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Abstract

Removing undesirable reflections from a single image

captured through a glass window is of practical impor-

tance to visual computing systems. Although state-of-the-

art methods can obtain decent results in certain situations,

performance declines significantly when tackling more gen-

eral real-world cases. These failures stem from the intrin-

sic difficulty of single image reflection removal – the funda-

mental ill-posedness of the problem, and the insufficiency of

densely-labeled training data needed for resolving this am-

biguity within learning-based neural network pipelines. In

this paper, we address these issues by exploiting targeted

network enhancements and the novel use of misaligned

data. For the former, we augment a baseline network archi-

tecture by embedding context encoding modules that are ca-

pable of leveraging high-level contextual clues to reduce in-

determinacy within areas containing strong reflections. For

the latter, we introduce an alignment-invariant loss func-

tion that facilitates exploiting misaligned real-world train-

ing data that is much easier to collect. Experimental results

collectively show that our method outperforms the state-of-

the-art with aligned data, and that significant improvements

are possible when using additional misaligned data.

1. Introduction

Reflection is a frequently-encountered source of image

corruption that can arise when shooting through a glass sur-

face. Such corruptions can be addressed via the process of

single image reflection removal (SIRR), a challenging prob-

lem that has attracted considerable attention from the com-

puter vision community [22, 25, 39, 2, 5, 47, 44, 38]. Tra-

ditional optimization-based methods often leverage manual

intervention or strong prior assumptions to render the prob-

lem more tractable [22, 25]. Recently, alternative learning-

based approaches rely on deep Convectional Neural Net-

works (CNNs) in lieu of the costly optimization and hand-

crafted priors [5, 47, 44, 38]. But promising results notwith-
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standing, SIRR remains a largely unsolved problem across

disparate imaging conditions and varying scene content.

For CNN-based reflection removal, our focus herein, the

challenge originates from at least two sources: (i) The ex-

traction of a background image layer devoid of reflection

artifacts is fundamentally ill-posed, and (ii) Training data

from real-world scenes, are exceedingly scarce because of

the difficulty in obtaining ground-truth labels.

Mathematically speaking, it is typically assumed that a

captured image I is formed as a linear combination of a

background or transmitted layer T and a reflection layer R,

i.e., I = T + R. Obviously, when given access only to I ,

there exists an infinite number of feasible decompositions.

Further compounding the problem is the fact that both T

and R involve content from real scenes that may have over-

lapping appearance distributions. This can make them diffi-

cult to distinguish even for human observers in some cases,

and simple priors that might mitigate this ambiguity are not

available except under specialized conditions.

On the other hand, although CNNs can perform a wide

variety visual tasks, at times exceeding human capabilities,

they generally require a large volume of labeled training

data. Unfortunately, real reflection images accompanied

with densely-labeled, ground-truth transmitted layer inten-

sities are scarce. Consequently, previous learning-based ap-

proaches have resorted to training with synthesized images

[5, 38, 47] and/or small real-world data captured from spe-

cialized devices [47]. However, existing image synthesis

procedures are heuristic and the domain gap may jeopardize

accuracy on real images. On the other hand, collecting suf-

ficient additional real data with precise ground-truth labels

is tremendously labor-intensive.

This paper is devoted to addressing both of the afore-

mentioned challenges. First, to better tackle the intrinsic

ill-posedness and diminish ambiguity, we propose to lever-

age a network architecture that is sensitive to contextual in-

formation, which has proven useful for other vision tasks

such as semantic segmentation [11, 48, 46, 13]. Note that

at a high level, our objective is to efficiently convert prior

information mined from labeled training data into network

structures capable of resolving this ambiguity. Within a tra-
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ditional CNN model, especially in the early layers where

the effective receptive field is small, the extracted features

across all channels are inherently local. However, broader

non-local context is necessary to differentiate those features

that are descriptive of the desired transmitted image, and

those that can be discarded as reflection-based. For ex-

ample, in image neighborhoods containing a particularly

strong reflection component, accurate separation by any

possible method (even one trained with arbitrarily rich train-

ing data) will likely require contextual information from re-

gions without reflection. To address this issue, we utilize

two complementary forms of context, namely, channel-wise

context and multi-scale spatial context. Regarding the for-

mer, we apply a channel attention mechanism to the fea-

ture maps from convolutional layers such that different fea-

tures are weighed differently according to global statistics

of the activations. For the latter, we aggregate information

across a pyramid of feature map scales within each chan-

nel to reach a global contextual consistency in the spatial

domain. Our experiments demonstrate that significant im-

provement can be obtained by these enhancements, leading

to state-of-the-art performance on two real-image datasets.

Secondly, orthogonal to architectural considerations, we

seek to expand the sources of viable training data by facil-

itating the use of misaligned training pairs, which are con-

siderably easier to collect. Misalignment between an input

image I and a ground-truth reflection-free version T can be

caused by camera and/or object movements during the ac-

quisition process. In the previous works [37, 46], data pairs

(I, T ) were obtained by taking an initial photo through a

glass plane, followed by capturing a second one after the

glass has been removed. This process requires that the

camera, scene, and even lighting conditions remain static.

Adhering to these requirements across a broad acquisition

campaign can significantly reduce both the quantity and di-

versity of the collected data. Additionally, post-processing

may also be necessary to accurately align I and T to com-

pensate for spatial shifts caused by the refractive effect [37].

In contrast, capturing unaligned data is considerably less

burdensome, as shown in Fig. 1. For example, there is no

need for a tripod, table, or other special hardware; the cam-

era can be hand-held and the pose can be freely adjusted;

dynamic scenes in the presence of vehicles, humans, etc.

can be incorporated; and finally no post-processing of any

type is needed.

To handle such misaligned training data, we require a

loss function that is, to the extent possible, invariant to the

alignment, i.e., the measured image content discrepancy be-

tween the network prediction and its unaligned reference

should be similar to what would have been observed if

the reference was actually aligned. In the context of im-

age style transfer [17] and others, certain perceptual loss

functions have been shown to be relatively invariant to var-

[46] Ours
Figure 1: Comparison of the reflection image data collection meth-

ods in [46] and this paper.

ious transformations. Our study shows that the using only

the highest-level feature from a deep network (VGG-19 in

our case) leads to satisfactory results for our reflection re-

moval task. In both simulation tests and experiments us-

ing a newly collected dataset, we demonstrate for the first

time that training/fine-tuning a CNN with unaligned data

improves the reflection removal results by a large margin.

2. Related Work

This paper is concerned with reflection removal from

a single image. Previous methods utilizing multiple input

images of, e.g., flash/non-flash pairs [1], different polariza-

tion [20], multi-view or video sequences [6, 35, 30, 7, 24,

34, 9, 43, 45] will not be considered here.

Traditional methods. Reflection removal from a single im-

age is a massively ill-posed problem. Additional priors are

needed to solve the otherwise prohibitively-difficult prob-

lem in traditional optimization-based method [22, 25, 39,

2, 36]. In [22], user annotations are used to guide layer

separation jointly with a gradient sparsity prior [23]. [25]

introduces a relative smoothness prior where the reflections

are assumed to be blurry thus their large gradients are penal-

ized. [39] explores a variant of the smoothness prior where

a multi-scale Depth-of-Field (DoF) confidence map is uti-

lized to perform edge classification. [31] exploits the ghost

cues for layer separation. [2] proposes a simple optimiza-

tion formulation with an l0 gradient penalty on the transmit-

ted layer inspired by image smoothing algorithms [42]. De-

spite decent results can be obtained by these methods where

their assumptions hold, the vastly-different imaging condi-

tions and complex scene content in the real world render

their generalization problematic.

Deep learning based methods. Recently, there is an

emerging interest in applying deep convolutional neural net-

works for single image reflection removal such that the

handcrafted priors can be replaced by data-driven learn-

ing [5, 38, 47, 44]. The first CNN-based method is due

to [5], where a network structure is proposed to first pre-

dict the background layer in the edge domain followed by
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reconstructing it the color domain. Later, [38] proposes to

predict the edge and image intensity concurrently by two

cooperative sub-networks. The recent work of [44] presents

a cascade network structure which predicts the background

layer and reflection layer in an interleaved fashion. The ear-

lier CNN-based methods typical use the raw image intensity

discrepancy such as mean squared error (MSE) to train the

networks. Several recent works [47, 16, 3] adopt the per-

ceptual loss [17] which uses the multi-stage features of a

deep network pre-trained on ImageNet [29]. [47]. Adver-

sarial loss is investigated in [47, 21] to improve the realism

of the predicted background layers.

3. Approach

Given an input image I contaminated with reflections,

our goal is to estimate a reflection-free trasmitted image T̂ .

To achieve this, we train a feed-forward CNN GθG parame-

terized by θG to minimize a reflection removal loss function

l. Given training image pairs {(In, Tn)}, n = 1, · · · , N ,

this involves solving:

θ̂G = argminθG
1

N

∑N

n=1
l(GθG(In), Tn). (1)

We will first introduce the details of network architecture

GθG followed by the loss function l applied to both aligned

data (the common case) and newly proposed unaligned data

extensions. The overall system is illustrated in Fig. 2.

3.1. Basic Image Reconstruction Network

Our starting point can be viewed as the basic image re-

construction neural network component from [5] but mod-

ified in three aspects: (1) We simplify the basic residual

block [12] by removing the batch normalization (BN) layer

[14]; (2) we increase the capacity by widening the network

from 64 to 256 feature maps; and (3) for each input image

I , we extract hypercolumn features [10] from a pretrained

VGG-19 network [32], and concatenate these features with

I as an augmented network input. As explained in [47],

such an augmentation strategy can help enable the network

to learn semantic clues from the input image.

Note that removing the BN layer from our network turns

out to be critical for optimizing performance in the present

context. As shown in [41], if batch sizes become too small,

prediction errors can increase precipitously and stability is-

sues can arise. Moreover, for a dense prediction task such as

SIRR, large batch sizes can become prohibitively expensive

in terms of memory requirements. In our case, we found

that within the tenable batch sizes available for reflection re-

moval, BN led to considerably worse performance, includ-

ing color attenuation/shifting issues as sometimes observed

in image-to-image translation tasks [5, 15, 49]. BN layers

have similarly been removed from other dense prediction

tasks such as image super-resolution [26] or deblurring [28].

At this point, we have constructed a useful base archi-

tecture upon which other more targeted alterations will be

applied shortly. This baseline, which we will henceforth

refer to as BaseNet, performs quite well when trained and

tested on synthetic data. However, when deployed on real-

world reflection images we found that its performance de-

graded by an appreciable amount, especially on the 20 real

images from [47]. Therefore, to better mitigate the tran-

sition from the make-believe world of synthetic images to

real-life photographs, we describe two modifications for in-

troducing broader contextual information into otherwise lo-

cal convolutional filters.

3.2. Context Encoding Modules

As mentioned previously, we consider both context be-

tween channels and multi-scale context within channels.

Channel-wise context. The underlying design princi-

ple here is to introduce global contextual information

across channels, and a richer overall structure within resid-

ual blocks, without dramatically increasing the parameter

count. One way to accomplish this is by incorporating a

channel attention module originally developed in [13] to re-

calibrate feature maps using global summary statistics.

Let U = [u1, . . . , uc, . . . , uC ] denote original, uncali-

brated activations produced by a network block, with C

feature maps of size of H × W . These activations gener-

ally only reflect local information residing within the corre-

sponding receptive fields of each filter. We then form scalar,

channel-specific descriptors zc = fgp(uc) by applying a

global average pooling operator fgp to each feature map

uc ∈ R
H×W . The vector z = [z1, . . . , zC ] ∈ R

C represents

a simple statistical summary of global, per-channel activa-

tions and, when passed through a small network structure,

can be used to adaptively predict the relative importance of

each channel [13].

More specifically, the channel attention module first

computes s = σ(WUδ(WDz)) where WD is a trainable

weight matrix that downsamples z to dimension R < C,

δ is a ReLU non-linearity, WU represents a trainable up-

sampling weight matrix, and σ is a sigmoidal activation.

Elements of the resulting output vector s ∈ R
C serve

as channel-specific gates for calibrating feature maps via

ûc = sc · uc.

Consequently, although each individual convolutional

filter has a local receptive field, the determination of which

channels are actually important in predicting the transmis-

sion layer and suppressing reflections is based on the pro-

cessing of a global statistic (meaning the channel descrip-

tors computed as activations pass through the network dur-

ing inference). Additionally, the parameter overhead intro-

duced by this process is exceedingly modest given that WD

and WU are just small additional weight matrices associated

with each block.
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Figure 2: Overview of our approach for single image reflection removal.

Multi-scale spatial context. Although we have found that

encoding the contextual information across channels al-

ready leads to significant empirical gains on real-world im-

ages, utilizing complementary multi-scale spatial informa-

tion within each channel provides further benefit. To ac-

complish this, we apply a pyramid pooling module [11],

which has proven to be an effective global-scene-level rep-

resentation in semantic segmentation [48]. As shown in

Fig. 2, we construct such a module using pooling opera-

tions at sizes 4, 8, 16, and 32 situated in the tail of our net-

work before the final construction of T̂ . Pooling in this way

fuses features under four different pyramid scales. After

harvesting the resulting sub-region representations, we per-

form a non-linear transformation (i.e. a Conv-ReLU pair) to

reduce the channel dimension. The refined features are then

upsampled via bilinear interpolation. Finally, the different

levels of features are concatenated together as a final repre-

sentation reflecting multi-scale spatial context within each

channel; the increased parameter overhead is negligible.

3.3. Training Loss for Aligned Data

In this section, we present our loss function for aligned

training pairs (I, T ), which consists of three terms similar

to previous methods [47, 44].

Pixel loss. Following [5], we penalize the pixel-wise in-

tensity difference of T and T̂ via lpixel = α‖T̂ − T‖2
2
+

β(‖∇xT̂ −∇xT‖1 + ‖∇yT̂ −∇yT‖1) where ∇x and ∇y

are the gradient operator along x- and y-direction, respec-

tively. We set α = 0.2 and β = 0.4 in all our experiments.

Feature loss. We define the feature loss based on the

activations of the 19-layer VGG network [33] pretrained

on ImageNet [29]. Let φl be the feature from the l-th

layer of VGG-19, we define the feature loss as lfeat =
∑

l λl‖φl(T ) − φl(T̂ )‖1 where {λl} are the balancing

weights. Similar to [47], we use the layers ‘conv2 2’,

‘conv3 2’, ‘conv4 2’, and ‘conv5 2’ of VGG-19 net.

Adversarial loss. We further add an adversarial loss to

improve the realism of the produced background images.

We define an opponent discriminator network DθD and

minimize the relativistic adversarial loss [18] defined as

ladv = lGadv = − log(DθD (T, T̂ ))−log(1−DθD (T̂ , T )) for

GθG and lDadv = − log(1−DθD (T, T̂ ))− log(DθD (T̂ , T ))

for DθD where DθD (T, T̂ ) = σ(C(T ) − C(T̂ )) with σ(·)
being the sigmoid function and C(·) the non-transformed

discriminator function (refer to [18] for details).

To summarize, our loss for aligned data is defined as:

laligned = ω1lpixel + ω2lfeat + ω3ladv (2)

where we empirically set the weights as ω1 = 1, ω2 = 0.1,

and ω3 = 0.01 respectively throughout our experiments.

3.4. Training Loss for Unaligned Data

To use misaligned data pairs (I, T ) for training, we need

a loss function that is invariant to the alignment, such that

the true similarity between T and the prediction T̂ can be

reasonably measured. In this regard, we note that human

observers can easily assess the similarity of two images

even if they are not aligned. Consequently, designing a

loss measuring image similarity on the perceptual-level may

serve our goal. This motivates us to directly use a deep fea-

ture loss for unaligned data.

Intuitively, the deeper the feature, the more likely it is

to be insensitive to misalignment. To experimentally ver-

ify this and find a suitable feature layer for our purposes,

we conducted tests using a pre-trained VGG-19 network as

follows. Given an unaligned image pair (I, T ), we use gra-

dient descent to finetune the weights of our network GθG

to minimize the feature difference of T and T̂ , with features

extracted at different layers of VGG-19. Figure 3 shows that

using low-level or middle-level features from ‘conv2 2’ to

‘conv4 2’ leads to blurry results (similar to directly using a

pixel-wise loss), although the reflection is more thoroughly

removed. In contrast, using the highest-level feature from

‘conv5 2’ gives rise to a striking result: the predicted back-

ground image is sharp and almost reflection-free.

8181



(a) Input (b) Unaligned Ref. (c) Pretrained

(d) lpixel (e) conv2 2 (f) conv3 2

(g) conv4 2 (h) conv5 2 (i) Loss of [27]

Figure 3: The effect of using different loss to handle misaligned

real data. (a) and (b) are the unaligned image pair (I, T ). (c)

shows the reflection removal result of our network trained on syn-

thetic data and a small number of aligned real data (see Section 4

for details). Reflection can still be observed in the predicted back-

ground image. (d) is the result finetuned on (I, T ) with pixel-

wise intensity loss. (e)-(h) are the results finetuned with features

at different layers of VGG-19. Only the highest-level feature from

‘conv5 2’ yields satisfactory result. (i) shows the results finetuned

with the loss of [27]. (Best viewed on screen with zoom)

Recently, [27] introduced a “contextual loss” which is

also designed for training deep networks with unaligned

data for image-to-image translation tasks like image style

transfer. In Fig 3, we also present the finetuned result us-

ing this loss for our reflection removal task. Upon visual

inspection, the results are similar to our highest-level VGG

feature loss (quantitative comparison can be found in the

experiment section). However, our adopted loss (formally

defined below) is much simpler and more computationally

efficient than the loss from [27].

Alignment-invariant loss. Based on the above study, we

now formally define our invariant loss component designed

for unaligned data as linv = ‖φh(T ) − φh(T̂ )‖1, where

φh denotes the ‘conv5 2’ feature of the pretrained VGG-19

network. For unaligned data, we also apply an adversarial

loss which is not affected by misalignment. Therefore, our

overall loss for unaligned data can be written as

lunaligned = ω4linv + ω5ladv (3)

where we set the weights as ω4 = 0.1 and ω5 = 0.01.

4. Experiments

4.1. Implementation Details

Training data. We adopt a fusion of synthetic and real data

as our train dataset. The images from [5] are used as sythetic

Table 1: Comparison of different settings. Our full model (i.e.

ERRNet) leads to best performance among all comparisons.

Synthetic Real20

Model PSNR SSIM PSNR SSIM

CEILNet-F [5] 24.70 0.884 20.32 0.739

BaseNet only 25.71 0.926 21.51 0.780

BaseNet + CSC 27.64 0.940 22.61 0.796

BaseNet + MSC 26.03 0.928 21.75 0.783

ERRNet 27.88 0.941 22.89 0.803

data, i.e. 7,643 cropped images with size 224 × 224 from

PASCAL VOC dataset [4]. 90 real-world training images

from [47] are adopted as real data. For image synthesis,

we use the same data generation model as [5] to create our

synthetic data. In the following, we always use the same

dataset for training, unless specifically stated.

Training details. Our implementation1 is based on Py-

Torch. We train the model with 60 epoch using the Adam

optimizer [19]. The base learning rate is set to 10−4 and

halved at epoch 30, then reduced to 10−5 at epoch 50. The

weights are initialized as in [26].

4.2. Ablation Study

In this section, we conduct an ablation study for our

method on 100 synthetic testing images from [5] and 20

real testing images from [47] (denoted by ‘Real20’).

Component analysis. To verify the importance of our

network design, we compare four model architectures as

described in Section 3, including (1) Our basic image re-

construction network BaseNet; (2) BaseNet with channel-

wise context module (BaseNet + CWC); (3) BaseNet with

multi-scale spatial context module (BaseNet + MSC); and

(4) Our enhanced reflection removal network, denoted ER-

RNet, i.e., BaseNet + CWC + MSC. The result from the

CEILNet [5] fine-tuned on our training data (denoted by

CEILNet-F) is also provided as an additional reference.

As shown in Table 1, our BaseNet has already achieved

a much better result than CEILNet-F. The performance of

our BaseNet could be obviously boosted by using channel-

wise context and multi-scale spatial context modules, espe-

cially by using them together, i.e. ERRNet. Figure 4 visu-

ally shows the results from BaseNet and our ERRNet. It can

be observed that BaseNet struggles to discriminate the re-

flection region and yields some obvious residuals, while the

ERRNet removes the reflection and produces much cleaner

transmitted images. These results suggest the effectiveness

of our network design, especially the components tailored

to encode the contextual clues.

Efficacy of the training loss for unaligned data. In this

1Code is released at https://github.com/Vandermode/ERRNet
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Input BaseNet ERRNet

Figure 4: Comparison of the results with (ERRNet) and without

(BaseNet) the context encoding modules.

Table 2: Simulation experiment to verify the efficacy our

alignment-invariant loss

Training Scheme PSNR SSIM

Synthetic only 19.79 0.741

+ 50 aligned 22.00 0.785

+ 90 aligned 22.89 0.803

+ 50 aligned, + 40 unaligned trained with:

lpixel 21.85 0.766

linv 22.38 0.797

lcx 22.47 0.796

linv + lcx 22.43 0.796

experiment, we first train our ERRNet with only ‘synthetic

data’, ‘synthetic + 50 aligned real data’, and ‘synthetic +

90 aligned real data’. The loss function in Eq. (2) is used

for aligned data. We can see that the testing results become

better with the increasing real data in Table 2.

Then, we synthesize misalignment through performing

random translations within [−10, 10] pixels on real data2,

and train ERRNet with ‘synthetic + 50 aligned real data +

40 unaligned data’. Pixel-wise loss lpixel and alignment-

invariant loss linv are used for 40 unaligned images. Ta-

ble 2 shows employing 40 unaligned data with lpixel loss

degrades the performance, even worse than that from 50

aligned images without additional unaligned data.

In addition, we also investigate the contextual loss lcx
of [27]. Results from both contextual loss lcx and our

alignment-invariant loss linv (or combination of them linv+
lcx) surpass analogous results obtained with only aligned

images by appreciable margins, indicating that these losses

provide useful supervision to networks granted unaligned

data. Note although linv and lcx perform equally well, our

linv is much simpler and computationally efficient than lcx,

suggesting linv is lightweight alternative to lcx in terms of

our reflection removal task.

2Our alignment-invariant loss linv can handle shifts of up to 20 pixels.

See suppl. material for more details.

4.3. Method Comparison on Benchmarks

In this section, we compare our ERRNet against state-of-

the-art methods including the optimization-based method of

[25] (LB14) and the learning-based approaches (CEILNet

[5], Zhang et al. [47], and BDN [44]). For fair comparison,

we finetune these models on our training dataset and report

results of both the original pretrained model and finetuned

version (denoted with a suffix ’-F’).

The comparison is conducted on four real-world

datasets, i.e. 20 testing images in [47] and three sub-datasets

from SIR2 [37]. These three sub-datasets are captured under

different conditions: (1) 20 controlled indoor scenes com-

posed by solid objects; (2) 20 different controlled scenes

on postcards; and (3) 55 wild scenes3 with ground truth

provided. In the following, we denote these datasets by

‘Real20’, ‘Objects’, ‘Postcard’, and ‘Wild’, respectively.

Table 3 summarizes the results of all competing meth-

ods on four real-world datasets. The quality metrics include

PSNR, SSIM [40], NCC [43, 37] and LMSE [8]. Larger

values of PSNR, SSIM, and NCC indicate better perfor-

mance, while a smaller value of LMSE implies a better re-

sult. Our ERRNet achieves the state-of-the-art performance

in ‘Real20’ and ‘Objects’ datasets. Meanwhile, our result

is comparable to the best-performing BDN-F on ‘Postcard’

data. The quantitative results on ‘Wild’ dataset reveal a

frustrating fact, namely, that no method could outperform

the naive baseline ’Input’, suggesting that there is still large

room for improvement.

Figure 5 displays visual results on real-world images. It

can be seen that all compared methods fail to handle some

strong reflections, but our network more accurately removes

many undesirable artifacts, e.g. removal of tree branches re-

flected on the building window in the fourth photo of Fig 5.

4.4. Training with Unaligned Data

To test our alignment-invariant loss on real-world un-

aligned data, we first collected a dataset of unaligned im-

age pairs with cameras and a portable glass, as shown in

Fig. 1 . Both a DSLR camera and a smart phone are used to

capture the images. We collected 450 image pairs in total,

and some samples are shown in Fig 6. These image pairs

are randomly split into a training set of 400 samples and a

testing set with 50 samples.

We conduct experiments on the BDN-F and ERRNet

models, each of which is first trained on aligned dataset

(w/o unaligned) as in Section 4.3, and then finetuned with

our alignment-invariant loss and unaligned training data.

The resulting pairs before and after finetuning are assem-

bled for human assessment, as no existing numerical metric

is available for evaluating unaligned data.

We asked 30 human observers to provide a preference

3Images indexed by 1, 2, 74 are removed due to misalignment.
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Input LB14 [25] CEILNet-F [5] Zhang et al. [47] BDN-F [44] ERRNet Reference

Figure 5: Visual comparison on real-world images. The images are obtained from ‘Real20’ (Rows 1-3) and our collected unaligned dataset

(Rows 4- 5). More results can be found in the suppl. material.

Table 3: Quantitative results of different methods on four real-world benchmark datasets. The best results are indicated by red color and

the second best results are denoted by blue color. The results of ‘Average’ are obtained by averaging the metric scores of all images from

these four real-world datasets.

Dataset Index

Methods

Input LB14 CEILNet CEILNet Zhang BDN BDN ERRNet

[25] [5] F et al. [47] [44] F

Real20

PSNR 19.05 18.29 18.45 20.32 21.89 18.41 20.06 22.89

SSIM 0.733 0.683 0.690 0.739 0.787 0.726 0.738 0.803

NCC 0.812 0.789 0.813 0.834 0.903 0.792 0.825 0.877

LMSE 0.027 0.033 0.031 0.028 0.022 0.032 0.027 0.022

Objects

PSNR 23.74 19.39 23.62 23.36 22.72 22.73 24.00 24.87

SSIM 0.878 0.786 0.867 0.873 0.879 0.856 0.893 0.896

NCC 0.981 0.971 0.972 0.974 0.964 0.978 0.978 0.982

LMSE 0.004 0.007 0.005 0.005 0.005 0.005 0.004 0.003

Postcard

PSNR 21.30 14.88 21.24 19.17 16.85 20.71 22.19 22.04

SSIM 0.878 0.795 0.834 0.793 0.799 0.859 0.881 0.876

NCC 0.947 0.929 0.945 0.926 0.886 0.943 0.941 0.946

LMSE 0.005 0.008 0.008 0.013 0.007 0.005 0.004 0.004

Wild

PSNR 26.24 19.05 22.36 22.05 21.56 22.36 22.74 24.25

SSIM 0.897 0.755 0.821 0.844 0.836 0.830 0.872 0.853

NCC 0.941 0.894 0.918 0.924 0.919 0.932 0.922 0.917

LMSE 0.005 0.027 0.013 0.009 0.010 0.009 0.008 0.011

Average

PSNR 22.85 17.51 22.30 21.41 20.22 21.70 22.96 23.59

SSIM 0.874 0.781 0.841 0.832 0.838 0.848 0.879 0.879

NCC 0.955 0.937 0.948 0.943 0.925 0.951 0.950 0.956

LMSE 0.006 0.011 0.009 0.010 0.007 0.007 0.006 0.005

score among {-2,-1,0,1,2} with 2 indicating the finetuned

result is significantly better while -2 the opposite. To avoid

bias, we randomly switch the image positions of each pair.

In total, 3000 human judgments are collected (2 methods,

30 users, 50 images pairs). More details regarding this eval-

uation process can be found in the suppl. material.
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Figure 6: Image samples in our unaligned image dataset. Our dataset covers a large variety of indoor and outdoor environments including

dynamic scenes with vehicles, human, etc.

Score Range Ratio BDN-F ERRNet

10 20 30 40 50

-1

0

1

2

10 20 30 40 50

-1

0

1

2

(0.25, 2] 78% 54%

[−0.25, 0.25] 18% 36%

[−2,−0.25) 4% 10%

Average Score 0.62 0.51

Table 4: Human preference scores of self-comparsion experiments. Left: results of BDN-F; Right: results of ERRNet. X axis of each

sub-figure represents the image # of testing images (50 in total).

BDN-F ERRNet

input reference w/o unaligned w. unaligned w/o unaligned w. unaligned

Figure 7: Results of training with and without unaligned data. See suppl. material for more examples. (Best view on screen with zoom)

Table 4 shows the average of human preference scores

for the resulting pairs of each method. As can be seen, hu-

man observers clearly tend to prefer the results produced

by the finetuned models over the raw ones, which demon-

strates the benefit of leveraging unaligned data for training

independent of the network architecture. Figure 7 shows

some typical results of the two methods; the results are sig-

nificantly improved by training on unaligned data.

5. Conclusion

We have proposed an enhanced reflection removal net-

work together with an alignment-invariant loss function to

help resolve the difficulty of single image reflection re-

moval. We investigated the possibility to directly utilize

misaligned training data, which can significantly alleviate

the burden of capturing real-world training data. To effi-

ciently extract the underlying knowledge from real train-

ing data, we introduce context encoding modules, which

can be seamlessly embedded into our network to help dis-

criminate and suppress the reflection component. Extensive

experiments demonstrate our approach set a new state-of-

the-art on real-world benchmarks of single image reflection

removal, both quantitatively and visually.
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