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Abstract

This paper studies the fundamental problem of extrapo-

lating visual context using deep generative models, i.e., ex-

tending image borders with plausible structure and details.

This seemingly easy task actually faces many crucial techni-

cal challenges and has its unique properties. The two major

issues are size expansion and one-side constraints. We pro-

pose a semantic regeneration network with several special

contributions and use multiple spatial related losses to ad-

dress these issues. Our results contain consistent structures

and high-quality textures. Extensive experiments are con-

ducted on various possible alternatives and related meth-

ods. We also explore the potential of our method for var-

ious interesting applications that can benefit research in a

variety of fields.

1. Introduction

Humans have the natural ability to perceive unseen sur-

roundings based on limited visual content. For computer

vision, accomplishing this task requires generating seman-

tically meaningful and consistent structure and texture. In

this paper, we focus on the special task to infer unseen con-

tent outside image boundaries.

This task finds several related methods and topics in

image processing and graphics. It was treated as an in-

triguing application in view expansion [35, 43, 49], im-

age editing [2], texture synthesis [10, 11, 41], to name a

few. These methods exploit information from either exter-

nal images or internal statistics. For example, algorithms

of [35, 43, 49] enlarge the view by matching and stitch-

ing similar candidates. Another line [15] uses retarget-

ing. It is also a natural choice to use inpainting methods

[1, 5, 7, 20, 23, 25, 37] for extrapolating images. We note

that these methods are not specially designed for our task

and thus have their respective limitations when applied to

content generation. External-image-based algorithms re-

quire a large amount of or structurally very similar reference

images while internal pixels/patches-based methods mostly

produce apparently similar or repeated patterns.

Figure 1. Illustration of our pursuit with examples of face, dog,

bird, and human body, which are all highly semantically sensitive

and representative.

Different from the results shown in previous work, the

illustration in Figure 1 indicates that our method has its

unique and strong capability. It can generate the full portrait

with hair and background even from a small part of faces

(top row of Figure 1), create bird head and tail based on

body shape (bottom left of Figure 1), or produce a full hu-

man body given only upper body information (bottom right

of Figure 1). Note that in all these examples, the algorithm

needs to suitably take vastly different context of each in-

complete image into account and predict up to 3 times more

unknown pixels than known ones.

In regard to technical strategies, deep learning becomes

popular and effective in low-level vision [8, 26, 39, 46, 48].

Applying it to this context generation task, however, still

needs to consider the following two issues.

Image Size Change Image expansion extends image size

beyond boundaries. A similar task is super-resolution

[8, 24, 36, 38], which produces high-res (HR) results from

low-res (LR) input. Current SR frameworks either upsam-

ple input before fed into networks [8], or use spatial expan-

sion modules [24, 36, 38] within the network. So the first

issue to conquer in our framework is to properly increase

size with structure and detail generation.

One-sided Constraints The boundary condition in con-

text generation has only one side, as illustrated in Figure 1

where black arrows show inference direction. This con-

figuration is different from that of general image-to-image
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translation (e.g. image synthesis, deblur), where the latter

has a one-to-one spatial correspondence between the pre-

diction and input. The unknown pixels away from image

border are less constrained than those near border, poten-

tially accumulating errors or repeated patterns. To deal with

it, we design the relative spatial variant loss, context adver-

sarial loss, and context normalization to regularize the gen-

eration procedure.

Our Contribution To address these key issues, we pro-

pose a Semantic Regeneration Network (SRN) to regen-

erate the full object from a small portion of visual clues.

SRN can generate arbitrary-size semantic structure beyond

image boundary without training multiple models. It di-

rectly learns semantic features from small-size input, which

is both effective and efficient by avoiding bias in common

padding and upsampling procedures [33, 40, 26].

In the structure level, SRN contains two components of

Feature Expansion Network (FEN) and Context Prediction

Network (CPN). FEN takes small-size images as input and

extracts features. Such features and extrapolation indicator

are fed to CPN for reconstructing final expansion results.

With the separation of feature extraction and image recon-

struction, learning and inference of our network becomes

appropriate and efficient. Further, the designed losses and

other processing modules adapt our network to one-sided

constraints, generating semantically meaningful structure

and natural texture. Our major contribution is twofold.

• We propose an effective deep generative model SRN

for image extrapolation. Practical context normaliza-

tion (CN) module and relative spatial variant (RSV)

loss are proposed. They are evaluated along with sev-

eral other alternatives.

• We apply our solution to various intriguing and impor-

tant applications.

2. Related Work

2.1. Image Extrapolation

Prior extrapolation solutions [35, 43, 49] usually turn to

an external library for solutions in a data-driven manner.

This type of methods formulates the problem into match-

ing and stitching, where the new content is retrieved from a

pre-constructed dataset. For example, Wang et al. [43] ex-

ploited this method on the graph representation of images.

They retrieve candidate images by subgraph matching, and

stitch these wrapped images into the input. Shan et al. for-

mulated the image composition into a MRF problem, able to

process a large library with high robustness regarding view-

point, appearance, and layout variation [35]. Zhang et al.

[49], with the retrieved large image candidate, aligned the

small input and candidate. The relative position between

similar patches in the known and unknown regions of the

candidate is applied to the input in a copy-and-paste man-

ner. As a non-parametric method, data-driven image extrap-

olation is limited by the used dataset. Moreover, sophisti-

cated or fine textures along expanding boundary hinder the

application of this type of methods.

2.2. Conditional Image Generation

Image extrapolation belongs to conditional image gen-

eration in deep learning. The most related problem is

inpainting. Recent advance in inpainting lies in apply-

ing deep generative models to repair large missing pieces

[47, 46, 31, 48, 44]. Pathak et al. [31] first applied adver-

sarial loss to learn an encoder-decoder network. To create

realistic textures based on given context, MRF-based style

transfer via patch matching in the deep feature space was

employed as post-processing [46]. Further, Yu et al. [48]

proposed the contextual attention layer, which replaces deep

features with its neighborhood weighted average and im-

proves both texture quality and inference efficiency. The

other related topic is image retargeting [34, 3]. In [3], a

CNN was designed to learn the shift map for each pixel.

Salient objects are preserved while background is seam-

lessly modified. Retargeting has no intention to extend sur-

rounding content.

2.3. Spatial Expansion Operators

Spatial expansion operators are indispensable compo-

nents in various tasks, when output is with a larger size.

Prevalent spatial expansion operators include padding, in-

terpolation, deconvolution [30, 9], sub-pixel convolution

[36], and a warping-based SPMC module [38]. We discuss

and experiment with these operators except SPMC in Sec-

tion 4 since SPMC only works with sequential input.

3. Our Method

Given an input image X ∈ R
h×w×c and filling margin

m = (top, left, bottom, right), semantic image expansion

(or extrapolation) intends to generate a visually convincing

image Ŷ ∈ R
h′

×w′
×c, where h′ = h+ top+ bottom,w′ =

w+left+right, and X is a sub-image of Ŷ. Contrary to the

inpainting process, which fills interior holes of an image,

image extrapolation is meant to expand image borders. For

convenience, we denote h′ = r1h and w′ = r2w (where

r1 ≥ 1, r2 ≥ 1, and r1r2 > 1).

3.1. Framework Design

Our model G consists of two sub-networks of feature

expansion network (FEN) and context prediction network

(CPN), as shown in Figure 2. FEN extracts deep features

from the given image, and CPN decodes these features into

images considering filling margin and size. The input to our

network contains an image X and a margin variable m =
(top, left, bottom, right) indicating extension.
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Figure 2. Our framework illustration.

3.1.1 Feature Expansion

This module employs an encoder-decoder-like structure,

where input is only X of size h × w × c, and output is its

feature maps f(X) of size r1h × r2w × c′. Increasing the

feature size is realized by nearest-neighbor upsampling fol-

lowed by convolution, except the last layer, which is other-

wise achieved by a sub-pixel convolution [36] variant. It is

a vanilla convolution followed by reshuffling feature chan-

nels. Given a feature map F ∈ R
h×w×r1r2c

′

, such reshuf-

fling operation s(·) is defined as

s(F )i,j,k = F⌊i/r1⌋,⌊j/r2⌋,c′r2·mod(i,r1)+c′·mod(j,r2)+k, (1)

where s(F ) ∈ R
r1h×r2w×c′ . i, j, and k denote index

height, width, and channel, respectively. Compared with

the original sub-pixel convolution [36], the presented vari-

ant relaxes the constraint that r1 = r2. It handles scenarios

when r1 6= r2 while the method of [36] cannot. This ability

is useful in human body generation (r1 = 4 and r2 = 1
in Figure 1) and view expansion (r1 = 1 and r2 = 2 in

Section 4).

We discuss and compare alternative trainable opera-

tors, i.e., deconvolution layer and convolution after padding

(termed as unfold operator in the following) or interpola-

tion. Here deconvolution is not considered since it causes

visual artifacts in generation due to the overlap problem

[30, 9]. Interpolation or padding methods have their respec-

tive properties. Specifically, interpolation assumes that the

filling region is similar to that in the corresponding loca-

tion of the input; zero padding assumes a constant value for

missing part; symmetric/mirror padding makes the context

feature the mirror version along the image border. Compar-

ing with deconvolution and unfold, sub-pixel convolution

expands features with less bias. This is experimentally val-

idated in Session 4.3.

Feature Expansion Network (FEN) is to learn latent con-

text features. Experimental results show that filled pixels in

early batches serve as a kind of prior for later generation.

Computation directly conditioned on available pixels could

yield better performance in terms of both fidelity and visual

naturalness [33, 40, 26]. Thus, our model directly infers

upon the given visual data without predefined priors.

3.1.2 Context Prediction

We also use encoder-decoder-like network for this compo-

nent. The input is the concatenation of f(X) and filling

indicator, i.e. a binary mask, where 0 is for known pixels

and 1 for unknown ones, denoted by M. The output is Ŷ

of size r1h × r2w × c. A context normalization module is

developed for coordinating the feature distribution between

filling and known regions.

Rather than a simple refinement stage commonly used

in the coarse-to-fine framework, the rationale behind Con-

text Prediction Network (CPN) is twofold. First, it incorpo-

rates filling margin, which is excluded in FEN, to indicate

where to predict. Second, besides the filling margin, in-

put to the network also includes context features learned by

FEN instead of coarse prediction. These features are prop-

erly handled by compression via an encoder-decoder and

our designed context normalization module.

Context Normalization To improve style consistency of

the generated image, a context normalization (CN) module

is proposed. Recent study shows that image style is char-

acterized by its feature statistics. Various image statistical

losses [12, 14] and normalization operations [18, 42, 16]

were explored to capture such statistics implicitly or ex-

plicitly. Inspired by instance normalization [42] and AdaIN

[16], our proposed CN function (t(·)) is defined as

t(f(X), ρ) =[ρ · n(f(XΩ), f(XΩ̄))

+ (1− ρ)f(XΩ)]⊙M ↓ +

f(XΩ̄)⊙ (1−M ↓),

(2)

n(x1, x2) =
x1 − µ(x1)

σ(x1)
· σ(x2) + µ(x2), (3)

where X
Ω̄

and XΩ indicate known and unknown image re-

gions respectively, f(·) extracts bottleneck features based
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on the input-expanded feature maps, and ρ ∈ [0, 1]. ↓ is

the nearest-neighbor downsampling operator. M ↓ shares

the same height and width with f(X). µ(·) and σ(·) com-

pute the mean and standard deviation. Essentially, it trans-

fers mean and variance from known features to unknown

area, which regularizes the generated content beyond one-

side constraints and enhances the color/texture consistency

between input and predicted regions.

Note that CN and AdaIN [16] are fundamentally dif-

ferent. AdaIN replaces the feature statistics of an image

with those from another image. For CN, feature statistics

in known/unknown regions of the same image are consid-

ered. Moreover, a blending step is incorporated in CN. Be-

cause the feature statistics from known and unknown re-

gions could be different for semantically sensitive targets

like face and body, blending these feature statistics is cru-

cial for our system. Detailed comparisons are given in the

supplementary material.

3.2. Loss Design

The optimization target comprises the reconstruction

loss, texture consistency loss, and the adversarial loss,

which are detailed as follows.

Relative Spatial Variant Loss Reconstruction loss sta-

bilizes the training procedure by providing pixel-wise su-

pervision. Due to the one-sided property of content ex-

trapolation, spatial variant supervision [48, 44] is needed.

We design a relative spatial variant (RSV) reconstruction

loss for incorporating such spatial regularization. For the

confidence-driven (CD) loss [44], it is formulated as

M
i
w = (g ∗M

i
)⊙M, (4)

where g is a normalized Gaussian filter, M
i
= 1 − M +

M
i−1
w , and M

0
w = 0. ⊙ is the Hadamard product operator.

Eq. (4) is repeated c times to generate M
c
w.

In RSV, our used weight matrix is

Mw = M
c−1

w /max(Mc
w, ǫ). (5)

The final reconstruction loss is

Ls = ||(Y −G(X,m; θ))⊙Mw||1, (6)

where G(X,m; θ) is the output of our generative model G,

Y is the corresponding ground truth, and θ denotes param-

eters that can be learned.

The repetitive convolution of g over M
i

propagates the

confidence of known pixels to unknown ones. However,

since existing pixels are fewer than unknown ones, and they

are almost separated (only a handful of unknown pixels

have neighboring known pixels), the confidence propaga-

tion is hindered by its scarce neighborhood support. To

remedy it, we apply the ratio of two adjacent convolutional

(a) (b) (c) (d)
Figure 3. Visualization of weight mask Mw used in Eq. (5). (a)

Input mask (0 and 1 for known and unknown color), (b) use M as

Mw, (c) Mw in CD [44], (d) Mw in RSV. (b)-(d) are shown in

the jet colormap.

results M
c−1
w and M

c
w to describe the confidence. Intu-

itively, unknown pixels close to existing regions have high-

confidence neighboring pixels. So their relative increase is

quicker than that of unknown pixels away from it. As shown

in Figure 3, CD does not constrain distant areas while RSV

assigns meaningful weight. More comparisons are given in

Section 4.3.

Implicit Diversified MRF Loss Along with pixel-wise

reconstruction loss, implicit diversified MRF regularization

[29, 44] is introduced as part of the optimization goal for

creating crisp texture by bringing close feature distributions

of G(X,m) and Y.

We use Ŷ
L
Ω

and Y
L to denote features extracted from

the Lth feature layer of a pretrained network, where ŶΩ

indicates the prediction of the regions to be filled. The ID-

MRF loss [29, 44] between Ŷ
L
Ω

and Y
L is defined as

LM (L) = − log(
1

Z

∑

s∈YL

max
v∈ŶL

Ω

RS(v, s)), (7)

with respect to

RS(v, s) = RS(v, s)/
∑

r∈ρs(YL)

RS(v, r), (8)

RS(v, s) = exp((
β(v, s)

maxr∈ρs(YL) β(v, r) + ǫ
)/h), (9)

where Z is a normalization factor. Eq. (8) is a normalized

version of Eq. (9), which defines the similarity between two

extracted patches v and s from Ŷ
L
Ω

and Y
L respectively.

β(·, ·) is the cosine similarity. r ∈ ρs(Y
L) means r belong-

ing to Y
L excluding s. h and ǫ are two positive constants. If

v is like s more than other neural patches in Y
L, RS(v, s)

turns large.

In our experiments, we compute the sum of LM between

G(X,m; θ) and Y on conv3 2 and conv4 2 extracted from

pre-trained VGG19 network as Lmrf .

Compared with other losses, e.g., style loss and its vari-

ants, focusing on restoring texture or style, ID-MRF loss

reinforces local image details by referring their most rela-

tively similar patches in ground truth.
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Figure 4. Context discriminator illustration.

Contextual Adversarial Loss Various generation tasks

using generative adversarial networks have validated the

effectiveness of adversarial training in image creation and

synthesis. The adversarial loss, which is an optimization

measure that can be learned, is an indispensable ingredient

in producing convincing details. In our work, the global

and local discriminators [17] with improved Wasserstein

distance [13] are employed.

It is noteworthy of the specialty in our design. Unlike

restoring a local rectangle region in inpainting tasks where

local information can be easily extracted, the contextual

region (to be predicted) surrounds the given input region,

leading to the difficulty of aggregating local regions into

a single probability. To tackle this issue, a masked patch

discriminator is adopted as the context discriminator (Fig-

ure 4). The output Dcontext(Ŷ) of context discriminator for

the input prediction Ŷ is defined as

Dcontext(Ŷ) =

∑
p∈P (Ŷ) p∑
q∈M↓ q

,

w.r.t. P (Ŷ) = dcontext(Ŷ)⊙M ↓,

(10)

where dcontext(Ŷ) denotes the feature maps of Ŷ, and ↓
is the max pooling operator. For SRN, the global/context

adversarial loss is defined as

Ln
adv =− EX∼PX

[Dn(G(X; θ))]+

λgpEX̂∼P
X̂

[(||∇
X̂
Dn(X̂)⊙Mw||2 − 1)2],

(11)

where X̂ = tG(X,m; θ) + (1 − t)Y, t ∈ [0, 1],
Y is the ground truth corresponding to X, and n ∈
{context, global}. Thus, the employed Ladv =

(Lcontext
adv + Lglobal

adv )/2.

Final Learning Objective With relative spatial variant

reconstruction loss, ID-MRF loss, and adversarial loss, the

model objective of our network is expressed as

L = λsLs + λmrfLmrf + λadvLadv, (12)

where λs, λadv , and λmrf are coefficients used to balance

the effect among regression, local structure regularization,

and adversarial training.

3.3. Learning Scheme

To better stabilize the adversarial training, our model is

pre-trained first with only reconstruction loss (λs = 5).

Afterwards, we let λmrf = 0.05 and λadv = 0.001 for

fine-tuning SRN until convergence. During training, Adam

solver [22] with learning rate 1e − 4 is adopted where

β1 = 0.5 and β2 = 0.9. Training batch size is 16. The

input and output are linearly scaled within range [−1, 1].

4. Experiments

Our models are implemented with TensorFlow v1.4 and

trained on a PC with Intel Xeon E5 (2.60GHz) CPU and an

NVidia TITAN X GPU. We evaluated our method on a va-

riety of datasets, including CelebA-HQ [21], CUB200 [45],

DeepFashion [27, 28], ETHZ Synthesizability [6], Paris

street view [31], Places2 [50], and Cityscapes [4]. For each

dataset, models are trained on the training set and tested

on the validation set. Exceptions are CUB200 and ETHZ

Synthesizability, which we split as described in the supple-

mentary material.

We train our models on three different resolution set-

tings. 1) 128 × 128 → 256 × 256 (used for CelebA-HQ,

ETHZ Synthesizability, and CUB200). 2) 64 × 128 →
256× 128 (used for DeepFashion); 3) 256× 256 → 256×
512 (on Paris street view, Places2, and Cityscapes). We use

input image size to indicate setting names in the following.

For visual and quantitative evaluation. We choose 3

models for comparison. Model CA is current state-of-the-

art inpainting method using contextual attention layer [48].

We feed a zero-value padded full size image as input, and

retrain this model using publicly available codes but with

context adversarial loss instead of global and local adver-

sarial loss for fairness. Besides, we compare with baseline

model ED and SRN-HR, which have different network ar-

chitectures, which will be detailed in Section 4.3.

4.1. Quantitative Evaluation

As indicated in previous image generation papers [46,

48], the peak signal-to-noise ratio (PSNR) and structural

similarity index measure (SSIM) are not optimal metrics

for evaluating conditional image generation tasks. Thus we

only provide these values for reference in Table 1. It is no-

table that our method yields competitive PSNR and SSIM.
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Method
CelebA-HQ-2K CUB200-1.7K DeepFashion-3K

PSNR SSIM PSNR SSIM PSNR SSIM

ED 13.88 0.5859 14.90 0.5744 12.50 0.5677

SRN-HR 13.88 0.6183 15.70 0.6035 12.72 0.5686

CA [48] 13.56 0.6010 15.56 0.6467 12.58 0.5769

SRN 14.01 0.6171 15.59 0.6473 12.58 0.5686

Table 1. Quantitative results on the validation data.

CelebA-HQ CUB200 DeepFashion

SRN > CA [48] 97.54% 96.42% 93.68%

SRN > ED 96.02% 92.69% 91.13%

SRN > SRN-HR 77.69% 69.63% 62.25%

Table 2. User study statistics. Each entry gives the percentage of

cases where results by our approach are judged more realistic than

another solution.

Method 64× 128 128× 128 256× 256

CA 17.35 30.56 60.44

ED 18.92 26.66 41.81

SRN-HR 17.73 28.95 52.50

SRN 11.07 18.15 36.75

Table 3. Running time for different structures (ms/image).

More convincing blind user studies of pairwise A/B tests

are conducted. Each questionnaire includes 40 pairwise

comparisons, regarding results from two different methods

on the same input. There are 40 participants invited to user

study. They are required to select the more realistic image

in each pair. The images are all shown at the same resolu-

tion (256×128, 256×256, or 256×512). The comparisons

are randomized across different methods, as well as in the

left-right order. Participants have unlimited time to decide.

In all conditions given in Table 2, our method outperforms

the baselines.

Regarding efficiency, Table 3 presents the evaluation

time on images of various resolutions. Note that SRN only

takes up to 60% ∼ 65% testing time of CA, with similar

network depth, width, and capacity (17.14M vs. 20.62M).

4.2. Qualitative Evaluation

As shown in Figures 5 and 6, our method produces more

convincing objects, portraits, and scene layouts with fine

details, inferred from a limited-view input. Compared with

the baseline CA, our method performs better with regard

to quality of semantic structure, texture and border consis-

tency. Moreover, since the filling margin of our model is

arbitrary, SRN can infer visual context from different loca-

tions as shown in Figure 7. More results are presented in

the supplementary material.

4.3. Ablation Studies

Network architectures We analyze multiple possible

network designs. The compared network architectures

cover three large-to-large designs and one small-to-large de-

sign. Large-to-large means the input is padded into the same

size as the output first, while small-to-large directly pro-

(a) (b) (c)

(a) (b) (c) (a) (b) (c)

Figure 5. Visual comparisons on CelebA-HQ (top), CUB200 (mid-

dle), and DeepFashion (down). (a) Input images. (b) Results of

CA [48]. (c) Our results.

Feature expansion operator deconv unfold sub-pixel

PSNR 14.95 15.06 15.02

SSIM 0.6409 0.6412 0.6452

Table 4. Quantitative results of different feature expansion opera-

tors in SRN on CelebA-HQ dataset in the pre-training phase.

cesses the input like SRN. Large-to-large frameworks com-

promise vanilla encoder-decoder, SRN-HR, and coarse-to-

fine networks, which are formed by two sequential encoder-

decoder. Here we directly employ CA [48] as the coarse-to-

fine network. The SRN-HR is an variant of SRN, which

replaces the feature expansion operator in FEN with com-

mon convolution and preserves all the remaining compo-

nents. Small-to-large design is SRN. The network depth

and parameters are set to similar values for fairness.

Figure 8 shows comparison between the given architec-

tures. Note SRN and SRN-HR give better predictions than

CA and ED on creating more natural hair and face shape

with fewer visual artifacts, which validates the effectiveness

of SRN design. Compared with SRN-HR, SRN produces

more realistic hair texture with less inference time (Table

3), which indicates pre-filling padding for the input harms

final filling performance as well as efficiency.

Feature Expansion Operator In our experiments, three

feature expansion operators, including deconv, unfold (sym-

metric padding plus conv.), and sub-pixel conv., are evalu-

ated in SRN structure. Except for these operators, other

components in three SRNs are identical. We evaluate the
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(a) (b) (c)

Figure 6. Visual comparison on Paris street view (top) and Cityscapes (down). (a) Input image. (b) Results of CA [48]. (c) Our results.

(a) (b) (a) (b) (a) (b) (a) (b)

Figure 7. Extrapolation on CelebA-HQ (top) and CUB200 (down) with arbitrary filling margin. (a) Input images. (b) Our results.

(a) (b) (c) (d) (e)
Figure 8. Visual comparison of different network structures on

CelebA-HQ. (a) Input image. (b) Coarse-to-fine. (c) Naive

encoder-decoder. (d) SRN-HR. (e) SRN.

(a) (b) (c) (d)
Figure 9. Visual comparison of different feature expansion opera-

tors on CelebA-HQ. (a) Input image. (b) Deconv. (c) Unfold. (d)

Sub-pixel conv.

fidelity of the three SRNs on CelebA-HQ with their pre-

(a) (b) (c) (d) (e)

Figure 10. Visual comparison of using CN (or not) on CelebA-HQ.

(a) Input image. (b) SRN w/o CN in pre-training. (c) SRN w/ CN

in pre-training. (d) SRN w/o CN. (e) SRN w/ CN.

trained models. The corresponding quantitative results of

pre-trained models are given in Table 4 and the example

images of full models are shown in Figure 9. Notably, the

PSNR and SSIM of these three SRNs are close to each

other. Results using SRN in sub-pixel level are more vi-

sual pleasing compared with that with deconv and unfold.

Figure 9 shows details of facial structure and texture.

W/O Context Normalization Two SRNs are evaluated

on CelebA-HQ. One of them is with context normalization

(CN) module, while the other is not. Their fidelity tests
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(a) (b) (c)
Figure 11. Visual comparison of different adversarial losses on

CelebA-HQ. (a) Input image. (b) Vanilla global adversarial loss.

(c) Context adversarial loss.

(a) (b) (c) (d)
Figure 12. Visual comparisons of different reconstruction losses on

CelebA-HQ. (a) Input image. (b) Vanilla l1 loss. (c) Confidence-

driven loss. (d) Relative spatial variant loss.

Using CN
Pre-training Full-training

NO YES NO YES

PSNR 14.48 15.02 13.92 14.01

SSIM 0.6084 0.6452 0.5961 0.6171

Table 5. Quantitative results of using context normalization (CN)

(or not) in SRN on CelebA-HQ dataset.

RSV loss CD loss vanilla l1 loss

PSNR 15.02 14.41 15.06

SSIM 0.6452 0.6229 0.6478

Table 6. Quantitative results of only using different reconstruction

losses in SRN on CelebA-HQ dataset (RSV loss: relative spatial

variant loss, CD loss: confidence-driven loss).

are given in Table 5 and the resulting visual prediction is

shown in Figure 10. Clearly, CN improves the SRN quan-

titatively and qualitatively. In Figure 10, CN harmonizes

color and border consistency both in pre-training and full-

training phases.

Contextual Adversarial Loss vs. Vanilla Impr. WGAN

Loss We give qualitative evaluation (Figure 11) on

CelebA-HQ of these two types of GAN losses since PSNR,

SSIM, and other metrics may not reflect true visual qual-

ity. The base model is SRN where relative spatial variant

loss and ID-MRF loss are also employed. In Figure 11,

SRN with context adversarial loss predicts clearer hair de-

tails than that with only global adversarial loss.

Relative Spatial Variant Loss vs. Confidence-driven Loss

vs. Vanilla l1 Loss Compared with common l1 loss

(where Mw = M), SRN pre-training with relative spa-

tial variant loss (Eq. (5)) gives comparable fidelity (Table

6). However, it produces more distinctive semantic bound-

(a) (b) (c)

Figure 13. Visual comparison of texture synthesis on ETHZ Syn-

thesizability. (a) Input image. (b) CA [48]. (c) Our result.

(a) (b) (a) (b)

Figure 14. Morphing of dog images with SRN model trained on

CelebA-HQ. (a) Input images. (b) Our results.

aries (hairline and face shape in Figure 12) than that with

confidence-driven loss (where Mw = M
c
w) [44] and com-

mon l1 loss.

4.4. Other Applications and Limitations

Other than content extrapolation for uncropping pictures,

SRN also finds applications of texture synthesis (Figure 13)

and morphing (Figure 14).

About limitations, each trained model now is with spe-

cific expanding ratios (e.g., a model trained for predicting

three times more pixels based on the input only produces re-

sults in the same setting). Moreover, a gigantic dataset with

more than thousands of scene types like Places2 is difficult

to fit by a generative model. This problem may be lessened

with new research breakthrough for the GAN model.

5. Concluding Remarks

We have explored a deep learning model to conduct im-

age extrapolation for semantically sensitive objects. We

summarize that the challenge lies in size expansion and

one-sided constraints, and tackle them via proposing new

network modules and loss design. Our method achieves

promising semantic expansion effect. In future work, semi-

parametric approaches will be studied when efficiency is

not an issue. As shown in recent work [32, 19], this line

of methods use retrieved object segments matched by input

to fill the unknown region in advance, and regress raw ma-

terial. Further, it is interesting to apply image expansion

to videos with temporal consistency and redundant spatial

information.
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