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Abstract

We propose an unsupervised visual tracking method in

this paper. Different from existing approaches using ex-

tensive annotated data for supervised learning, our CNN

model is trained on large-scale unlabeled videos in an un-

supervised manner. Our motivation is that a robust tracker

should be effective in both the forward and backward pre-

dictions (i.e., the tracker can forward localize the target ob-

ject in successive frames and backtrace to its initial position

in the first frame). We build our framework on a Siamese

correlation filter network, which is trained using unlabeled

raw videos. Meanwhile, we propose a multiple-frame val-

idation method and a cost-sensitive loss to facilitate unsu-

pervised learning. Without bells and whistles, the proposed

unsupervised tracker achieves the baseline accuracy of fully

supervised trackers, which require complete and accurate

labels during training. Furthermore, unsupervised frame-

work exhibits a potential in leveraging unlabeled or weakly

labeled data to further improve the tracking accuracy.

1. Introduction

Visual tracking is a fundamental task in computer vision,

which aims to localize the target object in the video given

a bounding box annotation in the first frame. The state-

of-the-art deep tracking methods [1, 46, 15, 55, 27, 60, 58,

54, 4, 19, 33, 34] typically use pretrained CNN models for

feature extraction. These models are trained in a supervised

manner, requiring a large quantity of annotated ground-truth

labels. Manual annotations are always expensive and time-

consuming, whereas extensive unlabeled videos are readily

available on the Internet. It deserves to investigate how to

exploit unlabeled video sequences for visual tracking.

∗Y. Song and W. Liu are the corresponding authors. This work is done

when N. Wang is an intern in Tencent AI Lab. The source code and results

are available at https://github.com/594422814/UDT.
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Annotated sequences      
Forward tracking       

Unsupervised Training:

Unlabeled sequences      
Forward and Backward tracking      

Figure 1. The comparison between supervised and unsupervised

learning. Visual tracking methods via supervised learning require

ground-truth labels for every frame of the training videos. By uti-

lizing the forward tracking and backward verification, we train the

unsupervised tracker without heavyweight annotations.

In this paper, we propose to learn a visual tracking model

from scratch via unsupervised learning. Our intuition re-

sides on the observation that visual tracking can be per-

formed in both the forward and backward manners. Ini-

tially, given the target object annotated on the first frame, we

can track the target object forward in the subsequent frames.

When tracking backward, we use the predicted location in

the last frame as the initial target annotation and track it

backward towards the first frame. The estimated target lo-

cation in the first frame via backward tracking is expected to

be identical with the initial annotation. After measuring the

difference between the forward and backward target trajec-

tories, our network is trained in an unsupervised manner1 by

considering the trajectory consistency as shown in Fig. 1.

Through exploiting consecutive frames in unlabeled videos,

our model learns to locate targets by repeatedly performing

forward tracking and backward verification.

The proposed unsupervised learning scheme aims to

acquire a generic feature representation, while not being

1In this paper, we do not distinguish between the term unsupervised and

self-supervised, as both refer to learning without ground-truth annotations.
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strictly required to track a complete object. For a video se-

quence, we randomly initialize a bounding box in the first

frame, which may not cover an entire object. Then, the

proposed model learns to track the bounding box region in

the following sequences. This tracking strategy shares sim-

ilarity with the part-based [30] or edge-based [28] tracking

methods that focus on tracking the subregions of the target

objects. As the visual object tracker is not expected to only

concentrate on the complete objects, we use the randomly

cropped bounding boxes for tracking initialization during

training.

We integrate the proposed unsupervised learning into the

Siamese based correlation filter framework [54]. The pro-

posed network consists of two steps in the training process:

forward tracking and backward verification. We notice that

the backward verification is not always effective since the

tracker may successfully return to the initial target location

from a deflected or false position. In addition, challenges

such as heavy occlusion in unlabeled videos will further de-

grade the network representation capability. To tackle these

issues, we propose multiple frames validation and a cost-

sensitive loss to benefit the unsupervised training. The mul-

tiple frames validation increases the discrepancy between

the forward and backward trajectories to reduce verification

failures. Meanwhile, the cost-sensitive loss mitigates the

interference from noisy samples during training.

The proposed unsupervised tracker is shown effective on

the benchmark datasets. Extensive experimental results in-

dicate that without bells and whistles, the proposed unsu-

pervised tracker achieves comparable performance with the

baseline fully supervised trackers [1, 49, 54]. When inte-

grated with additional improvements such as the adaptive

online model update [9, 7], the proposed tracker exhibits

state-of-the-art performance. It is worth mentioning that

the unsupervised framework shows potential in exploiting

unlabeled Internet videos to learn good feature representa-

tions for tracking scenarios. Given limited or noisy labels,

the unsupervised method exhibits comparable results with

the corresponding supervised framework. In addition, we

further improve the tracking accuracy by using more unla-

beled data. Sec. 4.2 shows a complete analysis of different

training configurations.

In summary, the contributions of our work are three-fold:

• We propose an unsupervised tracking method based

on the Siamese correlation filter backbone, which is

learned via forward and backward tracking.

• We propose a multiple-frame validation method and a

cost-sensitive loss to improve the unsupervised learn-

ing performance.

• The extensive experiments on the standard bench-

marks show the favorable performance of the proposed

method and reveal the potential of unsupervised learn-

ing in visual tracking.

2. Related Work

In this section, we perform a literature review on the

deep tracking methods, forward-backward trajectory anal-

ysis, and unsupervised representation learning.

Deep Visual Tracking. Existing deep tracking meth-

ods either offline learn a specific CNN model for online

tracking or simply utilize off-the-shelf deep models (e.g.,

VGG [43, 3]) for feature extraction. The Siamese trackers

[1, 46, 49, 54, 55, 15, 27, 60, 58] formulate the tracking

task as a similarity matching process. They typically offline

learn a tracking network and do not fine-tune the model on-

line. On the other hand, some trackers adopt off-the-shelf

CNN models as the feature extraction backbone. They in-

crementally train binary classification layers [37, 45, 39] or

regression layers [44, 31] based on the initial frame. These

methods typically achieve high accuracy while consuming

a huge computational cost. The Discriminative Correlation

Filter (DCF) based trackers [2, 16, 8, 30, 5, 52, 18] tackle

the tracking task by solving a ridge regression problem us-

ing densely sampled candidates, which also benefit from the

powerful off-the-shelf deep features (e.g., [35, 40, 53, 7]).

The main distinction is that deep DCF trackers merely uti-

lize off-the-shelf models for feature extraction and do not

online train additional layers or fine-tune the CNN models.

Different from the above deep trackers using off-the-shelf

models or supervised learning, the proposed method trains

a network from scratch using unlabeled data in the wild.

Forward-Backward Analysis. The forward-backward tra-

jectory analysis has been widely explored in the liter-

ature. The tracking-learning-detection (TLD) [20] uses

the Kanade-Lucas-Tomasi (KLT) tracker [47] to perform

forward-backward matching to detect tracking failures. Lee

et al. [25] proposed to select the reliable base tracker by

comparing the geometric similarity, cyclic weight, and ap-

pearance consistency between a pair of forward-backward

trajectories. However, these methods rely on empirical met-

rics to identify the target trajectories. In addition, repeat-

edly performing forward and backward tracking brings in a

heavy computational cost for online tracking. Differently,

in TrackingNet [36], forward-backward tracking is used for

data annotation and tracker evaluation. In this work, we

revisit this scheme to train a deep visual tracker in an unsu-

pervised manner.

Unsupervised Representation Learning. Our framework

relates to the unsupervised representation learning. In [26],

the feature representation is learned by sorting sequences.

The multi-layer auto-encoder on large-scale unlabeled data

has been explored in [24]. Vondrick et al. [50] proposed

to anticipate the visual representation of frames in the fu-

ture. Wang and Gupta [56] used the KCF tracker [16] to pre-

process the raw videos, and then selected a pair of tracked

images together with another random patch for learning

CNNs using a ranking loss. Our method differs from [56] in
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(b)  Unsupervised Learning Pipeline using a Siamese Network
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Figure 2. An overview of unsupervised deep tracking. We show our motivation in (a) that we track forward and backward to compute the

consistency loss for network training. The detailed training procedure is shown in (b), where unsupervised learning is integrated into a

Siamese correlation filter network. Note that during online tracking, we only track forward to predict the target location.

two aspects. First, we integrate the tracking algorithm into

unsupervised training instead of merely utilizing an off-the-

shelf tracker as the data pre-processing tool. Second, our

unsupervised framework is coupled with a tracking objec-

tive function, so the learned feature representation is effec-

tive in presenting the generic target objects. In the visual

tracking community, unsupervised learning has rarely been

touched. To the best of our knowledge, the only related

but different approach is the auto-encoder based method

[51]. However, the encoder-decoder is a general unsuper-

vised framework [38], whereas our unsupervised method is

specially designed for tracking tasks.

3. Proposed Method

Fig. 2(a) shows an example from the Butterfly sequence

to illustrate forward and backward tracking. In practice, we

randomly draw bounding boxes in unlabeled videos to per-

form forward and backward tracking. Given a randomly ini-

tialized bounding box label, we first track forward to predict

its location in the subsequent frames. Then, we reverse the

sequence and take the predicted bounding box in the last

frame as the pseudo label to track backward. The predicted

bounding box via backward tracking is expected to be iden-

tical with the original bounding box in the first frame. We

measure the difference between the forward and backward

trajectories using the consistency loss for network training.

An overview of the proposed unsupervised Siamese corre-

lation filter network is shown in Fig. 2(b). In the following,

we first revisit the correlation filter based tracking frame-

work and then illustrate the details of our unsupervised deep

tracking approach.

3.1. Revisiting Correlation Tracking

The Discriminative Correlation Filters (DCFs) [2, 16]

regress the input features of a search patch to a Gaussian

response map for target localization. When training a DCF,

we select a template patch X with the ground-truth label Y.

The filter W can be learned by solving the ridge regression

problem as follows:

min
W

‖W ∗X−Y‖
2

2
+ λ‖W‖

2

2
, (1)

where λ is a regularization parameter and ∗ denotes the cir-

cular convolution. Eq. 1 can be efficiently calculated in the

Fourier domain [2, 8, 16] and the DCF can be computed by

W = F
−1

(
F (X)⊙ F ⋆(Y)

F ⋆(X)⊙ F (X) + λ

)
, (2)

where ⊙ is the element-wise product, F (·) is the Discrete

Fourier Transform (DFT), F−1(·) is the inverse DFT, and

⋆ denotes the complex-conjugate operation. In each sub-

sequent frame, given a search patch Z, the corresponding

response map R can be computed in the Fourier domain:

R = W ∗ Z = F
−1 (F ⋆(W)⊙ F (Z)) . (3)

The above DCF framework starts from learning a target

template W using the template patch X and then convolves

W with a search patch Z to generate the response. Re-

cently, the Siamese correlation filter network [49, 54] em-

beds the DCF in a Siamese framework and constructs two

shared-weight branches as shown in Fig. 2(b). The first one

is the template branch which takes a template patch X as in-

put and extracts its features to further generate a target tem-

plate via DCF. The second one is the search branch which
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takes a search patch Z as input for feature extraction. The

target template is then convolved with the CNN features of

the search patch to generate the response map. The advan-

tage of the Siamese DCF network is that both the feature

extraction CNN and correlation filter are formulated into an

end-to-end framework, so that the learned features are more

related to the visual tracking scenarios.

3.2. Unsupervised Learning Prototype

Given two consecutive frames P1 and P2, we crop the

template and search patches from them, respectively. By

conducting forward tracking and backward verification, the

proposed framework does not require ground-truth labeling

for supervised training. The difference between the initial

bounding box and the predicted bounding box in P1 will

formulate a consistency loss for network learning.

Forward Tracking. We follow [54] to build a Siamese cor-

relation filter network to track the initial bounding box re-

gion in frame P1. After cropping the template patch T from

the first frame P1, the corresponding target template WT

can be computed as:

WT = F
−1

(
F (ϕθ(T))⊙ F ⋆(YT)

F ⋆(ϕθ(T))⊙ F (ϕθ(T)) + λ

)
, (4)

where ϕθ(·) denotes the CNN feature extraction operation

with trainable network parameters θ, and YT is the label of

the template patch T. This label is a Gaussian response cen-

tered at the initial bounding box center. Once we obtain the

learned target template WT, the response map of a search

patch S from frame P2 can be computed by

RS = F
−1(F ⋆(WT)⊙ F (ϕθ(S))). (5)

If the ground-truth Gaussian label of patch S is available,

the network ϕθ(·) can be trained by computing the L2 dis-

tance between RS and the ground-truth. In the following,

we show how to train the network without labels by exploit-

ing backward trajectory verification.

Backward Tracking. After generating the response map

RS for frame P2, we create a pseudo Gaussian label cen-

tered at its maximum value, which is denoted by YS. In

backward tracking, we switch the role between the search

patch and the template patch. By treating S as the template

patch, we generate a target template WS using the pseudo

label YS. The target template WS can be learned using

Eq. (4) by replacing T with S and replacing YT with YS.

Then, we generate the response map RT through Eq. (5) by

replacing WT with WS and replacing S with T. Note that

we only use one Siamese correlation filter network to track

forward and backward. The network parameters θ are fixed

during the tracking steps.

Consistency Loss Computation. After forward and back-

ward tracking, we obtain the response map RT. Ideally,

RT should be a Gaussian label with the peak located at the

initial target position. In other words, RT should be as sim-

ilar as the originally given label YT. Therefore, the repre-

sentation network ϕθ(·) can be trained in an unsupervised

manner by minimizing the reconstruction error as follows:

Lun = ‖RT −YT‖
2

2
. (6)

We perform back-propagation of the computed loss to

update the network parameters. During back-propagation,

we follow the Siamese correlation filter methods [54, 59] to

update the network as:

∂Lun

∂ϕθ(T)
= F

−1

(
∂Lun

∂ (F (ϕθ(T)))
⋆ +

(
∂Lun

∂ (F (ϕθ(T)))

)⋆)
,

∂Lun

∂ϕθ(S)
= F

−1

(
∂Lun

∂ (F (ϕθ(S)))
⋆

)
.

(7)

3.3. Unsupervised Learning Improvements

The proposed unsupervised learning method constructs

the objective function based on the consistency between

RT and YT. In practice, the tracker may deviate from the

target in the forward tracking but still return to the original

position during the backward process. However, the pro-

posed loss function does not penalize this deviation because

of the consistent predictions. Meanwhile, the raw videos

may contain uninformative or even corrupted training sam-

ples with occlusion that deteriorate the unsupervised learn-

ing process. We propose multiple frames validation and a

cost-sensitive loss to tackle these limitations.

3.3.1 Multiple Frames Validation

We propose a multiple frames validation approach to alle-

viate the inaccurate localization issue that is not penalized

by Eq. (6). Our intuition is to involve more frames dur-

ing forward and backward tracking to reduce the verifica-

tion failures. The reconstruction error in Eq. (6) tends to be

amplified and the computed loss will facilitate the training

process.

During unsupervised learning, we involve another frame

P3 which is the subsequent frame after P2. We crop a search

patch S1 from P2 and another search patch S2 from P3. If

the generated response map RS1
is different from its corre-

sponding ground-truth response, this error tends to become

larger in the next frame P3. As a result, the consistency is

more likely to be broken in the backward tracking, and the

generated response map RT is more likely to deviate from

YT. By simply involving more search patches during for-

ward and backward tracking, the proposed consistency loss

1311



Forward Tracking

Search 
   # 2

Backward Tracking

#1 #2

Search PatchTemplate Patch  Search
Patch #1

#1

#2

#3

 Search
Patch #2

Template Patch 

Coincidental Success Error Accumulation

Figure 3. Single frame validation and multiple frames validation.

The inaccurate localization in single frame validation may not be

captured as shown on the left. By involving more frames as shown

on the right, we can accumulate the localization error to break the

prediction consistency during forward and backward tracking.

will be more effective to penalize the inaccurate localiza-

tions as shown in Fig. 3. In practice, we use three frames to

validate and the improved consistency loss is written as:

Lun = ‖R̃T −YT‖
2

2
, (8)

where R̃T is the response map generated by an additional

frame during the backward tracking step.

3.3.2 Cost-sensitive Loss

We randomly initialize a bounding box region in the first

frame P1 for forward tracking. This bounding box region

may contain noisy background context (e.g., occluded tar-

gets). Fig. 5 shows an overview of these regions. To allevi-

ate the background interference, we propose a cost-sensitive

loss to exclude noisy samples for network training.

During unsupervised learning, we construct multiple

training pairs from the training sequences. Each training

pair consists of one initial template patch T in frame P1 and

two search patches S1 and S2 from the subsequent frames

P2 and P3, respectively. These training pairs form a training

batch to train the Siamese network. In practice, we find that

few training pairs with extremely high losses prevent the

network training from convergence. To reduce the contri-

butions of noisy pairs, we exclude 10% of the whole train-

ing pairs which contain a high loss value. Their losses can

be computed using Eq. (8). To this end, we assign a bi-

nary weight Ai

drop to each training pair and all the weight

elements form the weight vector Adrop. The 10% of its ele-

ments are 0 and the others are 1.

In addition to the noisy training pairs, the raw videos in-

clude lots of uninformative image patches which only con-

tain the background or still targets. For these patches, the

objects (e.g., sky, grass, or tree) hardly move. Intuitively,

the target with a large motion contributes more to the net-

work training. Therefore, we assign a motion weight vector

Amotion to all the training pairs. Each element Ai

motion can

be computed by

A
i

motion =
∥∥Ri

S1
−Y

i

T

∥∥2
2
+
∥∥Ri

S2
−Y

i

S1

∥∥2
2
, (9)

Template or search patches

Crop & Resize

Unlabeled sequences in the wild

...

Figure 4. An illustration of training samples generation. The pro-

posed method simply crops and resizes the center regions from

unlabeled videos as the training patches.

where Ri

S1
and R

i

S2
are the response maps in the i-th train-

ing pair, Y
i

T
and Y

i

S1
are the corresponding initial and

pseudo labels, respectively. Eq. (9) calculates the target

motion difference from frame P1 to P2 and P2 to P3. The

larger value of Ai

motion indicates that the target undergoes a

larger movement in this continuous trajectory. On the other

hand, we can interpret that the large value of Ai

motion rep-

resents the hard training pair which the network should pay

more attentions to. We normalize the motion weight and the

binary weight as follows,

A
i

norm =
A

i

drop ·A
i

motion∑n

i=1
Ai

drop ·A
i

motion

, (10)

where n is number of the training pairs in a mini-batch. The

final unsupervised loss in a mini-batch is computed as:

Lun =
1

n

n∑

i=1

A
i

norm ·
∥∥∥R̃i

T −Y
i

T

∥∥∥
2

2

. (11)

3.4. Unsupervised Training Details

Network Structure. We follow the DCFNet [54] to use

a shallow Siamese network with only two convolutional

layers. The filter sizes of these convolutional layers are

3× 3× 3× 32 and 3× 3× 32× 32, respectively. Besides,

a local response normalization (LRN) layer is employed at

the end of convolutional layers. This lightweight structure

enables extremely efficient online tracking.

Training Data. We choose the widely used ILSVRC 2015

[42] as our training data to fairly compare with existing su-

pervised trackers. In the data pre-processing step, existing

supervised approaches [1, 49, 54] require ground-truth la-

bels for every frame. Meanwhile, they usually discard the

frames where the target is occluded, or the target is partially

out of view, or the target infrequently appears in tracking

scenarios (e.g., snake). This requires a time-consuming hu-

man interaction to preprocess the training data.

In contrast, we do not preprocess any data and simply

crop the center patch in each frame. The patch size is the

half of the whole image and further resized to 125× 125 as
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Figure 5. Examples of randomly cropped center patches from

ILSVRC 2015 [42]. Most patches contain valuable contents while

some are less meaningful (e.g., the patches on the last row).

the network input as shown in Fig. 4. We randomly choose

three cropped patches from the continuous 10 frames in a

video. We set one of the three patches as the template and

the remaining as search patches. This is based on the as-

sumption that the center located target objects are unlikely

to move out of the cropped region in a short period. We

track the objects appearing in the center of the cropped re-

gions, while not specifying their categories. Some examples

of the cropped regions are exhibited in Fig. 5.

3.5. Online Object Tracking

After offline unsupervised learning, we online track the

target object following forward tracking as illustrated in

Sec. 3.2. To adapt the object appearance variations, we on-

line update the DCF parameters as follows:

Wt = (1− αt)Wt−1 + αtW, (12)

where αt ∈ [0, 1] is the linear interpolation coefficient. The

target scale is estimated through a patch pyramid with scale

factors {as|a = 1.015, s = {−1, 0, 1}} following [10]. We

denote the proposed Unsupervised Deep Tracker as UDT,

which merely uses standard incremental model update and

scale estimation. Furthermore, we use an advanced model

update that adaptively changes αt as well as a better DCF

formulation following [7]. The improved tracker is denoted

as UDT+.

4. Experiments

In this section, we first analyze the effectiveness of our

unsupervised learning framework. Then, we compare with

state-of-the-art trackers on the standard benchmarks includ-

ing OTB-2015 [57], Temple-Color [29] and VOT-2016 [21].

4.1. Experimental Details

In our experiments, we use the stochastic gradient de-

scent (SGD) with a momentum of 0.9 and a weight decay
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Figure 6. The precision and success plots of our UDT tracker with

different configurations on the OTB-2015 dataset [57]. In the leg-

end, we show the distance precision at 20 pixels threshold and

area-under-curve (AUC) score.

of 0.005 to train our model. Our unsupervised network is

trained for 50 epoches with a learning rate exponentially

decays from 10−2 to 10−5 and a mini-batch size of 32. All

the experiments are executed on a computer with 4.00GHz

Intel Core I7-4790K and NVIDIA GTX 1080Ti GPU.

On the OTB-2015 [57] and TempleColor [29] datasets,

we use one-pass evaluation (OPE) with distance precision

(DP) at 20 pixels and the area-under-curve (AUC) of the

overlap success plot. On the VOT2016 [21], we measure the

performance using the Expected Average Overlap (EAO).

4.2. Ablation Study and Analysis

Unsupervised and supervised learning. We use the same

training data [42] to train our network via fully supervised

learning. Fig. 6 shows the evaluation results where the fully

supervised training configuration improves UDT by 3% un-

der the AUC scores.

Stable training. We analyze the effectiveness of our sta-

ble training by using different configurations. Fig. 6 shows

the evaluation results of multiple learned trackers. The

UDT-StandardLoss indicates the results from the tracker

learned without using hard sample reweighing (i.e., Amotion

in Eq. (9)). The UDT-SingleTrajectory denotes the results

from the tracker learned only using the prototype frame-

work in Sec. 3.2. The results show that multiple frames

validation and cost-sensitive loss improve the accuracy.

Using high-quality training data. We analyze the perfor-

mance variations by using high-quality training data. In

ILSVRC 2015 [42], instead of randomly cropping patches,

we add offsets ranging from [-20, +20] pixels to the ground-

truth bounding boxes for training samples collection. These

patches contain more meaningful objects than the randomly

cropped ones. The results in Fig. 6 show that our tracker

learned using weakly labeled samples (i.e., UDT-Weakly)

produce comparable results with the supervised configu-

ration. Note that the predicted target location by exist-

ing object detectors or optical flow estimators is normally

within 20 pixels offset with respect to the ground-truth.

These results indicate that UDT achieves comparable per-

formance with supervised configuration when using less ac-
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Table 1. Comparison results with fully-supervised baseline (left) and state-of-the-art (right) trackers on the OTB-2015 benchmark [57].

The evaluation metric is AUC score. Our unsupervised UDT tracker performs favorably against baseline methods shown on the left, while

our UDT+ tracker achieves comparable results with the recent state-of-the-art supervised trackers shown on the right.

Trackers SiamFC DCFNet CFNet UDT DSiam EAST HP SA-Siam SiamPRN RASNet SACF Siam-tri RT-MDNet MemTrack StructSiam UDT+

[1] [54] [49] [14] [17] [13] [15] [27] [55] [59] [12] [19] [58] [60]

AUC score (%) 58.2 58.0 56.8 59.4 60.5 62.9 60.1 65.7 63.7 64.2 63.3 59.2 65.0 62.6 62.1 63.2

Speed (FPS) 86 70 65 70 25 159 69 50 160 83 23 86 50 50 45 55

curate labels produced by existing detection or flow estima-

tion methods.

Few-shot domain adaptation. We collect the first 5 frames

from the videos in OTB-2015 [57] with only the ground-

truth bounding box available in the first frame. Using these

limited samples, we fine-tune our network by 100 iterations

using the forward-backward pipeline. This training process

takes around 6 minutes. The results (i.e., UDT-Finetune)

show that the performance is further enhanced. Our offline

unsupervised training learns general feature representation,

which can be transferred to a specific domain (e.g., OTB)

using few-shot adaptation. This domain adaptation is sim-

ilar to MDNet [37] but our initial parameters are offline

learned in an unsupervised manner.

Adopting more unlabeled data. Finally, we utilize more

unlabeled videos for network training. These additional raw

videos are from the OxUvA benchmark [48] (337 videos in

total), which is a subset of Youtube-BB [41]. In Fig. 6,

our UDT-MoreData tracker gains performance improve-

ment (0.9% DP and 0.7% AUC), which illustrates unlabeled

data can advance the unsupervised training. Nevertheless,

in the following we remain using the UDT and UDT+ track-

ers which are only trained on [42] for fair comparisons.

4.3. Stateoftheart Comparison

OTB-2015 Dataset. We evaluate the proposed UDT and

UDT+ trackers with state-of-the-art real-time trackers in-

cluding ACT [4], ACFN [6], CFNet [49], SiamFC [1], SCT

[5], CSR-DCF [32], DSST [8], and KCF [16] using preci-

sion and success plots metrics. Fig. 7 and Table 1 show that

the proposed unsupervised tracker UDT is comparable with

the baseline supervised methods (i.e., SiamFC and CFNet).

Meanwhile, the proposed UDT tracker exceeds DSST algo-

rithm by a large margin. As DSST is a DCF based tracker

with accurate scale estimation, the performance improve-

ment indicates that our unsupervised feature representation

is more effective than empirical features. In Fig. 7 and

Table 1, we do not compare with some remarkable non-

realtime trackers. For example, MDNet [37] and ECO [7]

can yield 67.8% and 69.4% AUC on the OTB-2015 dataset,

but they are far from real-time.

In Table 1, we also compare with more recently proposed

supervised trackers. These latest approaches are mainly

based on the Siamese network and trained using ILSVRC

[42]. Some trackers (e.g., SA-Siam [15] and RT-MDNet
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Figure 7. Precision and success plots on the OTB-2015 dataset [57]

for recent real-time trackers.
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Figure 8. Precision and success plots on the Temple-Color dataset

[29] for recent real-time trackers.

[19]) adopt pre-trained CNN models (e.g., AlexNet [23]

and VGG-M [3]) for network initialization. The SiamRPN

[27] additionally uses more labeled training videos from

Youtube-BB dataset [41]. Compared with existing methods,

the proposed UDT+ tracker does not require data labels or

off-the-shelf deep models while still achieving comparable

performance and efficiency.

Temple-Color Dataset. The Temple-Color [29] is a more

challenging benchmark with 128 color videos. We com-

pare our method with the state-of-the-art trackers illustrated

in Sec. 4.3. The propose UDT tracker performs favorably

against SiamFC and CFNet as shown in Fig. 8.

VOT2016 Dataset. Furthermore, we report the evaluation

results on the VOT2016 benchmark [21]. The expected av-

erage overlap (EAO) is the final metric for tracker rank-

ing according to the VOT report [22]. As shown in Ta-

ble 2, the performance of our UDT tracker is comparable

with the baseline trackers (e.g., SiamFC). The improved

UDT+ tracker performs favorably against state-of-the-art

fully-supervised trackers including SA-Siam [15], Struct-

Siam [60] and MemTrack [58].

Attribute Analysis. On the OTB-2015 benchmark, we fur-
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Figure 9. Attribute-based evaluation on the OTB-2015 dataset

[57]. The 11 attributes are background clutter (BC), deforma-

tion (DEF), fast motion (FM), in-plane rotation (IPR), illumination

varition (IV), low resolution (LR), motion blur (MB), occlusion

(OCC), out-of-plane rotation (OPR), out-of-view (OV), and scale

varition (SV), respectively.

Table 2. Comparison with state-of-the-art and baseline trackers on

the VOT2016 benchmark [21]. The evaluation metrics include Ac-

curacy, Failures (over 60 sequences), and Expected Average Over-

lap (EAO). The up arrows indicate that higher values are better for

the corresponding metric and vice versa.

Trackers Accuracy (↑) Failures (↓) EAO (↑) FPS (↑)

ECO [7] 0.54 - 0.374 6

C-COT [11] 0.52 51 0.331 0.3

pyMDNet [37] - - 0.304 2

SA-Siam [15] 0.53 - 0.291 50

StructSiam [60] - - 0.264 45

MemTrack [58] 0.53 - 0.273 50

SiamFC [1] 0.53 99 0.235 86

SCT [5] 0.48 117 0.188 40

DSST [8] 0.53 151 0.181 25

KCF [16] 0.49 122 0.192 170

UDT (Ours) 0.54 102 0.226 70

UDT+ (Ours) 0.53 66 0.301 55

ther analyze the performance variations over different chal-

lenges as shown in Fig. 9. On the majority of challeng-

ing scenarios, the proposed UDT tracker outperforms the

SiamFC and CFNet trackers. Compared with the fully-

supervised UDT tracker, the unsupervised UDT does not

achieve similar tracking accuracies under illumination vari-

ation (IV), occlusion (OCC), and fast motion (FM) scenar-

ios. This is because the target appearance variations are sig-

nificant in these video sequences. Without strong supervi-

sion, the proposed tracker is not effective to learn a robust

feature representation to overcome these variations.

Qualitative Evaluation. We visually compare the proposed

UDT tracker to some supervised trackers (e.g., ACFN,

SiamFC, and CFNet) and a baseline DCF tracker (DSST) on

eight challenging video sequences. Although the proposed

UDT tracker does not employ online improvements, we still

observe that UDT effectively tracks the target, especially

UDT SiamFC CFNet ACFN DSST

Figure 10. Qualitative evaluation of our proposed UDT and other

trackers including SiamFC [1], CFNet [49], ACFN [6], and DSST

[8] on 8 challenging videos from OTB-2015. From left to right and

top to down are Basketball, Board, Ironman, CarScale, Diving,

DragonBaby, Bolt, and Tiger1, respectively.

on the challenging Ironman and Diving video sequences as

shown in Fig. 10. It is worth mentioning that such a robust

tracker is learned using unlabeled videos without ground-

truth supervisions.

Limitation. (1) As discussed in the Attribute Analysis, our

unsupervised feature representation may lack the objectness

information to cope with complex scenarios. (2) Since our

approach involves both forward and backward tracking, the

computational load is another potential drawback.

5. Conclusion

In this paper, we proposed how to train a visual tracker

using unlabeled video sequences in the wild, which has

rarely been investigated in visual tracking. By designing an

unsupervised Siamese correlation filter network, we verified

the feasibility and effectiveness of our forward-backward

based unsupervised training pipeline. To further facilitate

the unsupervised training, we extended our framework to

consider multiple frames and employ a cost-sensitive loss.

Extensive experiments exhibit that the proposed unsuper-

vised tracker, without bells and whistles, performs as a solid

baseline and achieves comparable results with the classic

fully-supervised trackers. Finally, unsupervised framework

shows attractive potentials in visual tracking, such as utiliz-

ing more unlabeled data or weakly labeled data to further

improve the tracking accuracy.
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