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Figure 1. Goal of LFM (Light Field Messaging): embed a message within an image or video, display the image/video on-screen, photograph

it with a handheld camera, and recover the hidden message. LFM significantly outperforms other synchronization-free steganography

techniques for camera-display messaging in message bit recovery error (BER). Our code and dataset are available here [1].

Abstract

We develop Light Field Messaging (LFM), a process of

embedding, transmitting, and receiving hidden information

in video that is displayed on a screen and captured by

a handheld camera. The goal of the system is to mini-

mize perceived visual artifacts of the message embedding,

while simultaneously maximizing the accuracy of message

recovery on the camera side. LFM requires photographic

steganography for embedding messages that can be dis-

played and camera-captured. Unlike digital steganography,

the embedding requirements are significantly more chal-

lenging due to the combined effect of the screen’s radio-

metric emittance function, the camera’s sensitivity function,

and the camera-display relative geometry. We devise and

train a network to jointly learn a deep embedding and re-

covery algorithm that requires no multi-frame synchroniza-

tion. A key novel component is the camera display transfer

function (CDTF) to model the camera-display pipeline. To

learn this CDTF we introduce a dataset (Camera-Display

1M) of 1,000,000 camera-captured images collected from

25 camera-display pairs. The result of this work is a high-

performance real-time LFM system using consumer-grade

displays and smartphone cameras.

1. Introduction

In Light Field Messaging (LFM), cameras receive hid-

den messages from electronic displays concealed within or-

dinary images and videos. There are many applications

for visually concealed information including interactive vi-

sual media, augmented reality, road signage for self-driving

cars, hidden tags for robotics, privacy-preserving commu-

nication, and tagged digital artwork. When the hidden mes-

sage is recovered from on-screen images, the task has sig-

nificant challenges and is fundamentally different from the

traditional task of steganography. The conversion of a digi-

tal image into a light field depends on the characteristics of

the electronic display such as the spectral emittance func-

tion and spatial emitter pattern. Similarly, the transforma-

tion of light field to image depends on the camera pose, sen-

sitivity curves, spatial sampling, and radiometric response.

Our unique approach is to learn the entire pathway as a sin-

gle camera-display transfer function (CDTF) modeled by a

supervised deep network. This CDTF component is then

used in a larger network that maximizes the accuracy of the

camera-recovered message, while minimizing the perceived

artifacts in the observed display image.

Steganography in prior years referred almost exclusively

to the digital domain where images are processed and trans-

ferred as digital signals [3]. The classic methods for digital

steganography range from simple alteration of least signif-

icant intensity bits to more sophisticated fixed-filter trans-

form domain techniques [4]. Recent work has moved the

prior fixed filter approaches to incorporate modern deep

learning [2]; but these methods are designed for digital

steganography and fail completely for the task of light field

messaging as illustrated in Figure 2.

In this paper, we propose a single-shot end-to-end photo-

graphic steganography algorithm for light field messaging.

Our method is comprised of: a CDTF network to model
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Figure 2. Digital steganography methods such as Baluja [2] are not suitable for photographic steganography. The distorting effect of the

light field transfer, as characterized by the camera-display transfer function (CDTF), destroys the information steganographically encoded

in carrier image pixels. We compare the digital steganography methods introduced by Baluja (top) with our proposed photographic

steganography method (bottom). Unlike previous methods, the proposed method includes a model of the CDTF within the training pipeline

so that a learned steganographic function for embedding and recovery is robust to CDTF distortion.

the camera and display without radiometric calibration; an

embedding network to optimally embed the message within

an image; and a message recovery network to retrieve the

message on the camera side. An important attribute of our

approach is single-frame operation so that no temporal syn-

chronization between camera and display is needed, greatly

increasing the practical utility of the method. We assume

that properties of the camera hardware, display hardware,

and radiometry are not known beforehand. Instead, we de-

velop a training dataset Camera-Display 1M with over one

million images and 25 camera-display pairs, to train a neu-

ral network to learn the representative CDTF. This approach

allows us to train the embedding network independently

from the representative CDTF. The proposed photographic

steganography algorithm learns which features are invariant

to CDTF distortion, while simultaneously preserving per-

ceptual quality of the carrier image.

The main contributions in this paper are: 1) a photo-

graphic steganography algorithm based on deep learning ar-

chitectures; 2) development of a new paradigm for camera-

display imaging systems, CDTF-network; 3) Camera-

Display 1M: a dataset of 1,000,000 camera-captured images

from 25 camera-display pairs.

2. Related Work

Single vs. Dual Channel Light field messaging, also

known as camera-display or screen-camera communication,

has been addressed by both the computer vision and the

communications literature. Early systems in the communi-

cations area concentrate on the screen-camera transfer and

do not seek to hide the signal in a display image [5, 6, 7, 8].

In computational photography, single channel systems have

been developed for structured light [9] that develop opti-

mal patterns for projector-camera systems. In the com-

puter vision community, the theme of communicating hid-

den information in displayed images started with Visual

MIMO [10, 11] and continued in other recent work such

as InFrame[12, 13, 14, 15] and DisCo [16]. In these dual-

channel methods, consistent with our approach, the display

conveys information via human observation and the hid-

den channel transmits independent information via camera-

captured video. Prior dual channel methods use fixed fil-

ter message embedding using either multiresolution spatial

embedding or temporal embedding that requires high fre-

quency displays and high-speed cameras to take advantage

of human limitations in perceiving high frequency changes

[13, 16, 17].
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Original Images Pixel 2 & Basler Logitech c920 iPhone 8 & Basler

Samsung 2494SJ acA2040-90uc & Insignia Acer Predator acA1300-30uc

& Acer S240ML NS-40D40SNA14 XB271HU & Dell 1707FPt

Figure 3. Camera-Display 1M examples: Our dataset contains over 1 million images collected from 25 camera-display pairs. Each column

corresponds to a different camera-display pair (5 of 25 are shown). Camera properties (spectral sensitivity, radiometric function, spatial

sensor pattern) and display properties (spatial emitter pattern, spectral emittance function) cause the same image to appear significantly

different when displayed and captured using different camera-display hardware. (Best viewed as zoomed-in PDF.)

Early Steganography The early work of classic image-

processing steganography can be divided into spatial and

transform domain techniques. A simple and common form

of spatial domain image steganography involves altering the

least significant bits (LSBs) of carrier image pixels to en-

code a message [18]. Small variations in pixel values are

difficult to detect visually and can be used to store rela-

tively large amounts of information [19]. In practice, sim-

ple LSB steganography is not commonly used because it

is easy to detect and requires lossless image compression

techniques [20]. More sophisticated LSB methods can be

used in conjunction with various image compression tech-

niques such as graphics interchange format (GIF) and JPEG

for more complex and difficult to detect steganography [18].

Transform domain techniques of traditional steganography

embed using fourier, wavelet, and discrete cosine tranforms

[21, 20, 22, 23]. While there is a large body of work in the

steganography literature, the methods use fixed filters and

these digital methods are not robust to the light transmis-

sion in LFM.

From Fixed Filter to Deep Learning In recent years, a

new class of image steganography algorithms has emerged

that utilize deep convolutional neural networks. Pibre et al.

[27, 28] and Qian et al. [29] demonstrate that deep learn-

ing using jointly learned features and classifiers often out-

perform more established methods of steganalysis that use

hand selected image features. Structured neural learning

approaches have been explored that integrate classic im-

age and transform domain steganography techniques, such

as LSB selection in a carrier image for a text-based mes-

sage [30, 31].

For deep steganography, Baluja [2] uses deep feed-

forward convolutional neural networks that can directly

learn feature representations to embed a message image

into a carrier image. Rather than constraining the net-

work to select pixels in a carrier image suitable for em-

bedding, the end-to-end steganography networks are trained

with constraints that preserve carrier and message image

quality. Hayes et al. devised a similar steganography al-

gorithm based on deep neural networks that utilizes adver-

sarial learning to preserve the quality of the carrier image
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Figure 4. Our steganography model’s deep convolutional network architecture. R() and T () are both constructed with an identical archi-

tecture inspired by U-net for multiscale analysis [24] and Dense blocks for feature reuse [25]. The embedding function E() combines two

images (carrier image and message) into one coded image. E() has a siamese architecture [26] with separate network halves for carrier

image and message. The features for carrier image and message are shared at different scales to ultimately produce a single coded image

output. Each half of the siamese architecture of E() is identical to R().

and limit steganalysis detection [32]. Deep learning ap-

proaches such as these have been extended to include video

steganography [33], high bits per pixel (BPP) embedding

rates [34], resistance to JPEG compression [35], and new

deep learning architectures [36, 37]. While our algorithmic

approach also uses deep steganography, there is a significant

key difference with prior work: we assume our covert mes-

sage will be electronically displayed, transmitted as light in

free space, and then camera-captured. That is, we address

the problem of photographic steganopraphy for LFM that

distinguishes our work from the prior methods (both clas-

sic and deep learning) that address digital steganography.

Figure 2 demonstrates the clear problem in using digital

steganography for LFM: the message cannot be retrieved

accurately from the camera-captured image.

Uniqueness of our Approach Our work is distinct from

prior work in that it simultaneously enables: 1) free

space light communication, i.e. light field messaging, 2)

dual channel communication where the machine-readable

message is hidden from the human, 3) deeply learned

embedding/recovery, 4) single-frame synchronization-free

methodology, and 5) ordinary display hardware with no

high frequency requirements. We are the first to explicitly

model and measure the display-camera connection as well

as build a first-of-its-kind network and database for learning

the coefficients of the camera-display transfer function for

use in experiments.

3. Methods

We define the terms message to refer to the covertly com-

municated payload, carrier to refer to the image used to

hide the message, and coded images to refer to the com-

bined carrier image and hidden message. Our approach has

3 main components:

• E(): a network that hides a message in a carrier image;

• R(): a network that recovers the message from the

coded image;
• T (): a network that simulates the distorting effects of

camera-display transfer (CDTF).

We denote the unaltered carrier image ic, the unaltered mes-

sage im, the coded image (carrier image containing the hid-

den message) i′c, and our recovered message i′m. Lc and Lm

represent generic norm functions used for image and mes-

sage loss, respectively. We wish to learn the functions E()
and R() such that:

minimize Lc(i
′

c − ic) + Lm(i′m − im)

subject to E(ic, im) = i′c

R(i′c) = i′m

(1)

In other words, our objective is to simultaneously minimize

the distortions to the carrier image and minimize message

recovery error. However, this simple formulation will not

yield a solution to our problem. A naively trained steganog-

raphy network will likely learn an embedding function E()
that encodes a message in carrier image LSBs [2]. LSB

encoding will be overly distorted by the CDTF, yielding

large message recovery errors [38]. Instead, we introduce
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LFM Trained Without T () LFM Trained With T ()

Encoded Image

Residual (i′c − ic)

Recovered Message

46.39% BER 1.17% BER
Figure 5. Coded images generated using the same carrier image

and message, produced with two otherwise identical steganogra-

phy architectures: Left: trained without the CDTF; Right: trained

with T () to model CDTF. The per-pixel changes (ic − ic′) in

the two middle images are multiplied ×50 for visibility. Notice

the significant changes to coded image appearance that our pho-

tographic steganography model learns that anticipate the CDTF

(right). This experiment was performed using the Pixel 2 camera

and Acer Predator XB271HU display.

a third function T () that simulates CDTF distortion. If

ic represents an unaltered carrier image, and i′c represents

a coded image, let i′′c represent a coded image that has

passed through the CDTF approximated by T (), such that

λT = 0 λT = 0.001 λT = 0.01
Figure 6. Examples of coded images generated by our photo-

graphic steganography model with various perceptual loss weights

in training. As the perceptual quality metric λT is increased, the

image becomes sharper and has fewer color shift errors. If λT is

too large, BER increases, as is the case when λT = 0.01. (Best

viewed as zoomed-in PDF)

T (i′c) = i′′c . Now we denote a new objective:

minimize Lc(i
′

c − ic) + Lm(i′m − im)

subject to E(ic, im) = i′c

T (i′c) = i′′c

R(i′′c ) = i′m

(2)

The CDTF function T () must represent both the pho-

tometric and radiometric effects of camera-display trans-

fer [38]. This is accomplished by training T () using a large

dataset of images electronically-displayed and then camera-

captured using several combinations of cameras and dis-

plays. This training procedure is detailed in Section 4. After

T () is trained, the steganography networks E() and R() are

trained, using T () as a fixed constraint.

Network Architecture Recent trends in deep learning

architectures have been to go deeper [39], with more

connections between layers [25], and operate at multiple

scales [24]. The proposed steganography networks draw

heavily from the aforementioned architectures. The 3 net-

works E(), R(), and T () all feature dense blocks with fea-

ture maps at different scales in the shape of U-Net. Only

E(), the network used for embedding, features a siamese

architecture [26]. One half of the network is directly linked

to the carrier image ic, while the other half is directly linked

to the payload image im, and produces a single output i′c.

The outputs from each pair of blocks are concatenated and

passed to subsequent blocks. The network architecture can

be seen in Fig 4. See the supplementary material for further

details of network architecture such as convolutional layer

sizes.

Perceptual Loss Broadly, our photographic steganogra-

phy method has 2 goals: 1) maximize message recovery;

and 2) minimize carrier image distortion. For coded im-

age fidelity, our objective function uses the L2-norm to

measure the difference between ic and i′c. In prior work,

photo-realistic image generation using deep neural net-

works was accomplished with perceptual loss metrics in
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Camera-Captured Image Recovered Message

Overexposed

7.42% BER

Auto-exposed

0.78% BER

Underexposed

0.29% BER
Figure 7. Our approach is robust to modifications of camera ex-

posure, yielding low BER for multiple settings. Underexposure

performs better than overexposure because the message cannot be

recovered from the saturated snow pixels in the overexposed im-

age. This experiment was performed using the Pixel 2 camera and

Acer Predator XB271HU display.

training [40, 41, 42]. The validity of these perceptual loss

metrics have been well established [43]. As is common

when training neural networks that produce images as out-

put [44], our perceptual loss metric also includes quality

loss. Quality loss is calculated by passing ic and i′c through

a trained neural network for object recognition, in this case

VGG [45], and minimizing the difference of feature maps

at several depths [46].

Single Frame Advantage Previous photographic

steganography methods such as Visual MIMO [15, 38, 17]

and DisCo [16] rely on temporal processing to isolate car-

rier image content (static) from message content (dynamic).

Synchronization issues make this approach difficult in prac-

tice. Each display is operating at a frequency independent

from each camera and there is no synchronization between

camera and display. Even when a camera and display begin

in-phase and at complementary frequencies, small changes

in operating frequency, lag from computational load,

screen-tearing, and rolling-shutter can all cause the system

to quickly fall out of sync. The advantage of using a single

frame for embedding is that the temporal synchronization

problem is avoided.

3.1. Camera­Display 1M Dataset

We present Camera-Display 1M, a dataset containing

over 1 million images collected using 25 camera-display

pairs. Images from the MSCOCO 2014 training and val-

idation dataset [47] were displayed on five electronic dis-

plays, and then photographed using five digital cameras.

The five electronic displays used are the Samsung 2494SJ,

Acer S240ML, Insignia NS-40D40SNA14, Acer Predator

XB271HU, and Dell 1707FPt. The five cameras used are

the Pixel 2 smartphone, Basler acA2040-90uc, Logitech

c920 webcam, iPhone 8 smartphone, and Basler acA1300-

30uc. The chosen hardware represents a spectrum of com-

mon cameras and displays. To achieve a set of 1M im-

ages, 120,000 images of MSCOCO were chosen at random.

Each camera-captured image is cropped, warped to frontal

view, and aligned with its original. The measurement pro-

cess was semi-automated and required software control of

all cameras and displays. The time-consuming acquisition

process has produced a comprehensive dataset that will be

made publicly available [1] along with the trained CDTF

network parameters. See Figure 3 for examples of how dif-

ferent hardware in the imaging pipeline significantly alters

the appearance of the same images.

3.2. Training T ()

The network T () is trained using 1,000,000 image pairs,

iCOCO representing the original image and iCDTF rep-

resenting the same image displayed and camera-captured.

These images used for training are MS-COCO images [47]

that are rendered on an electronic display and then camera-

captured using 25 camera-display pairs. The objective of

T () is to simulate CDTF distortion by outputting iCDTF

given iCOCO as input. The objective function we wish to

minimize is:

Tloss =L2(iCOCO − iCDTF )+

λT ∗ L1(V GG(iCOCO)− V GG(iCDTF )).
(3)

We include a perceptual loss regularizer for T () to preserve

the visual quality of the network output i′′c . The percep-
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Pixel 2 & Basler Logitech c920 iPhone 8 & Basler

Samsung 2494SJ acA2040-90uc & Insignia Acer Predator acA1300-30uc

& Acer S240ML NS-40D40SNA14 XB271HU & Dell 1707FPt

LFM without T (), frontal 49.961% 50.138% 50.047% 50.108% 50.042%

LFM with T (), 45◦(ours) 29.807% 15.229% 10.217% 5.1415% 10.01%

LFM with T (), frontal (ours) 10.051% 6.5809% 10.333% 5.0732% 4.8305%

Table 1. BER for various camera-display pairs (lower is better). One thousand randomly generated 32 × 32 (1024-bit) messages were

embedded into one thousand previously unused MSCOCO images. Message recovery was evaluated using 5 cameras and 5 displays. The

distances between camera and display range from 23cm to 4.3 meters. The table shows the mean BER for each camera-display pair. While

0% BER would be a perfectly recovered message, 50% BER corresponds to randomly classified bits. Each device was operated with its

default manufacturer settings for normal use.

tual loss weight λT is 0.001. T () is trained for 2 epochs

using the Adam optimizer with a learning rate of 0.001, be-

tas equal to (0.9, 0.999), and no weight decay [48]. Total

training time was 7 days.

3.3. Training E() and R()

The networks E() and R() are trained simultaneously

using 123,287 images from MS-COCO [47] for ic, and

123,287 messages for im. The objective of E() is to pro-

duce a coded image i′c that is visually similar to ic, and

encodes all the information from im such that it is robust

to CDTF distortion. The objective of R() is to recover all

information in im despite CDTF distortion. The objective

functions we wish to minimize are:

Eloss =L2(ic − i′c)+

λE ∗ L1(V GG(ic)− V GG(i′c)).

Rloss =φ ∗ L1(im − i′m)

(4)

Again here, we include a perceptual loss regularizer for E()
to preserve the visual quality of the network output i′c. The

perceptual loss weight λE is 0.001, and the message weight

φ = 128. E() and R() are trained for 3 epochs using the

Adam optimizer with a learning rate of 0.001, betas equal

to (0.9, 0.999), and no weight decay [48, 49]. Total train-

ing time was 18 hours. The networks E(), R(), and T ()
were all trained using PyTorch 0.3.0 with an Nvidia Titan X

(Maxwell) compute card [50].

4. Experiments and Results

To study the efficacy of our approach, we constructed

a benchmark with 1000 images, 1000 messages, and 5
camera-display pairs. The images are from the MSCOCO

2014 test dataset, and each message contained 1024 bits.

Two videos were generated, each containing 1000 coded

images embedded using a trained LFM network, one trained

with T () and one without. As shown in Table 1, the pro-

posed LFM algorithm trained with T () achieved 7.3737%
BER, or 92.6263% correctly recovered bits on average

for frontally photographed displays. The same algorithm

achieved 14.0809% BER when camera and display were

aligned at a 45 deg angle. The example in Figure 5 illus-

trates the differences between coded images i′c generated

with and without the CDTF network T () in the training

pipeline. All BER results in this paper are generated with-

out any error correcting codes or radiometric calibration be-

tween cameras and displays.

We wish to understand the effects of perceptual loss in

our steganography model. In particular, we examine the

effects of λT by varying its weight in the loss function dur-

ing training. Figure 6 features an ablation study of the ef-

fects of perceptual loss. Figure 8 features an example of the

same image and message camera-captured at different an-

gles. The LFM algorithm trained without T () is analogous

to digital steganography deep learning techniques, and was

unable to successfully recover coded messages even when

frontally viewed, the simplest case. Figure 5 illustrates the

difference that the inclusion of T () in LFM training makes.

Without T (), the message is encoded as small per-pixel

changes that are near-uniform across the image. With T (),
the message is encoded as patches where the magnitude of

pixel changes varies spatially. We show an empirical sensi-

tivity analysis of camera exposure settings in Figure 7. Our

LFM method is robust to overexposure and underexposure,

provided pixels are not in saturation.

Finially, we motivate the need for photographic

steganography with a comparison to existing methods.

Are existing synchronization-free steganography algo-

rithms such as Baluja [2] sufficient for photographic mes-

sage transfer? As shown in Figure 2, even simple bi-

nary messages are not stably transmitted photographically

using existing methods. Our CDTF simulation function

T () is trained with 25 camera-display pairs, but we want

to know how well T () generalizes to new camera-display

pairs. Using the 1000-image, 1024-bit test dataset, we test

two additional cameras and two additional displays. We

create coded images using various embedding algorithms

and measure message recovery accuracy for each of the four

camera-display pairs. Table 2 shows that LFM trained with

T () significantly outperforms existing methods, even when

camera and display are at a 45◦ angle.
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Sony Cybershot Sony Cybershot Nikon Coolpix Nikon Coolpix

DSC-RX100 & DSC-RX100 & S6000 & S6000 &

Lenovo Thinkpad X1 Apple Macbook Pro Lenovo Thinkpad X1 Apple Macbook Pro

Carbon 3444-CUU 13-inch, Early 2011 Carbon 3444-CUU 13-inch, Early 2011

DCT [51], frontal 50.01% 50.127% 50.001% 49.949%

Baluja [2], frontal 40.372% 37.152% 48.497% 48.827%

LFM without T (), frontal 50.059% 49.948% 50.0005% 49.997%

LFM with T (), 45◦(ours) 12.974% 15.591% 27.434% 25.811%

LFM with T (), frontal (ours) 9.1688% 7.313% 20.454% 17.555%

Table 2. Generalization to new camera-display pairs: Our LFM model generalizes to new camera and display hardware, outperforming

traditional fixed-filter Discrete Cosine Transform (DCT) [51] and deep-learning-based [2] steganography approaches. Here, we show BER

for 1000 1024-bit messages transmitted with 4 new camera-display pairs that were not in the training set.

5. Conclusion

In this paper, we extend deep learning methods for dig-

ital steganography into the photographic domain for LFM

where coded images are transmitted through light, allow-

ing users to scan televisions and electronic signage with

their cameras without an internet connection. This pro-

cess of photographic steganography is more difficult than

digital steganography because radiometric effects from the

camera-display transfer function (CDTF) drastically alter

image appearance [38]. We jointly model these effects as a

camera-display transfer function (CDTF) trained with over

one million images. The resulting system provided embed-

ded messages that are not detectable to the eye and recover-

able with high accuracy.

Our LFM algorithm significantly outperforms existing

deep-learning and fixed-filter steganography approaches,

yielding the best BER scores for every camera-display com-

bination tested. Our approach is robust to camera exposure

settings and camera-display angle, with LFM at 45◦ outper-

forming all other methods at 0◦ camera-display viewing an-

gles. Along with our LFM algorithm, we introduce Camera-

Display 1M, a dataset of 1,000,000 image pairs generated

with 25 camera-display pairs. Our contributions open up

exciting avenues for new applications and learning-based

approaches to photographic steganography.
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30◦ 45◦

Camera-Captured Encoded Image

Frontally Warped

Recovered Message

2.73% BER 11.72% BER
Figure 8. Camera display angle has a significant effect on message

recovery. This experiment was performed using the Pixel 2 camera

and Samsung 2494SJ display. Our LFM method performs well

for oblique views, but experiences a steep dropoff in BER as the

camera-display angle increases.
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