefore, an

edge-aware smoothness term is often applied for each pre-

diction. Specifically,

Ls(O,W, o) =
∑

pt

∑

d∈x,y

W(pt)|∇
o
dO(pt)|e

−β|∇2

d
Lt(pt)| (3)

where O represents the type of the input, W is a weight

map, and o is the order of smoothness gradient. For exam-

ple, Ls(Dt,1, 2) is a spatial smoothness term penalizing the

L1 norm of second-order gradients of depth Dt along both

x and y directions over all images, as proposed by [14].

4. Unifying optical flow and stereo depth
One possible approach for unifying the learning of depth

and flow is to use matching pixels of prs, pss and pfs to-

gether during training. However, it may not work well, as

also mentioned in prior works [26, 30], since errors from

one task may negatively impact the other. This is mainly

because there are moving things from t to s, and pixels be-

longing to those regions fail the one rigid motion assump-

tion handling only the ego-motion. Thus, the discovered

prs will be different from pixels found by optical flow pfs.

This systematic error will affect the learning of the whole

model. Therefore, one key to successfully unify learning of

both tasks is to find pixels having high potential satisfying

the rigid assumption.

Locating rigid regions with soft potential. Here, rather
than using a hard binary rigid mask as in [37], we consider
using a soft rigid region mask [60], where each pixel has
a potential of satisfying the rigid assumption. This will be
useful in our RDVO module and losses later. In particular,
the rigid potential at a pixel pt is computed as,

Rt(pt) = max{1−Vf (pt), exp{−γ(|pfs − prs|)}} (4)

where γ is a hyper parameter. Here, We first check the con-

sistency between pfs and prs, and also consider the regions

that are occluded 1 − Vf (pt) as rigid. For example, re-

gions that become occluded at image boundaries or road oc-

cluded by moving cars should be considered as rigid. Fig. 3

visualizes an example of our soft rigid mask, where more

complete rigid regions are discovered using the two criteria.

One possible error here could be having mutual occlusions

between moving objects, which will be considered in our

future work.

From Eq. (1) by letting prs = pfs, we can see optical

flow Ft→s, depth Dt and camera motion Tt→s turn out to

be three conjugated quantities within rigid regions. Given

Dt and Ft→s, we can apply the n-point algorithm [17] to

solve for Tt→s with a closed-form using SVD, based on

which we later propose rigid-aware direct visual odometry

(RDVO) for pose refinement. It refines the camera pose ob-

tained from the MotionNet. Given the refined camera pose

T
u
t→s, Dt(pt) and Ft→s, we propose to include geometri-

cal consistency in our loss design. These two components

will be elaborated below.

4.1. Rigid­aware direct visual odometry (RDVO)
In this module, given estimated Dt, Ft→s and an initial

estimation of camera pose Tt→s from MotionNet, our tar-

get is to find a relative pose ∆Tt→s to refine the pose Tt→s.

This is necessary because MotionNet itself lacks geometri-

cal constraints, which was also mentioned in [45, 30]. Here

we propose a simpler and more efficient solution using the

discovered rigid potential.

Specifically, the target of RDVO based on the notation

from Eq. (1) is,

min
∆Tt→s

∑

pt∈S

‖prs − pfs‖
2 (5)

By substituting corresponding items in Eq. (1) yields,

pfs − prs = pfs − π(K[∆Tt→sTt→sφ(pt|K,Dt)])

⇔ φ(pfs|K,Ds)−∆Tt→sTt→sφ(pt|K,Dt)

= ψ(pfs|Ds)K
−1
h(pfs)−∆Tt→sTt→sDtK

−1
h(pt) (6)

which means we back project 2D pixels to 3D point cloud

for optimization. Here, ψ(pfs|Ds) is a bilinear interpola-

tion operation returning depth value at float coordinate pfs
using the depth map Ds from source images. Note pfs does

not necessarily have discrete values, therefore an interpola-

tion is needed. ⇔ means 2D to 3D projection. Now, Eq. (5)

is a standard L2 minimization problem which can be easily

solved using SVD [3]. In practice, computing pose can be

more accurate by selecting the most reliable matching for

visual odometry [1] rather than using all pixels. Therefore,

S in Eq. (5) is chosen with two criteria, (1) Vf (pt) > 0.75
since only pixels without occlusion are valid for matching.

(2) the potential Rt(pt) is within top 25%. Here we choose

these parameters based on the corresponding validation set.
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Figure 4. Left column: left target images (Lt). Right column: the

regions selected in the RDVO module (i.e., region S described in

Eq. (5)) in green overlaying on the ground truth moving object

mask in grey.

Fig. 4 visualizes the selected pixels (green) in S for min-

imization. We see that the selected pixels (green) clearly

separate from the moving objects (grey).

After RDVO, we obtain an updated camera motion

T
u
t→s = ∆Tt→sTt→s, which we can feed back to calcu-

late rigid matching of prs, yielding a better rigid potential

(Eq. (4)). We may iterate this process till convergence, and

use the updated purs for generating various losses. In prac-

tice, we iterate twice for each sample and found it is already

good enough in achieving SOTA results.

Finally, based on our rigid potential, we may generate a

rigid segmentation mask with a threshold,

Mt = Rt(pt) > 0.5, (7)

which distinguishes the regions of static background and

moving objects, and will be applied later for training the

networks.

4.2. Learning with geometrical consistency

In this section, we discuss on how to leverage consis-

tency in our losses and network architectures to effectively

supervise UnOS.

4.2.1 Training losses

Rigid and occlusion-aware structural matching. As dis-

cussed in Sec. 3, photometric matching Eq. (2) follows

Lambersian assumption based on pixel colors, which is

not robust against illumination variations. To capture lo-

cal structures, following [14], we add structural matching

cost from SSIM [47]. Specifically, our pixel matching loss

is,

L∗v(O) =
∑

pt

V∗(pt,O) · s(Lt(pt), L̂∗t(pt,O)),

where, s(L(p), L̂(p)) = (1− α) · |L(p)− L̂(p)|+

α · (1−
1

2
SSIM(L(p), L̂(p))). (8)

Here, α is a balancing hyper-parameter. Same as in Eq. (2),

O represents the type of output we need to supervise,

which could be stereo depth estimations Dt or optical flow

Ft→s. V∗ indicates visibility mask depending on the type

of source image for synthesis. Specifically, for supervis-

ing with stereo pairs, L̂∗t is from pss, Vs is computed

using disparity. For supervising optical flow, L̂∗t is from

pfs, Vf is computed based on using backward optical flow,

i.e. Fs→t [46]. For supervising with consecutive images,

i.e. L̂∗t is from prs (before RDVO), Vr represents rigid

and non-occluded regions, which is computed as Vr =
Vf ⊙ Mt. We denote different view synthesis loss terms

as Lsv,Lfv,Lrv respectively.

In addition, as mentioned in Sec. 4.1, we also obtain a

better matching pixel purs after RDVO through an optimized

camera motion T
u
t→s yielding a new structural matching

loss, which we denote as Lu
rv and V

u
r is computed accord-

ingly.

Edge-aware local smoothness. We adopt similar smooth-

ness loss functions as formulated in Eq. (3). Specifically,

for depth, we follow [14] and use Lss = Ls(Dt,1, 2),
which penalize the second-order gradient of depth. For op-

tical flow, we choose to smooth over the moving regions,

i.e. Lfs(Ft→s, 1−Mt, 2).

Rigid-aware flow consistency Given updated camera mo-

tion T
u
t→s after RDVO, we then further encourage consis-

tency between rigid flow and optical flow. The consistency

loss is formulated as,

Lfc(F,D,T
u) =

∑

pt

Mt(pt)|p
u
rs − pfs| (9)

where Mt(pt) is the rigid mask computed in Eq. (7). Since

our RDVO is not differentiable, this consistency loss only

supervises FlowNet and StereoNet.

Left-right consistency Given stereo pairs, Godard et

al. [14] showed that jointly predicting depth for both left

and right images, and checking their consistency helps

depth learning. We also include such loss for our StereoNet,

which is denoted as Lsc.
In summary, our loss functional for UnOS is written as,

LUnOS=(Lfv + λfsLfs) + λrv(Lrv + Lu
rv)

+ (λsvLsv + λssLss + λscLsc) + λfcLfc (10)

λ = [λfs, λrv, λsv, λss, λsc, λfc] is the set of hyper-

parameters balancing different losses.

4.2.2 Network Architectures.

As reviewed in Sec. 2, SOTA stereo depth and optical

flow algorithms are able to share similar architecture and

methodology. In our work, due to joint multi-task train-

ing, we prefer more light-weighted architectures in order

to fit everything into a single GPU. Therefore, for handling

stereo matching, rather than using a stronger but relative

heavy network, e.g. GCNet [23] or PSMNet [5], we choose

PWCNet[40] used in the optical flow estimation, which is
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KITTI 2012 KITTI 2015

Method Train Test Super- train train train test train train train test

Stereo Stereo vised Noc Occ All All move static all all

Flownet2 X – – 4.09 – – – 10.06 –

Flownet2+ft X – – (1.28) 1.8 – – (2.3) 11.48%

PWC-Net X – – 4.14 – – – 10.35 –

PWC-Net+ft X – – (1.45) 1.7 – – (2.16) 9.60%

UnFlow-CSS [33] 1.26 – 3.29 – – – 8.10 –

Geonet [54] – – – – – – 10.81 –

Ranjan et al. [37] – – – – 6.35 6.16 7.76 –

Wang et al. [46] – – 3.55 4.2 – – 8.88 31.2%

Janai et al. [21] – – – – – – 6.59 22.94%

DF-net [61] – – 3.54 4.4 – – 8.98 25.70%

UnOS (FlowNet-only) 1.15 11.2 2.68 3.2 5.92 7.68 7.88 23.75%

UnOS (Ego-motion) X X 2.27 6.67 2.86 3.1 35.9 4.53 11.9 43.86%

UnOS (Ego+RDVO) X X 1.46 4.88 1.93 2.1 36.5 2.99 10.69 32.34%

UnOS (Full) X 1.04 5.18 1.64 1.8 5.30 5.39 5.58 18.00 %

Table 1. Quantitative evaluation on the optical flow task. The numbers reported here are all average end-point-error (EPE) except for the

last column (KITTI2015 test) which is the percentage of erroneous pixels (Fl-all). A pixel is considered to be correctly estimated if the

flow end-point error is <3px or <5%.

light-weighted and also achieves good performance. Dif-

ferently, we modify PWCNet [40] to exploit the epipolar

geometry constraints, i.e. pss in Eq. (1) can only be found

along the horizontal axis and at the left side of pt. There-

fore, we limit the search range to the horizontal line in the

cost volume, and the value of horizontal flow to be negative.

The structure of MotionNet is similar to the one used in

[60] except our network only takes two consecutive images

as the input instead of three or five images, and has two

more convolutional layers. We use PWCNet for optical flow

estimation.

The whole training process includes three stages. First,

we train the FlowNet using Lfv,Lfs. At the second

stage, we train the StereoNet and MotionNet jointly us-

ing Lsv,Lss,Lsc,Lrv without RDVO or flow consistency.

The two pre-training stages provide us a reasonable opti-

cal flow and stereo depth estimation. At the last stage, we

add our RDVO module and consistency terms, and train all

networks together using the total loss LUnOS .

For inference, we obtain optical flow Ft→s and stereo

depth Dt directly from the corresponding networks, and

obtain camera motion T
u
t→s after RDVO. Moving object

segmentation is computed by 1−Mt.

5. Experiments

We evaluate UnOS on the KITTI dataset with multiple

types of ground truth, and compare our results to existing

supervised and unsupervised SOTA methods on the tasks

of optical flow, stereo depth, visual odometry and motion

segmentation.

Training Details In all of training stages, we used Adam

optimizer [24] with β1 = 0.9 and β2 = 0.999. The

learning rate is set to be 10−4. The hyper-parameters

β = 10.0 in Eq. (3), α = 0.85 in Eq. (8), γ =
0.17 in Eq. (4). For the loss functional in Eq. (10),

we borrow the parameters from [14] for stereo losses pa-

rameters, and [λfs, λrv, λsv, λss, λsc, λfc] are set to be

[10.0, 10.0, 1.0, 10.0, 1.0, 0.01] by balancing the scale of

various losses without too much tuning.

During training, we use a batch size of 4. In each stage,

we train for around 15 epochs and choose the model with

the best validation accuracy for the start of next stage train-

ing. Images are scaled to have values between 0 and 1, and

size of 832 × 256. The only data augmentation we perform

is random left-right flipping and random time order switch-

ing.

Dataset Following previous works [14, 46, 60, 52], for the

depth, optical flow and segmentation tasks, we train our

networks using all of the raw data in KITTI excluding the

scenes appeared in the training set of KITTI 2015 [34],

which we adopt as our validation set and use to compare

with other methods. We also evaluate UnOS on KITTI 2012

[11] to additionally verify our algorithm. For segmentation,

we only evaluate on KITTI 2015 since there is no moving

things in KITTI 2012. For the odometry task, we use the

official odometry split, i.e. using sequences 00-08 as train-

ing and sequences 09, 10 as validation. All of our models

are trained from scratch in a pure unsupervised manner.

5.1. Evaluation

Optical flow. We evaluate our method on the optical

flow estimation task using both KITTI 2012 and KITTI

2015, and the quantitative results are shown in Tab. 1.

UnOS (FlowNet-only) is our baseline model after training

FlowNet in the first stage. We could see that it is better than

one of the unsupervised optical flow method UnFlow-CSS

[33] demonstrating the effectiveness of our occlusion-aware

loss and PWC network structure. “UnOS (Ego-motion)” is

the result of rigid flow, i.e. computing flow using prs − pt,
at the end of the second stage training. The rigid flow is

shown to be better than the previous general optical flow in
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Method
Train Test Super- Lower the better Higher the better

Stereo Stereo vised Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

EPC [52] X 0.109 1.004 6.232 0.203 – 0.853 0.937 0.975

Zhou et al. [59] X X – – – – 9.41% – – –

SegStereo [51] X X – – – – 8.79% – – –

Godard et al. [14] X X 0.068 0.835 4.392 0.146 9.194% 0.942 0.978 0.989

Zhong et al. [57] X X 0.075 1.726 4.857 0.165 6.424% 0.956 0.976 0.985

OpenWorld [58] X X (0.056) (0.692) (3.176) (0.125) (5.140%) (0.967) – –

UnOS (Stereo-only) X X 0.060 0.833 4.187 0.135 7.073% 0.955 0.981 0.990

UnOS (Ego-motion) X X 0.052 0.593 3.488 0.121 6.431% 0.964 0.985 0.992

UnOS (Full) X X 0.049 0.515 3.404 0.121 5.943% 0.965 0.984 0.992

PSMNet X X X – – – – 1.83% – – –

Table 2. Quantitative evaluation of the stereo depth task on the KITTI2015 training set. Abs Rel, Sq Rel, RMSE, RMSE log, δ <

1.25, 1.252, 1.253 are standard metrics for depth evaluation [60]. We capped the depth to be between 0-80 meters to compare with existing

literature. D1-all is the error rate of the disparity. Please note that the OpenWorld results were obtained by directly training on the

KITTI2015 training set by replicating the images 200 times to form a pseudo-video, therefore not directly comparable with other methods

which held out that dataset.

Figure 5. Visualization of the flow error map for different stages in

the training. Color legend for errors is plotted at the bottom.

occluded (6.67 vs. 11.2) and static (4.53 vs. 7.68) regions.

This observation is consistent with our assumption about

the advantage of the rigid flow in those areas, and provides

motivation for our proposed flow consistency loss (Lfc).

The rigid flow is much worse in moving regions which is

expected since it is only supposed to be accurate in static

regions. “UnOS (Ego+RDVO)” is the result of refined rigid

flow, i.e. computing flow using purs − pt after RDVO with-

out the third stage training. The result shows that the rigid

alignment module significantly improves the rigid flow in

static regions (1.93 vs. 2.86 and 2.99 vs. 4.53). “UnOS

(Full)” represents our optical flow estimation at the end of

the third training stage with flow consistency. It is still

worse than rigid flow after RDVO in static regions but has

the best overall performance. For KITTI 2012, our method

reduces the error from previous unsupervised method [33]

by 50%, and reaches similar performance of the supervised

methods [19], which demonstrates the benefits of our pro-

posed method and the utilization of stereo data. For KITTI

2015, our method also outperforms previous unsupervised

methods by a large margin, although it still lags behind the

corresponding supervised methods [40]. Visualization of

our estimated optical flow can be found in Fig. 6, and we

can see that our results are more regularized with sharper

boundaries.

We also show the error map of optical flow from dif-

Method frames Stereo Sequence 09 Sequence 10

ORB-SLAM(Full) All 0.014 ± 0.008 0.012 ± 0.011

Zhou et al. [60] 5 0.016 ± 0.009 0.013 ± 0.009

Geonet [54] 5 0.012 ± 0.007 0.012 ± 0.009

Mahjourianet al. [30] 3 0.013 ± 0.010 0.012 ± 0.011

Adv. [37] 5 0.012 ± 0.007 0.012 ± 0.008

UnOS (MotionNet) 2 X 0.023 ± 0.010 0.022 ± 0.016

UnOS (+RDVO) 2 X 0.013 ± 0.006 0.015 ± 0.010

UnOS (Full) 2 X 0.012 ± 0.006 0.013 ± 0.008

Table 3. Quantitative evaluation of the odometry task using the

metric of the absolute trajectory error.

Method
Sequence 09 Sequence 10

terr% rerr(
◦/100) terr% rerr(

◦/100)

ORB-SLAM(Full) 15.30 0.26 3.68 0.48

Zhan et al. [56] 11.92 3.60 12.62 3.43

UnOS (MotionNet) 13.98 5.36 19.67 9.13

UnOS (+RDVO) 8.15 3.02 9.54 4.80

UnOS (Full) 5.21 1.80 5.20 2.18

Table 4. Quantitative evaluation of the odometry task using the

metric of average translational and rotational errors. Numbers of

ORB-SLAM (Full) are adopted from [56].

ferent training stages in Fig. 5 (bluer means better while

redder means worse). Initially, rigid flow from ego-

motion ‘UnOS(Ego-motion)’ has worse performance than

‘UnOS(FlowNet-only)’. After adding RDVO, we can see

that the flow estimations in the static region are greatly

improved (comparing green circles in (b) and (c)). After

adding the moving object mask and applying the consis-

tency loss, ‘UnOS(Full)’ shows even better results in both

static and occluded regions compared to our baseline (com-

paring green circles in (a) and (d)).

Stereo-depth. We evaluate our depth estimation on the

KITTI 2015 dataset, and show the resutls in Tab. 2. Here,

the numbers of Zhong et al. [57] and OpenWorld [58] were

obtained through private communications with the authors.

“UnOS (StereoNet-only)” is the StereoNet trained using

only stereo images, and is our baseline algorithm. It is al-
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Figure 6. Qualitative results of UnOS. We compare each of our output to previous SOTA results. Specifically, (a) Godard et al. [14], (b)

UnFlow-CSS [33], (c) EPC [52].

ready better than some of the existing unsupervised stereo

depth algorithms [14, 51] demonstrating the effectiveness of

our StereoNet. Our stereo depth also performs much better

than the SOTA monocular depth method [52]. “UnOS (Ego-

motion)” shows the results at the end of our second training

stage. After adding the data of time consecutive images,

the depth accuracy improves especially in the large distance

regions (0.593 vs. 0.833). “UnOS (Full)” shows the re-

sults after using RDVO with rigid-aware flow consistency,

and gives the best performance. However, its performance

is still worse than the supervised method like PSMNet [5].

We provide 3D scene flow evaluation on KITTI 2015 test

set in the supplementary materials, and the qualitative re-

sults of our estimated depth are shown in Fig. 6, where

UnOS figures out better scene structures with less noise.

Visual odometry. We evaluate camera motion using two

commonly adopted metrics. The first one was proposed in

SfMLearner [60] which measures the absolute trajectory er-

ror averaged over all overlapping 5-frame snippets after fac-

tor rescaling with the ground truth. In our case, we only

have two frames as input to the MotionNet to predict their

relative pose. For evaluation, we accumulate 4 consecutive

predictions to get the result for the 5-frame snippet. The

other metric was proposed in [56] which measures the av-

erage translation and rotation errors for all sub-sequences

of length (100, 200, ..., 800). For this metric, we accu-

mulate all of two frames estimations together for the entire

sequence without any post-processing. The results for the

two metrics are shown in Tab. 3 and Tab. 4 respectively.

We can see direct output from MotionNet (UnOS (Motion-

Net)) is not satisfying, and is much worse than other SOTA

methods. However, after RDVO module, we see significant

Method Pixel Acc. Mean Acc. Mean IoU f.w. IoU

EPC [52] 0.89 0.75 0.52 0.87

UnOS (Full) 0.90 0.82 0.56 0.88

Table 5. Motion segmentation evaluation. The metrics are pixel

accuracy, mean pixel accuracy, mean IoU, and frequency weighted

IoU.

improvements (UnOS (MotionNet+RDVO)). After training

with the flow consistency and RDVO, the results can be fur-

ther improved, and on par with other SOTA methods de-

spite using stereo info. In Tab. 4, UnOS is worse than tradi-

tional ORB-SLAM, we argue that it uses bundle adjustment

to avoid drifting error, which is complementary to UnOS.

Motion segmentation. The motion segmentation task is

evaluated using the object map provided by the KITTI 2015

dataset [52], where the moving objects are manually seg-

mented. We follow the metrics used in [52] including

pixel accuracy and mean intersect-over-union. As shown

in Tab. 5, we also outperform their method. The qualitative

results are shown in Fig. 6, where UnOS discovers more

compact and cleaner segments for moving objects.

6. Conclusion

In summary, our paper propose an unified system

(UnOS) to learn optical flow and stereo-depth, which mutu-

ally leverages stereo and temporal information in a video.

Specifically, it automatically discovers rigid regions, and

substantially improves unsupervised learning of stereo-

depth, optical flow, visual odometry and motion segmen-

tation on the KITTI dataset.
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