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Figure 1: Existing reflection removal methods rely heavily on the linearly synthesized data, which, however, cannot simulate

the real-world reflections. We propose to synthesize and remove reflection beyond linearity, leading to the controllable

synthesis and clean reflection removal.

Abstract

Due to the lack of paired data, the training of image

reflection removal relies heavily on synthesizing reflection

images. However, existing methods model reflection as a

linear combination model, which cannot fully simulate the

real-world scenarios. In this paper, we inject non-linearity

into reflection removal from two aspects. First, instead of

synthesizing reflection with a fixed combination factor or

kernel, we propose to synthesize reflection images by pre-

dicting a non-linear alpha blending mask. This enables a

free combination of different blurry kernels, leading to a

controllable and diverse reflection synthesis. Second, we

design a cascaded network for reflection removal with three

tasks: predicting the transmission layer, reflection layer,

and the non-linear alpha blending mask. The former two

tasks are the fundamental outputs, while the latter one be-

ing the side output of the network. This side output, on

the other hand, making the training a closed loop, so that

the separated transmission and reflection layers can be re-

combined together for training with a reconstruction loss.

Extensive quantitative and qualitative experiments demon-

strate the proposed synthesis and removal approaches out-

∗Corresponding author (hesfe@scut.edu.cn).

performs state-of-the-art methods on two standard bench-

marks, as well as in real-world scenarios.

1. Introduction

Undesired reflection from glasses not only damages

the image quality, but also influences the performance of

computer vision tasks like image classification. To re-

move reflection, early researches design hand-crafted priors

[11, 13, 18, 26], while recent works [2, 31, 25, 29] train

deep models to remove reflection patterns.

Notwithstanding the demonstrated success of deep re-

flection removal models, the arguably most critical chal-

lenge is to obtain sufficient paired training data, which in-

cludes the reflection images and their corresponding clean

transmission images. To synthesize reflection data, existing

methods [2, 31, 25, 29] simply blend two images with a lin-

ear model. Particularly, they express the reflection image

S ∈ [0, 1]m×n×3 as the linear combination of the trans-

mission layer T ∈ [0, 1]m×n×3 and the reflection layer

R ∈ [0, 1]m×n×3:

S = αT + (1− α) (K ⊗R) , (1)

where α ∈ (0.5, 1) is the combination factor, ⊗ denotes a
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convolution operator, and K represents a Gaussian blurring

kernel. However, blending two images with a constant α

does not simulate the complex real-world reflection. The

formation of reflection image depends on the relative posi-

tion of the camera to the image plane and on the lighting

conditions [9].

In this paper, we revisit this challenging synthesis prob-

lem. We observe that the synthesis of reflection images

should be non-linearly combined with an alpha blending

mask. To this end, we propose a deep synthesis network

SynNet to predict the alpha blending mask of two input im-

ages. This mask can be freely combined with a user defined

kernel to simulate different types of reflections. This is in-

dispensable for generating the controllable and diverse re-

flection data. To properly train the network, we selectively

collect a large number of real data with different types of

reflections.

On the other end, we involve the non-linear alpha blend-

ing mask into our reflection removal process. We design

a cascaded reflection removal network RmNet which has

three tasks: predicting the reflection layer, transmission

layer, and the alpha blending mask. The first two are the

essential outputs of the reflection separation, while the last

one is treated as the side output that aids the network train-

ing. We use the predicted mask to re-combine the sepa-

rated transmission and reflection layers. In this way, the

re-combined reflection should be consistent with the origi-

nal input, and the entire network is a closed loop thus can

be guided with a reconstruction loss.

In summary, our contributions are:

• We revisit the single image reflection removal prob-

lem, and synthesize reflection data beyond linearity.

In particular, we propose to predict a non-linear alpha

blending mask, which enables a controllable and di-

verse reflection data synthesis.

• We present a reflection removal network with the aid of

the predicted alpha blending mask. This mask serves

as the side output of our network, so that the predic-

tions in the first stage can be re-combined together, and

the network can be supervised with a reconstruction

loss.

• The proposed networks outperform existing reflec-

tion synthesis and removal methods, on two standard

benchmarks and in real-world scenarios.

2. Related Work

Single-image reflection removal. Reflection re-

moval/separation has been a long-standing problem. Early

researches many address this problem by proposing differ-

ent image priors [11, 10, 19, 1, 13, 26, 12, 22]. For exam-

ple, sparse gradient priors [11] are used to distinguish the

reflection and transmission layers. Li and Brown [13] ex-

tracts the reflection and transmission layers using a smooth

gradient prior by assuming that reflections are often less in

focus. These priors may work well on the specific cases, but

cannot generalize to different types of reflections.

As a consequence, deep models are adopted for remov-

ing reflection. Fan et al.[2] propose the first attempt to solve

this ill-posed problem with a deep network. They use an

edge map as the additional cue to guide the layer separation.

Wan et al.[25] develop a two-stage network, while the first

one inferences the gradient of the transmission layer, and

the second one associates with the gradient output to predict

the final transmission layer. Without augmented cues, Yang

et al.[29] propose a bidirectional network that separately

predicts reflection and transmission layers, and then uses

the predicted reflection to estimate the transmission layer

in the second step. To exploit low-level and high-level im-

age information, Zhang et al.[31] introduce two perceptual

losses and an exclusion loss into a fully convolutional net-

work. However, all the above methods suffer from the linear

image synthesis model, preventing these methods from gen-

eralizing to different real-world scenarios. Although two

reflection datasets [24, 31] have been proposed, they are

too small and captured with a conditioned environment, i.e.,

only one type of reflection. These problems motivate us to

synthesize realistic reflections beyond linearity.

Physically-based reflection models. Some previous

works [9, 17, 27, 21] explore the physical model of reflec-

tion. They regard the reflection model as a non-linear com-

bination of the light reflected off the glass surface and the

light transmitted through the surface. The imaging process

is also determined by the angle between the incoming light

and the surface. In the same time, according to the Malus’s

law [6], when an reflection image is taken by the polarizer,

the amount of light is also changed by the angle between the

polarization direction of the incoming light and the trans-

mission axis of the polarizer. All these factors result in dif-

ferent type of reflections.

Following the above rules, some physically-based reflec-

tion removal methods use simplified models for specific

scenarios. Kong et al.[9] require a series of three polar-

ized images in the same scene, each captured with a differ-

ent polarizer angle. However, they assume that thickness

of the medium is thin enough, thus ghosting effect is not

considered in this model. In contrast, Shih et al.[18] fo-

cus on the ghosting reflection. They regard the reflection

as double layers. One layer is the primal reflection layer,

and the other one is a spatially shifted and attenuated im-

age of the former. Due to this characteristic, it models the

ghosting effect using a double-impulse convolution kernel

and removes the reflection with a Gaussian Mixture Model.

Although the physically-based methods model reflections

accurately, they are limited to specific cases. On the con-
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Figure 2: Three types of reflection examples. The first row

shows the real examples and the second row shows our syn-

thesized images. The proposed synthesis method is able to

simulate all the three types of reflections.

trary, we leverage the physical reflection model from a data

synthesis aspect, creating realistic and diverse training data.

3. SynNet: the Synthesis Network

To inject non-linearity into the synthesis process, we

rewrite Eq. (1) as follows:

S = W ◦ T + (1−W ) ◦ (K ⊗R), (2)

where ◦ is a element-wise multiply operator. W ∈
[0, 1]

m×n×3
denotes the alpha blending mask, which is

a non-constant matrix that weighs the contribution of the

transmission layer at each pixel. Each layer combined with

the alpha blending mask is to simulate the intensity of the

physical light from the corresponding objects. In the real

world, the kernel K have different forms according to the

thickness of the glass or the angle between the incoming

light and the surface [24]. According to different scenarios,

reflection can be roughly categorized into three types, fo-

cused reflection, defocused reflection, and ghosting reflec-

tion. These criteria are the principles to our data collection

and synthesis processes.

3.1. Reflection Types and Data Collection

Focused Reflection. When the object behind the glass

and the reflected object are in the same focal plane, the re-

flection layer will be as sharp as the transmission layer in

the reflection image. In this case, the kernel K is consid-

ered as a one-pulse kernel. To prevent intensity overflow,

some works [25, 28] scale down the light of the two lay-

ers linearly by a constant. Both two layers of this type of

reflection look sharp, and thus they are difficult to separate

by human eyes. Fig. 2 (a) shows an example of focused

reflection.

Defocused Reflection. In most reflection images, they

are captured from a certain distance to the camera, and

therefore the reflected objects are usually out of focus when

the object behind the glass is in the focal plane. In this case,

the reflection layer is blurry and smoother than the trans-

mission layer. Most linear blending methods [29, 31, 2]

model this type of reflection images by setting the kernel K

as a Gaussian kernel to simulate the blurry reflection. A real

defocused reflection image is shown in Fig. 2 (b).

Ghosting Reflection. For the two above types, we as-

sume the thickness of the medium, such as a glass, is thin

enough to regard it as single-surface. However, when the

thickness is non-negligible, we should take the refraction

into consideration, as it will cause the quadric reflection

with shifting. To model this ghosting reflection, Shih et al.

[18] set the kernel K as a two-pulse kernel which is called

the ghosting kernel. Fig. 2 (c) shows an real ghosting re-

flection example.

To simulate the above typical types of reflections, we

collect 1109 real-world reflection images (each type has

306, 672, 131, respectively) for training the synthesis net-

work SynNet. We denote this real reflection dataset as ℜ.

3.2. Network Structure

The network structure of the proposed SynNet is shown

in Fig. 3. SynNet has an encoder-decoder structure [14, 15].

It takes a six-channel image as input, by concatenating two

real-world clean images. The former three channels are

treated as the transmission layer, and the latter are the re-

flection layer that preprocessed by the kernel K. Both en-

coder and decoder contain three convolutional layers. In the

middle of them, we add nine residual blocks [5] to enrich

the reflection features representations. All convolution lay-

ers are followed by an InstanceNorm layer [23] and ReLU

activation, except the last layer followed by the Sigmoid ac-

tivation function to scale the output into [0, 1]. The network

outputs a three-channel alpha blending mask.

3.3. Objective Function

The objective function of SynNet contains two terms: an

adversarial loss and a smoothness loss.

Adversarial Loss. As there is no paired data for the

synthesis training process, involving an adversarial loss is

arguably the best solution. We use the collected real data of

three reflection types as the real samples for training the dis-

criminator. Note that we do not directly synthesize the re-

flection data, as it is impossible to control the output reflec-

tion type. Instead, we synthesize the alpha blending mask,

so that all the three types can be generated and they can be

used to train the network properly. The loss for the discrim-

3773



C

9

Transmission

Layer

Reflection

Layer

Alpha Blending Mask

Smoothness Loss

Synthetic Image

Adversarial Loss

Concatenation

Operator

Real-world 

Reflection Image

Conv+Norm+ReLU Deconv+Norm+ReLU/Sigmoid ResNet Block

Figure 3: The proposed synthesis network SynNet. The symbol ⊛ denotes the blending operator of Eq. (2). Instead of directly

synthesizing the reflection image, we synthesize the alpha blending mask. With a different choice of the blurring kernel, the

proposed network can be controlled to generate different types of reflections.

inator D is defined as:

LD =
∑

I,S∈ℜ

logD(I) + log(1−D(S)), (3)

where D(x) is the probability that x is a real reflection im-

age, I denotes the real-world image and S is our synthe-

sized images. According to [3], we optimize the network

with only the first term in Eq. (3). The adversarial loss is

then defined as:

Ladv =
∑

S∈ℜ

−log(D(S)). (4)

Smoothness Loss. We add a smoothness loss Lsmooth

as an augmented loss to avoid the value mutation in the al-

pha blending mask, which will cause the unexpected color

change in the synthetic image. This loss is to encourage

the spatial smoothness, which is also used some other im-

age processing applications like super-resolution [7]. The

smoothness loss is defined as:

Lsmooth =
∑

S∈ℜ

∑

i,j

‖Wi+1,j −Wi,j‖1 + ‖Wi,j+1 −Wi,j‖1,

(5)

where Wi,j denotes the pixel value of the alpha blending

mask.

Overall, our objective function of SynNet is:

Lsyn = w1Ladv + w2Lsmooth. (6)

We heuristically set w1 = 1 and w2 = 10 to balance the

contribution of each term.

During training, the kernel K is selected among three

reflection types according to the statistic (2.34 : 5.13 : 1)

of the collected data. In this way, the proposed network

generates a W , which can be combined with a kernel K

to simulate Eq. (2) with different types of reflections. Fig.

2 shows a comparison for the synthesized reflections and

the real ones. We can see that the generated images show

similar reflection features to the real reflection images.

4. RmNet: the Removal Network

Given a large amount of synthetic data S, we propose a

cascaded network for reflection removal.

4.1. Network Structure

The architecture of the proposed network is shown in

Fig. 4. It is a three-stream structure with one encoder and

three decoders, and each layer of the encoder have skip-

connections to the corresponding layers of all the three de-

coders. For the decoder, there are six convolutional layers

with the kernel size of 4 × 4 and stride-2. Each layer is fol-

lowed by the InstanceNorm layer and a Leaky ReLU activa-

tion function (slope is 0.2). For the decoders, there are six

(de)convolutional layers with the kernel size of 4 × 4 and

stride- 1
2

. Similarly, they are followed by the InstanceNorm

layer and ReLU activation function.

Each decoder corresponds to predict a different output

image. Two of them estimate the transmission and reflec-

tion images. These are the basic elements of the reflection

removal task. On the other hand, our synthesized images

are constructed by the alpha blending masks, and therefore

they can be treated as the ground truth for supervising the

RmNet to produce the alpha blending mask as an additional

output. In this way, all the three outputs can be united to

reconstruct the input reflection image. This makes the net-

work an closed loop, and allowing a new reconstruction loss
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Figure 4: The proposed reflection removal network RmNet. The symbol ⊛ denotes the blending operator of Eq. (2). We

involve the alpha blending mask as the side output, making the training a closed loop. Therefore, our network can be trained

with a reconstruction loss.

for training.

4.2. Objective Function

The objective function of RmNet contains three terms: a

pixel loss, a gradient loss, and a reconstruction loss.

Pixel Loss. To ensure the outputs as similar to the

ground truth as possible, we utilize L1 loss to measure the

pixel-wise distance between them. Our pixel loss is defined

as:

Lpixel =
∑

T,R,W∈S

‖T − T ∗‖
1
+‖R−R∗‖

1
+‖W −W ∗‖

1
,

(7)

where the T ∗, R∗,W ∗ are the predicted transmission, re-

flection layer, and the alpha blending mask, respectively.

Gradient Loss. For an reflection image, the gradients

are consistent in the transmission images, while the gradi-

ents vary in the reflection images [13, 4]. We use the Sobel

operator to extract the gradient images for the transmission

layer. Then we compare the predicted transmission with its

ground truth in gradient domain to keep the same gradient

distribution. We obtain both the horizontal and vertical gra-

dients, and our gradient loss is defined as:

Lgrad =
∑

T∈S

‖Gx(T )−Gx(T
∗)‖

1
+‖Gy(T )−Gy(T

∗)‖
1
,

(8)

where Gx() and Gy() are vertical and horizontal Sobel op-

erators respectively.

Reconstruction Loss. Different from existing reflec-

tion removal networks, we introduce a new loss to the pro-

posed network, named reconstruction loss. Due to the ad-

ditional predicted alpha blending mask, we can re-compose

the three outputs of RmNet according to Eq. (2). It is intu-

itive that the re-composed reflection image should be sim-

ilar to the original input, if the network is trained properly.

For the reconstruction loss, we measure the perceptual dis-

tance between the recombined image and the input image.

Both the images are fed to a VGG19 network F (·), and the

reconstruction loss is defined as:

Lreconstr =
∑

S∈S

‖F (S)− F (S∗)‖
1
, (9)

where S∗ is the recombined image.

Overall, our object function of RmNet is:

Lrm = w1Lbasic + w2Lgrad + w3Lreconstr. (10)

We heuristically set w1 = 100, w2 = 50 and w3 = 100.

5. Experiments

We implement the proposed two networks in Pytorch on

PC with a Nvidia Geforce GTX 1080 Ti GPU. Every net-

works are trained for 130 epoches with a batch size of 10,

using the Adam optimizer [8] with a learning rate of 0.0002.

To generate our synthetic training data, we collect 4000 im-

ages from Flickr randomly to form the transmission and re-

flection layers, and they are randomly blended to generate
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Figure 5: Qualitative comparisons on our synthetic testing set. We show three types of reflection images generated by our

SynNet. State-of-the-art models cannot address all the scenarios.

Table 1: Comparison of the generated reflection images

with respect to the inception score.

[31] [2] [29] Real Ours

Inception 1.138 1.194 1.134 - 1.272

Score ± 0.034± 0.042± 0.044 - ± 0.037

Accuracy 78.00% 86.67% 74.00% 97.33% 93.33%

the reflection images. We also involve the real-world paired

training data from Zhang et al.[31] and SIR2 datasets [24].

Note that when we train RmNet on these two real-world

datasets, we discard the losses of the reflection layer and

alpha blending mask. This is because they cannot capture

the ground truth reflection layers.

We evaluate the proposed network on four testing sets.

Two real-world testing sets from Zhang et al.[31] and

SIR2. The former one contains 20 testing reflection im-

ages, and the latter one we select 55 testing reflection im-

ages from the wild scene subset (this is the only subset with-

out overlapped images). Furthermore, we construct another

synthetic testing set, which includes 300 reflection images

in three different types (1:1:1). The above three testing sets

contain ground truth transmission layers. We also construct

a real-world reflection dataset with 25 images from the In-

ternet, without any transmission ground truth, for qualita-

tive evaluations and user study.

5.1. Comparison to State­of­the­arts

We compare the proposed RmNet to three state-of-the-

art deep models: CEILNet [2], Zhang et al.[31], and BDN

[29].

5.1.1 Quantitative Evaluations

Reflection generation. Evaluating images generated by

a GAN is challenging. Here we use the inception score [16]

to assess the quality of our synthesis method and existing

linear combination methods. In particular, we re-train the

inception v3 network [20] on the real-world reflection im-

ages and non-reflection images. Then we randomly select

300 images from Flickr, and these images are served as the

foreground and background image pairs for data synthesis

using different methods (i.e.CEILNet [2], Zhang et al.[31],

BDN [29], and ours). All the methods use the same 150

pairs of images for synthesis, and they are evaluated by the

re-trained inception v3 network. Table 1 shows the incep-

tion score and the accuracy of each synthetic set. Note that
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Figure 6: Qualitative comparisons on the dataset collected by Zhang et al.[31].

Table 2: Quantitative evaluations on three testing sets. We further show the performances on three different types of synthetic

images. The proposed method is able to achieve the best (marked in red) or the second best (marked in blue) performances

on either the real-world or synthetic data.

Zhang et al.[31] SIR2 [24] Syn. Focused Syn. Defocused Syn. Ghosting Syn. All

Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CEILNet [2] 18.555 0.725 19.727 0.781 14.365 0.636 14.171 0.664 14.721 0.662 14.339 0.656

[2] fine-tuned 16.753 0.711 17.663 0.740 19.524 0.742 20.122 0.735 19.685 0.753 19.777 0.743

Zhang et al.[31] 20.744 0.784 24.271 0.868 12.345 0.602 11.317 0.570 12.909 0.635 12.231 0.605

[31] fine-tuned 18.032 0.737 20.265 0.835 17.090 0.712 18.108 0.758 17.882 0.738 17.693 0.736

BDN [29] 18.136 0.726 20.866 0.806 14.258 0.632 14.053 0.639 14.786 0.660 14.301 0.652

Ours 21.283 0.818 23.707 0.855 21.064 0.770 22.896 0.840 21.008 0.780 21.656 0.796

the accuracy shows the percentage of the synthetic images

classified as the real-world ones in each set. We can see

that the proposed synthetic method outperforms all the lin-

ear methods, achieving a closer performance to the real im-

ages. Some reflection synthesis examples can be found in

Fig. 5.

Reflection removal. We also evaluate the proposed re-

moval method on three testing sets with respect to PSNR

and SSIM. The quantitative results are shown in Table 2.

First, we compare the proposed method on two standard

benchmarks, SIR2 [2] and Zhang et al.[31]. These two

datasets are collected in a similar way, and thus the re-

flection images show similar reflection type. The proposed

method achieves the best on Zhang et al.[31], and the sec-

ond best on SIR2 [2]. For our synthetic dataset, we fur-

ther separate it to three different reflection types. Interest-

ingly, we can see all the methods perform better on the de-

focused type. This is similar to human, as the transmission

and reflection layers show different imaging features (clear

vs. blurry), so that they can be easier separated. The pro-

posed method performs the best on all the three scenarios.

These results demonstrate that the proposed method is able

to handle different types of reflections, either they are real

Table 3: User study on the removal results. The preference

rate shows the percentage of users that prefer our results

over the competitor.

Preference rate

Ours > CEILNet [2] 84.6%
Ours > Zhang et al.[31] 73.8%

Ours > BDN [29] 78.7%

or synthetic.

In Table 2, we also show the fine-tuned results of CEIL-

Net [2] and Zhang et al.[31] (BDN [29] does not pro-

vide training codes) on our synthetic training set. Surpris-

ingly, fine-tuned with our synthetic data decreases the per-

formance on the datasets of SIR2 [2] and Zhang et al.[31].

This is mainly because these two datasets constructed with a

similar type of reflections, and training with the other types

may leading to learning ambiguity. On the other hand, state-

of-the-art methods cannot achieve as good performance as

ours in the synthetic test set. This demonstrates the impor-

tance of predicting alpha blending mask and the supervision

of the reconstruction loss.
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Input CEILNet [2] Zhang et al.[31] BDN [29] Ours

Figure 7: Qualitative comparisons on real-world reflection images collected from the Internet.

5.1.2 Qualitative Evaluations

Fig. 5 shows results on our synthetic dataset. We show

three types of reflections and their corresponding reflection-

free images. It can be seen that the proposed method is able

to handle different types of reflections, while state-of-the-

arts fail to remove reflections on all the three types. In Fig.

6, we also show the results on the dataset collected from

Zhang et al.[31]. This dataset mainly simulates the focused

reflection, and we achieve comparable performance to the

others on this conditioned scenario.

We also examine the proposed method on the real-world

reflection images collected from the Internet. These results

are mainly used for conducting a user study. For each eval-

uation, we compare our method to one competitor (three in

total) on these real-world reflection images following the

set of Zhang et al.[31]. Each user is presented with an orig-

inal reflection image, our predicted transmission layer and

the transmission layer by the competitor. The user needs to

choose the image which is more like the reflection-free im-

age. There are 25 real-world reflection images presented in

the comparisons. The user study results are shown in Table.

3. The results are statistically significant with p < 10−3

and 30 users participate in the user study. Some examples

are also shown in Fig. 7.

5.2. Ablation Study

For better analysing the objective function of RmNet, we

remove three losses one by one. We re-train new models

with the modified losses. The ablation study is shown in

4. We observe that Lreconstr and Lgrad enhance the gen-

erality of RmNet in both the real-world and synthetic cases,

and both the losses show different contributions to the re-

moval performance. Our complete objective function show

the best results.

Table 4: Ablation studies on three testing sets. Each loss

contributes to the reflection performance, while combining

all of them achieves the best result.

Zhang et al.[31] SIR2 [24] Syn. All

Model PSNR SSIM PSNR SSIM PSNR SSIM

Lpixel only 18.684 0.727 20.833 0.780 19.413 0.762

w/o Lreconstr 19.029 0.752 21.011 0.805 20.274 0.774

w/o Lgrad 19.303 0.748 21.276 0.813 20.229 0.766

Complete 21.283 0.818 23.707 0.855 21.656 0.796

6. Conclusion

In this paper, we revisit the linear combination problem

of single image reflection removal. Particularly, we develop

a reflection synthesis network to predict a non-linear alpha

blending mask. In this way, it is able to generate images

with different reflection types. Based on the synthesized

diverse data, we propose a multi-branch reflection removal

network. This network predicts the alpha blending mask as

the side output, which makes the training a closed loop, so

that it can be supervised by the reconstruction loss. Quanti-

tative and qualitative evaluations on four datasets show that

the proposed method is able to handle different types of

reflections and outperform the state-of-the-arts in both the

real-world and synthetic scenarios.

Acknowledgements. This project is supported by the Na-

tional Natural Science Foundation of China (No. 61472145,

No. 61702104, and No. 61702194), the Innovation and Tech-

nology Fund of Hong Kong (Project No. ITS/319/17), the Spe-

cial Fund of Science and Technology Research and Development

on Application From Guangdong Province (SF-STRDA-GD) (No.

2016B010127003), the Guangzhou Key Industrial Technology Re-

search fund (No. 201802010036), and the Guangdong Natural

Science Foundation (No. 2017A030312008).

3778



References

[1] Nikolaos Arvanitopoulos, Radhakrishna Achanta, and
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