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Abstract

In this paper, we present a new perspective towards

image-based shape generation. Most existing deep learning

based shape reconstruction methods employ a single-view

deterministic model which is sometimes insufficient to de-

termine a single groundtruth shape because the back part

is occluded. In this work, we first introduce a conditional

generative network to model the uncertainty for single-view

reconstruction. Then, we formulate the task of multi-view

reconstruction as taking the intersection of the predicted

shape spaces on each single image. We design new differ-

entiable guidance including the front constraint, the diver-

sity constraint, and the consistency loss to enable effective

single-view conditional generation and multi-view synthe-

sis. Experimental results and ablation studies show that

our proposed approach outperforms state-of-the-art meth-

ods on 3D reconstruction test error and demonstrates its

generalization ability on real world data.

1. Introduction

Developing generative models for image-based three-

dimensional (3D) reconstruction has been a fundamental

task in the community of computer vision and graphics.

3D generative models have various applications on robotics,

human-computer interaction and autonomous driving, etc.

Researchers have discovered effective pipelines on recon-

structing scene structures [11, 32] and object shapes [15,

41]. Recently, inspired by the promising progress of deep

learning on 2D image understanding and generation, much

great work has been done on using differentiable structure

to learn either volumetric or point cloud predictions from

single-view [6, 39, 47] and multi-view [4, 14] images.

Despite the rapid progress on the task of single-view

image-based shape reconstruction, there remains a funda-

mental question: can a single image provide sufficient in-

formation for three-dimensional shape generation? It is in-
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Figure 1: In real-world scenarios, one single image cannot

sufficiently infer a single 3D shape due to occlusion. While

our predictions can handle the ambiguity including the chair

arm and the car length, deterministic methods can only pre-

dict one mean shape which is not necessarily correct. We

further extend this for multi-view stereo reconstruction.

tuitive that in one picture took or rendered from a specific

view, only the front of the object can be seen. Ideally, most

existing methods implicitly assume that the reconstructed

object has a relatively symmetrical structure, which enables

reasonable guess on the back part. However, this assump-

tion may not be true when it becomes much more complex

in real world scenarios.

In this paper, we address the problem of modeling the

uncertainty for single-view object reconstruction. Unlike

conventional generative methods which reconstruct shapes

in a deterministic manner, we propose to learn a condi-

tional generative model with a random input vector. As the

groundtruth shape is only a single sample of the reasonable

shape space for a single-view image, we use the groundtruth

in a partially supervised manner, where we design a differ-

entiable front constraint to guide the prediction of the gen-

erative model. In addition, we use a diversity constraint to

get the conditional model to span the space more effectively.

Conditioning on multiple random input vectors, our condi-

tional model can give multiple plausible shape predictions

from a single image.

Furthermore, we propose a synthesis pipeline to transfer

the single-view conditional model onto the task of multi-

view shape generation. Different from most existing meth-

ods which utilize a recurrent unit to ensemble multi-view

features, we consider multi-view reconstruction as taking
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the intersection of the predicted shape space on each single-

view image. By introducing a simple paired distance metric

to constrain the multi-view consistency, we perform online

optimization with respect to the multiple input vectors in

each individual conditional model. Finally, we concatenate

the multi-view point cloud results to obtain the final predic-

tions.

Our training pipeline benefits from pre-rendered depth

image and the camera pose without explicit 3D supervision.

By modeling the uncertainty in single-view reconstruction

via a partially supervised architecture, our model achieves

state-of-the-art 3D reconstruction test error on ShapeNet-

Core [3] dataset. Detailed ablation studies are performed to

show the effectiveness of our proposed pipeline. Additional

experiments demonstrate that our generative approach has

promising generalization ability on real world images.

2. Related Work

Conditional Generative Models: Generative models

conditioned on additional inputs are drawing continuous at-

tention with its large variety of applications. Conditional

Generative Adversarial Networks (CGAN) [25] made use

of the concept of adversarial learning and yielded promis-

ing results on various tasks including image-to-image trans-

lation [12] and natural image descriptions [5]. Another pop-

ular trend is the variational autoencoder (VAE) [17]. Con-

ditional VAEs achieved great success on dialog generation

[34, 50]. Different from the CGAN [25] scenario, we only

have limited groundtruth observations in the target space,

which relates to the concept of one-shot learning [19]. In

this paper, we propose a partially supervised method with

a diversity constraint to help learn the generative model.

Then, we introduce a synthesis method on multiple condi-

tional generative models.

Deep Single-view Reconstruction: With the recent ad-

vent of large 3D CAD model repositories [3, 22, 36, 46],

large efforts have been made on deep single-image re-

construction in 3D vision. While conventional meth-

ods [4, 15, 44] focused on volumetric generation, point

cloud and mesh representation were used in recent liter-

ature [6, 18, 23, 8]. Researchers have introduced vari-

ous single-view reconstruction approaches including 2.5D

sketches [43, 49, 45], adversarial learning [2, 44], generat-

ing novel views [23, 28, 35, 37], re-projection consistency

[10, 39, 40, 47, 51], high resolution generation [13, 38] and

structure prediction [21, 26]. Some recent post-processing

attempts include point cloud upsampling [48] and shape in-

painting [42]. These methods except [6] all implicitly as-

sumed that with prior knowledge the network can fantasy

the missing part in the input image. However, in real world

scenarios, the back part of the object may be much too com-

plex to infer. This was recently addressed by [45]. In this

work, we propose to model the ambiguity for the task of

single-view point cloud reconstruction. Different from [6]

which used a relatively simple MoN loss to enable multiple

predictions, we focus on different treatments between the

front part and the back part of the object and improve its

representation ability.

Deep Multi-view Synthesis: Multiple images took or

rendered from different views contain pose-aware infor-

mation towards 3D model understanding. Conventional

methods [52] utilized RGB-D cameras for 3D reconstruc-

tion via estimated correspondence [24, 30, 16]. For RGB-

based deep multi-view reconstruction, most existing meth-

ods [4, 14] utilized a recurrent unit to integrate the ex-

tracted features from each single view. [23, 37] used con-

catenation to get dense point cloud predictions. For a spe-

cific CAD model, the reconstruction results from differ-

ent views should be consistent. This consistency was used

[10, 39, 40, 47] as a supervisory signal via re-projection

for unsupervised single-view generative model training. In

this work, we introduce a multi-view synthesis techniques

by online optimizing the multi-view consistency loss with

respect to the random inputs on conditional models.

3. Approach

3.1. Overview

The problem of single-view shape reconstruction was

conventionally formulated as a one-to-one mapping φ :
I → S, where I denotes the input RGB image and S

denotes the predicted shape. This one-to-one generative

model was widely used to output either voxels [4] or point

clouds [6] via cross entropy loss and differentiable distance

metrics. Most existing methods took the implicit assump-

tion that the input image is sufficient to predict the whole

shape structure.

Consider the probabilistic model p(S|I), where S is a

random shape conditioned on the input image I . In perfect

conditions where useful knowledge is completely learned

from the groundtruth shape, the existing deterministic ar-

chitecture φ : I → S can learn the most probable shape S∗,

where

φ(I) = S∗ = ES [p(S|I)] (1)

Most existing single-view reconstruction methods uti-

lized this deterministic formulation and could generalize

relatively well to the test set. This is probably due to the fact

that most objects in the widely used ShapeNet [3] dataset

have a symmetric or category-specific structure which en-

ables reasonable inference. However, this is arguably not

true especially in complex scenarios. In fact, the structure

of the occluded back part is usually relatively ambiguous.
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Figure 2: Overview of our proposed appoach. Left: the single-view training pipeline of the model. One single image is

fed with a set of random inputs {ri}
n
i=1 to get Si = f(I, ri). Then, the partially supervised front constraint is used along

with a diversity constraint to enable the model to focus more on the front part while maintaining generating diversity. Right:

Inference. With different random inputs {ri}
n
i=1, our conditional generative model G : S = f(I, r|θ) can generate multiple

plausible shapes from each view. The consistency loss is used to synthesize the multiple conditional generative model to get

the final predictions.

To better model this inherent ambiguity, we introduce a con-

ditional generative model f : I × r → S, where the image-

based generation is conditioned on a Gaussian input vector

r. We aim to learn a mapping to approximate the proba-

bilistic model p(S|I) in the reasonable shape space.

However, different from the scenarios of generation in

CGAN [25], we only have limited groundtruth (in fact,

only one shape per image) which cannot span the reason-

able shape space. Motivated by the fact that the front part

can be sufficiently inferred from the input image while the

back part is relatively ambiguous, we propose to train the

conditional generative model in a partially supervised man-

ner. Furthermore, we introduce a diversity constraint to help

span the reasonable space.

Let us take a step further into a multi-view scenario,

where the problem comes to a many-to-one mapping. Con-

sidering only three input views for simplicity here, we have

I1 × I2 × I3 → S. As most parts of the object are cov-

ered by different input views, we assume that multi-view

reconstruction can be viewed as a deterministic inference

with sufficient information. Given a conditional generative

model S = f(I, r), the output S∗ follow the constraint:

S∗ = f(I1, r1) = f(I2, r2) = ... = f(In, rn) (2)

From the Bayesian perspective, Single-view and multi-

view reconstruction can be formulated as to approximate

p(S|Ii) and p(S|{Ii}
n
i=1). In this paper, the idea is

to first implicitly approximate p(S|Ii) with a conditional

model and then apply it to deterministic multi-view synthe-

sis, which differs from conventional RNN-based methods

[4, 14]. This choice has two main reasons. 1) The data scale

is limited and only one 3D groundtruth exists for every im-

age, making it not easy to explicitly parameterize p(S|Ii).

2) For a 3D shape, rendered images from different views

is correlated. Thus, it is relatively intractable to formulate

p(S|{Ii}
n
i=1) with p(S|Ii) and directly optimize maximum

likelihood. Same problem exists in many other research di-

rections eg. multi-view pose estimation. We propose an

alternate conceptual idea to get intersections of manifolds

conditioned on different views with assistance of pair-wise

distance minimization. Figure 2 summarizes an overview

of our proposed approach.

3.2. Modeling the Uncertainty for Singleview Re
construction

Given a specific architecture on a conditional generative

model S = f(I, r), we aim to learn the ambiguity of single-

view reconstruction from limited groundtruth data. In this

section, we first briefly review differentiable distance metric

in the shape space, then introduce two of our proposed dif-

ferentiable constraints to help learn the conditional model.

Distance Metric: Two existing differentiable distance

metrics between point sets were originally used in [6].

These metrics are Chamfer Distance (CD) and Earth

Mover’s distance (EMD) [31]. CD finds the nearest neigh-

bor and is formulated as below3 in Eq.(3), while EMD

learns a optimal transport between two point sets in Eq.(4).

dCD(S1, S2) =
∑

x∈S1

min
y∈S2

‖x− y‖2 +
∑

x∈S2

min
y∈S1

‖x− y‖2

(3)

dEMD(S1, S2) = min
φ:S1→S2

∑

x∈S1

‖x− φ(x)‖22 (4)

3We use the first-order version of Chamfer Distance following [23].
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We use both of these two metrics in our training pipeline.

Following [23], the two terms in Chamfer Distance were

jointly reported as pred→GT and GT→pred at test stage.

Front Constraint: We propose a front constraint along

with a new differentiable operation: view based sampling,

which enables the conditional model to learn in a partially

supervised manner. Different from recently proposed point

cloud downsampling strategies [20, 29] which aims to un-

cover inner relationship for coarse-to-fine understanding,

our proposed view based sampling layer outputs a set of

points which consist the front part of the shape from a spe-

cific view.

The overview of the front constraint is shown in Figure

3. In the proposed approach, we get the generative model

to focus more on the front N1 points, while the N − N1

remaining points are conditionally generated. For the view

based sampling layer, we first render the point cloud onto

a 2D depth map with the intrinsic and extrinsic parameters

given. Then, we sample all of the points which contribute

to the rendered map. This strategy enables that all sampled

points are on the front side of the object from the view. Note

that because pixel-wise loss on the depth map used in [23]

is only differentiable on the rendered z axis, it will not work

in our single-view training scenario (See Section 4.4).

By either applying view based sampling to the

groundtruth point cloud or applying inverse-projection to

the pre-rendered depth map, we can get the groundtruth

front part. Then, CD or EMD [31] can be used to acquire

the loss of the front constraint lossfront and differentiably

guide the sampled point cloud.

Diversity Constraint: Because for one input image, only

one groundtruth shape is available at the training stage,

simply training the conditional generative model with

groundtruth constraints will hardly get the model to span

the reasonable shape space. For different input vectors r,

we aim to get different predictions which all satisfy the front

constraint. With the hinge loss as in the widely used Triplet

Loss [33] in face verification, we propose a diversity con-

straint which uses the Euclidean distance of input r as the

distance margin in 3D space.

Specifically, considering paired input vectors r1, r2 for a

single training image I , we have two predicted point clouds

S1 = f(I, r1) and S2 = f(I, r2). The loss of the diversity

constraint is formulated as in Eq.(5) below.

lossdiv = max(0, ‖r1 − r2‖2 − αEMD(S1, S2)) (5)

Because the counts of both point clouds are equal, we use

EMD [31] to measure the distance between S1 and S2. The

hyper-parameter α helps control the diversity of the pre-

dicted point clouds.
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Figure 3: Partial supervision on the front part of the condi-

tionally generated point clouds with view based sampling.

The validity (whether the outputs form a valid shape) is en-

sured by a GAN checking module in Eq.(6).

Latent Space Discriminator: Combining the front con-

straint and the diversity constraint forms a initial paradigm

for modeling the ambiguity of the single-view reconstruc-

tion. However, this paradigm puts little pressure on the

back part. Thus, motivated by the generative adversarial

networks [7] and recently proposed representation learning

method [1] on point clouds, we propose to add a latent space

discriminator to better learn the shape priors. Specifically,

we first train an auto-encoder on the point cloud domain.

Then, we transfer the decoder to the end of our architecture

and get it fixed. Finally, we apply WGAN-GP [9] on the top

of the latent space. Take ES as the encoder from the point

cloud domain to the latent space, and EI as the encoder we

use from the input image Ii and the random noise ri to the

latent variable zi, the loss is formulated as below, where S

is the sampled point cloud from the dataset.

lossgan = −EIi∼pdata,ri∼p(r)[D(EI(Ii, ri))]

+ ES∼pdata
[D(ES(S))] (6)

− λEẑ∼pẑ
[(||∇ẑD(ẑ)||2 − 1)2]

Training on Single-view Images: As discussed, we can

train a conditional generative model using single input im-

age with the optimization objective in Eq.(7) at the training

stage. β, γ denotes the relative loss weight of the diversity

loss and the GAN loss respectively.

loss = lossfront + βlossdiv + γlossgan (7)

The training is performed in an iterative min-max man-

ner as the widely-used GAN training strategy. The hyper-

parameter α and β modulates how far the generative model

goes beyond the observed groundtruth.

3.3. Synthesizing Multiview Predictions

Finetuning on Multi-view Images: To get the network

to learn more clues on the high level structure of the object,
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we finetune the single-view pretrained model on multi-view

conditions. For synthesizing the multi-view point clouds

at the training stage, we simply concatenate predicted point

clouds from different views. Then, lossfront was computed

in different views on the concatenated results and lossdiv
was computed in different random inputs to guide the train-

ing process. Specifically, for each shape, 8 views and 5

random inputs for each is used to train the model. Similar

to the single-view training stage, we use the combined loss

in Eq.(7) as our minimization objective.

Inference: As shown in Eq.(2), from the deterministic

perspective the multi-view reconstruction can be viewed as

taking the intersection of the reasonable shape space condi-

tioned on each input image. Thus, we propose a consistency

constraint directly on the shape level. Consider a set of re-

sults {Si}
n
i=1 from n different views, where Si = f(Ii, ri).

The consistency loss is formulated in Eq.(8).

lossconsis =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

CD(Si, Sj) (8)

Figure 4 shows our inference method. The method of

freezing the inference model and adjusting the input is pop-

ular in the field of adversarial attacks [7]. By online mini-

mizing lossconsis with respect to the input vectors {ri}
n
i=1

in the conditional model, we get more consistent results.

To prevent the optimization from local minimum, we use

heuristic search in the {ri}
n
i=1 initialization. Algorithm 1

shows our detailed inference pipeline. Our method does not

require camera calibration at inference.

4. Experiments

4.1. Experimental Settings

Network Architecture: Figure 5 briefly shows our net-

work architecture. For the encoder-decoder branch, we used

the two-branch version of the point set generation network

in [6]. We set random input r as a 128-dimensional vector.

The embedding branch employs a structure with two fully

connected layers and two convolutional layers. Channel-

wise concatenation is performed on the embedded vector zr
and the encoded features zi. For more details on the two-

branch network in [6], refer to our supplementary material.

Implementation Details: We trained our conditional

generative network for two stages on a GTX 1080 GPU.

The input images were rendered from ShapeNetCore.v1 [3]

with the toolkit provided by [39]. To cover the entire object,

we uniformly sampled the rendered views along the hor-

izontal circle with a random longitudinal perturbation. We

took 80% of the data for training and the rest for testing. We

used λ = 10 and γ = 0.1 for adversarial learning. At the

Algorithm 1 Inference pipeline for multi-view reconstruc-

tion.

Input: multi-view (n views) images {Ii}
n
i=1, conditional

generative model G : S = f(I, r; θ).
Output: predicted shape S.

1: Randomly sample 5 groups of {rij}
5
j=1, each of which

consists of n random inputs.

2: Feedforward with Si = f(Ii, rij ; θ) compute the

lossconsis in Eq.(2) for each group. Denote the group

with the minimum consistency loss {r+i }
n
i=1.

3: Freeze the parameter θ of the inference model. Initial-

ize ri = r+i .

4: Iteratively minimize lossconsis until convergence, get

the optimized inputs {r∗i }
n
i=1.

5: Feedforward with Si = f(Ii, r
∗

i ; θ) and concatenate Si

to get the final prediction S.

r1 

r2 

r3 

ri 
Freezed
Network

N 
Points

N 
Points

N 
Points

Consistency 
Loss

Update {ri}

Figure 4: Multi-view inference by online minimizing the

consistency loss.

r 
Embedding

Encoder

Concat Decoder

Zr

Zi

Zr

Zi

S
I

Figure 5: Brief overview of the network architecture.

first training stage, we trained the model using single-view

images for 40,000 iterations with a batch size 16 and 5 ran-

dom inputs for each image. α1 = 0.2, β1 = 10.0. Then, we

finetuned our model for 100,000 iterations on multi-view

images. There were 2 shapes in each batch, 8 views for

each shape, and 5 random inputs for each view. α2 = 0.1,

β2 = 1.0. We used Adam with an initial learning rate 1e-4

in both stages. At test stage, we used 8 views to reconstruct
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Figure 6: Visualization of multiple predictions on a single

image conditioned on random sampled r.

Table 1: Evaluation on the diversity of the conditional gen-

erative models.

Method Consistency loss

EMD + MoN [6] 1.65

lossfront 0.55

lossfront + MoN 2.52

loss, β = 1.0 2.88

loss, β = 5.0 3.18

loss, β = 10.0 3.36

the point clouds. The range of the longitudinal perturba-

tion is a degree of [−20, 40]. Following [23], we scaled the

reconstruction error CD by a factor of 100. Code will be

made available.

4.2. Multiple Predictions on a Single Image

Our generative model is able to predict multiple plausi-

ble shapes conditioned on the random input r. As discussed

in Section 3.2, the front constraint guides the generation of

the front part, and the diversity constraint enables the con-

ditional model to span the shape space.

Qualitative Visualization: Figure 6 visualizes the multi-

ple predictions on a single input image conditioned on ran-

domly sampled r. It is shown that our conditional model

generates plausible shapes with a large diversity. The front

part from the view of the input RGB image is predicted in a

relatively more deterministic manner while the back part is

mainly controlled by the random input r.

Evaluation on Uncertainty Modeling: We conducted

experiments to better verify the generating diversity of the

proposed conditional generative model. We took one single

image I and randomly sampled 10 inputs {ri}
10
i=1. Then, we

fed the model with Si = f(I, ri) and computed lossconsis
in Eq.(2) on the predicted shape set {Si}

10
i=1. We re-

implemented the fully-supervised MoN method in [6]. For

fair comparison, we used the conditional model after the

first training stage in this experiment. Table 1 shows the

results. The partial supervision boosts the diversity of the

predicted shapes. Moreover, it is demonstrated that when

the loss weight β of the diversity loss rises, the generating

diversity gets consistent increase.

Table 2: CD (FPS-CD) results of single-category experi-

ments on ShapeNet [3] dataset. We compare our methods

with existing methods including [4, 6, 23, 47].

Method GT → pred pred → GT CD (FPS-CD)

3D-R2N2 2.47 3.21 5.68

PTN 1.86 2.60 4.46

PSGN 2.06 (2.06) 2.27 (2.27) 4.34 (4.34)

Lin et al. 1.66 (2.16) 2.35 (2.59) 4.01 (4.75)

Ours 1.39 (1.73) 1.98 (2.35) 3.37 (4.08)

4.3. Multiview Shape Reconstruction

Evaluation Metric: The most widely used metric on

evaluating point cloud generation is the Chamfer Distance

in Eq.(3). For comparison, we use the same protocol with

[23]. However, it is worth noting that CD computation un-

der different numbered point clouds is relatively confusing.

Thus, we also report FPS-CD where we used farthest point

sampling [29] to get same-numbered point clouds.

Single-category Experiments: In this experiment, we

applied our conditional generative model on the task

of single-category multi-view shape reconstruction on

ShapeNet [3] ”chairs”. We re-implemented several widely

used image-based reconstruction methods including 3D-

R2N2 (5 views) [4], PTN [47], PSGN [6] and Lin et al.

[23] on our synthetic dataset. We converted the voxels pre-

dicted by [4, 47] to point clouds in the experiment. For the

groundtruth point clouds, we used the uniformly sampled

point clouds directly from [1]. Note that our idea is also

complementary to voxel-based deterministic methods (eg.

MarrNet [43]), where metrics can be developed on voxel

space and back-propagation of cross-entropy loss is per-

formed only from the front. Here we use PSGN [6] with the

point cloud outputs for direct comparison. Table 2 shows

the experimental results. It is reported that although our

conditional generative method is not only partially super-

vised but also without explicit 3D supervision at training

stage, our approach outperforms all of the baseline meth-

ods.

Multi-category Experiments: We tested our model in

multi-category experiments following [4] on 13 popular cat-

egories on ShapeNet [3] dataset. As shown in Table 3, our

proposed method outperforms two baseline methods 3D-

R2N2 [4] and PSGN [6] by a relatively large margin.

Qualitative Results: For qualitative analysis, in Figure 7

we visualize the predicted shapes for two state-of-the-art

baseline methods: 3D-R2N2 [4] and PSGN [6]. It is shown

that our partially supervised conditional generative model
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3D-R2N2 PSGN Ours 3D-R2N2 PSGN OursInput Input

Figure 7: Qualitative comparison between ours and baseline approaches [4, 6].

Table 3: CD (FPS-CD) results of multi-category experi-

ments on ShapeNet [3] dataset.

Category 3D-R2N2 [4] PSGN [6] Ours

airplane 5.25 2.89 (2.89) 2.65 (3.10)

bench 5.39 4.30 (4.30) 3.48 (4.17)

cabinet 4.60 4.87 (4.87) 4.10 (5.39)

car 4.51 3.68 (3.68) 3.06 (4.03)

chair 5.78 4.67 (4.67) 3.80 (4.64)

display 5.69 5.96 (5.96) 4.44 (5.27)

lamp 10.54 6.04 (6.04) 5.15 (6.27)

loudspeaker 6.54 6.42 (6.42) 4.99 (6.39)

rifle 4.38 3.22 (3.22) 2.60 (3.05)

sofa 5.43 4.93 (4.93) 4.31 (5.35)

table 5.31 4.45 (4.45) 3.43 (4.51)

telephone 5.06 4.34 (4.34) 3.50 (4.35)

watercraft 5.38 4.66 (4.66) 3.57 (4.24)

all 5.68 4.39 (4.39) 3.58 (4.34)

Table 4: Comparison between the conditional model and the

deterministic model. Both CD and FPS-CD are reported.

Method CD FPS-CD

deterministic 3.62 4.18

conditional 3.37 4.08

can infer reasonable shapes which are dense and accurate.

More details are generated due to the specific aim on the

front parts of the objects.

4.4. Ablation Studies

Conditional vs. Deterministic: To demonstrate the ef-

fectiveness of the conditional model, we implemented a de-

terministic model S = fd(I). For fair comparison, we used

an encoder-decoder structure similar with our network and

trained the deterministic model for two stages with the front

constraint. Single-category experiment was conducted on

the deterministic model. Table 4 shows the results. Al-

Table 5: Ablation studies on the diversity constraint and the

consistency loss. s1 denotes the pretraining on singleview

images, while s2 denotes the finetuning process on multi-

view images. s1 is always trained with diversity loss. The

lossdiv in the table denotes the diversity loss specifically

in s2. Experiments were conducted on the single-category

setting. Both CD and FPS-CD is reported.

s1 s2 lossdiv lossconsis CD FPS-CD

X × × × 3.97 6.30

X × × X 3.87 5.77

X X × × 3.51 4.18

X X X × 3.40 4.16

× X X X 3.52 4.24

X X X X 3.37 4.08

though the shape in ShapeNet [3] dataset often has symmet-

ric structure, the conditional generative model outperforms

the deterministic counterpart by 0.25 on CD.

Analysis on different features in the framework: We

performed ablation analysis on three different features: two-

stage training, diversity constraint at multi-view training

stage and consistency loss during inference. As shown in

Table 5, all features achieve consistent gain on the final per-

formance.

Front constraint vs. Projection loss: Our conditional

model can be trained on single-view images with the front

constraint and the diversity constraints. For comparison, we

directly applied the projection loss used on multi-view im-

ages training in [23] on single-view images, the training did

not converge. Because the pixel-wise loss on the depth map

suffers from non-differentiable quantization in the render

process, the projection loss can only get gradients from the

rendering axis. Our view based sampling enables valid gra-

dients on the x and y axis from the view.
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Figure 8: Visualization of the multi-view reconstruction re-

sults on real world images.

Figure 9: Correlation between the consistency loss and the

3D test error.

Correlation between consistency loss and reconstruction

error: In this part, we study the positive correlation be-

tween lossconsis and the reconstruction error CD. First, we

sampled lossconsis and CD simultaneously at test stage. As

shown in Figure 9, these two metrics show strong patterns

of positive correlation. We further demonstrate this consis-

tency on a highly diverse model (refer to our supplemen-

tary material for details). Table 6 shows the experimental

results. Minimizing the consistency loss gives consistent

decrease on the CD metric with respect to the groundtruth

shape. This demonstrates the fact that with lossconsis as the

mutual constraints inside the framework, the model will in-

fer a more accurate shape at test stage. This verifies our in-

terpretation on the success of applying the conditional gen-

erative model to the task of multi-view shape reconstruc-

tion.

4.5. Reconstructing Real World Images

The idea of multi-view reconstruction with our condi-

tional generative model has great generalization ability. We

conducted experiments on Stanford Online Products dataset

[27] for reconstructing real world images. Figure 8 visu-

alizes our predictions. Our model generates surprisingly

reasonable shapes by observing multi-view images in real

world scenarios.

To further demonstrate the necessity of conditional mod-

eling, Figure 10 shows visual results on unsymmetric real

View1 View2 PSGN Ours

Figure 10: Visualization on unsymmetric real-world

data. Left Two: Input images. For [6], we use both input

images and then take the best prediction. For our model, we

use n=2 input views. Right Two: While [6] tends to halluci-

nate the back part symmetrically, our model achieves much

better results, which further demonstrates the necessity of

conditional modeling.

Table 6: Study on the correlation between the consistency

loss and the 3D test error CD. “heuris” denotes the heuristic

search in the {ri}
n
i=1 initialization. “bp” denotes the on-

line optimization of {ri}
n
i=1. “dist1” denotes GT → pred

and “dist2” denotes pred → GT. Experiments on a spe-

cific model demonstrates the positive correlation between

lossconsis and CD. Both the heuristic search for initializa-

tion and the online update contribute to the performance im-

provement.

heuris bp dist1 dist2 CD lossconsis
no no 1.40 7.76 9.15 13.96

yes no 1.41 3.24 4.65 5.96

yes yes 1.40 2.80 4.21 4.66

data sampled from [27]. While [6] sticks to the symmetry

prior and fails to generalize, our model generates a much

realistic prediction.

5. Conclusion

In this paper, we have proposed a new perspective to-

wards image-based shape generation, where we model

single-view reconstruction with a partially supervised gen-

erative network conditioned on a random input. Further-

more, we present a multi-view synthesis method based on

the conditional model. With the front constraint, diversity

constraint and the consistency loss introduced, our method

outperforms state-of-the-art approaches with interpretabil-

ity. Experiments were conducted to demonstrate the effec-

tiveness of our method. Future directions include studying

the representation of the latent variables, rotation-invariant

generation as well as better training strategies.
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