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Abstract

Supervised learning methods to infer (hypothesize) depth

of a scene from a single image require costly per-pixel

ground-truth. We follow a geometric approach that exploits

abundant stereo imagery to learn a model to hypothesize

scene structure without direct supervision. Although we

train a network with stereo pairs, we only require a sin-

gle image at test time to hypothesize disparity or depth. We

propose a novel objective function that exploits the bilateral

cyclic relationship between the left and right disparities and

we introduce an adaptive regularization scheme that allows

the network to handle both the co-visible and occluded re-

gions in a stereo pair. This process ultimately produces a

model to generate hypotheses for the 3-dimensional struc-

ture of the scene as viewed in a single image. When used

to generate a single (most probable) estimate of depth, our

method outperforms state-of-the-art unsupervised monoc-

ular depth prediction methods on the KITTI benchmarks.

We show that our method generalizes well by applying our

models trained on KITTI to the Make3d dataset.

1. Introduction

Estimating the 3-dimensional geometry of a scene is a

fundamental problem in machine perception with a wide

range of applications, including autonomous driving [24],

robotics [32, 43], pose-estimation [41], localization [18],

and scene object composition [17, 26]. It is well-known that

3-d scene geometry can be recovered from multiple images

of a scene taken from different viewpoints, including stereo,

under suitable conditions. Under no conditions, however, is

a single image sufficient to recover 3-d scene structure, un-

less prior knowledge is available on the shape of objects

populating the scene. Even in such cases, metric informa-

tion is lost in the projection, so at best we can use a single

image to generate hypotheses, as opposed to estimates, of

scene geometry.

Recent works [3, 6, 31, 33, 34, 50, 51] sought to exploit

such strong scene priors by using pixel-level depth anno-

tation captured with a range sensor (e.g. depth camera, li-

dar) to regress depth from the RGB image. Cognizant of

the intrinsic limitations of this endeavor, we exploit stereo

imagery to train a network without ground-truth supervi-

sion for generating depth hypotheses, to be used as a refer-

ence for 3-d reconstruction. We evaluate our method against

ground-truth depths via two benchmarks from the KITTI

dataset [13] and show that it generalizes well by applying

models trained on KITTI to Make3d [40].

Rather than attempting to learn a prior by associating the

raw-pixel values with depth, we recast depth estimation as

an image reconstruction problem [12, 14] and exploit the

epipolar geometry between images in a rectified stereo pair

to train a deep fully convolutional network. Our network

learns to predict the dense pixel correspondences (disparity

field) between the stereo pair, despite only having seen one

of them. Hence, our network implicitly learns the relative

pose of the cameras used in training and hallucinates the ex-

istence of a second image taken from the same relative pose

when given a single image during testing. From the dispar-

ity predictions, we can synthesize depth using the known

focal length and baseline of the cameras used in training.

While [12, 14, 49] follow a similar training scheme,

[49] does not scale to high resolution, and [12] uses a

non-differentiable objectives. [14] proposed using two

uni-directional edge-aware disparity gradients and left-right

disparity consistency as regularizers. However, edge-

awareness should inform bidirectionally and left-right con-

sistency suffers from occlusions and dis-occlusions. More-

over, regularity should not only be data-driven, but also

model-driven.

Our contributions are three-fold: (i) A model-driven adap-

tive weighting scheme that is both space- and training-time

varying and can be applied generically to regularizers. (ii) A

bilateral consistency constraint that enforces the cyclic ap-

plication of left and right disparity to be the identity. (iii) A

two-branch decoder that specifically learns the features nec-

essary to maximize data fidelity and utilizes such features to

refine an initial prediction by enforcing regularity. We for-
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mulate our contributions as an objective function that, when

realized even by a generic encoder-decoder, achieves state-

of-the-art performance on two KITTI [13] benchmarks and

exhibits generalizability to Make3d [40].

2. Related Works

Supervised Monocular Depth Estimation. [39] proposed

a patch-based model that combined local estimates with

Markov random fields (MRF) to obtain the global depth.

Similarly, [20, 25, 29, 40] exploited local monocular fea-

tures to make global predictions. However, local methods

lack the global context needed to generate accurate depth

estimates. [34] instead employed a convolutional neural

network (CNN). [30] further improved monocular methods

by incorporating semantic cues into their model.

[5, 6] introduced a two scale network. [31] proposed

a residual network with up-sampling modules to produce

higher resolution depth maps. [3] learned depth using

crowd-sourced annotations and [10] learned the ordinal re-

lations using atrous spatial pyramid pooling. [38] used im-

age patches with neural forests. [27, 50, 51] used condi-

tional random fields (CRF) jointly with a CNN.

Unsupervised Monocular Depth Estimation. Recently,

[9] introduced novel view synthesis by predicting pixel val-

ues based on interpolation from nearby images. [49] mini-

mized an image reconstruction loss to hallucinate the exis-

tence of a right view of a stereo pair given the left by pro-

ducing the distribution of disparities for each pixel.

[12] trained a network for monocular depth prediction by

reconstructing the right image of a stereo pair with the left

and synthesizing disparity as an intermediate step. Yet, their

image formation model is not fully differentiable, making

their objective function difficult to optimize. Unsupervised

methods [14, 37, 57, 58] utilized a bilinear sampler mod-

eled after the Spatial Transformer Network [23] to allow for

a fully differentiable loss and end-to-end training of their

respective networks. Specifically, [14] used SSIM [46] as

a loss in addition to the image reconstruction loss. Also,

[14] predicted both left and right disparities and used them

for regularization via a left-right consistency check along

with an edge-aware smoothness term. [2] trains a Genera-

tive Adversarial Network (GAN) [15] to constrain the out-

put to reconstruct a realistic image to reduce the artifacts

seen from stereo reconstruction. This class of method is

also employed in depth completion [54].

Self-supervised methods [35, 44, 56, 59] used a pose net-

work to learn ego-motion and depth from monocular videos,

while [45, 52] leveraged visual odometry from off-the-shelf

methods [7, 42] and [8] gravity as supervisors. [55] fol-

lowed both unsupervised and self-supervised paradigms by

using stereo video streams and proposed a feature recon-

struction loss. While additional supervision and data are

used to improve predictions, [14] still remains as the state-

of-the-art in the unsupervised setting. Our method follows

the unsupervised paradigm and we show that it not only out-

performs [14], but also [55] who leveraged techniques from

both unsupervised and self-supervised domains.

Adaptive Regularization. A number of computer vision

problems can be formulated as energy minimization in a

variational framework with a data fidelity term and a regu-

larizer weighted by a fixed scalar. The solution found by the

minimal energy involves a trade-off between data fidelity

and regularization. Finding the optimal parameter for regu-

larity is a long studied problem as [11] explored methods to

determine the regularization parameter in image de-noising,

while [36] used cross-validation as a selection criterion for

the weight. [14, 47, 48] used image gradients as cues for a

data-driven weighting scheme. [53] learned regularity con-

ditioned on an image. Recently, [21, 22] proposed that regu-

larity should not only be data-driven, but also model driven.

The amount of regularity imposed should adapt to the fit-

ness of the model in relation to the data rather than being

constant throughout the training process.

We propose a novel objective function using bilateral

cyclic consistency constraint along with a spatial and tem-

poral varying regularization modulator. We show that de-

spite using the fewer parameters than [14], we outperform

[14] and other unsupervised methods. We detail our loss

function with adaptive regularization, in Sec. 3, present

a two-branch decoder architecture in Sec. 4, and specify

hyper-parameters and data augmentation procedures used in

Sec. 5. We evaluate our model on the KITTI 2015, KITTI

Eigen Split, and Make3d benchmarks in Sec. 6. Lastly, we

end with a discussion of our work in Sec. 7.

3. Method Formulation

We learn a model to hypothesize or “estimate” the dis-

parity field d compatible with an image I0 by exploiting

the availability of stereo pairs (I0, I1) during training. We

then synthesize the depth z = FB/d of the scene using the

focal length F and baseline B during test time. Given I0,

we estimate a function d ∈ R+ that represents the disparity

of I0, which we formulate as a loss function L (Eqn. 1),

comprised of data terms and adaptive regularizers.

Our network, parameterized by ω, takes a single image

I0 as input and estimates a function d = f(I0;ω), where

d represents the disparity (which is monotonically related

to inverse-depth) corresponding to I0. We drive the training

process with I1, which is only used in the loss function, by a

surrogate loss that minimizes the reprojection error of I0 to

I1 and vice versa. We will refer to the disparity estimated

by L as d0 and d1 for I0 and I1, respectively. Interested

readers may refer to Supplementary Materials (Supp. Mat.)

for more details on our formulation.

L = wphlph + wstlst
︸ ︷︷ ︸

data fidelity

+wsmlsm + wbclbc
︸ ︷︷ ︸

regularization

(1)
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where each individual term l will be described in the next

sections and their weights w in Sec. 5.

3.1. Data Fidelity

Our data fidelity terms seek to minimize the discrepancy

between the observed stereo pair (I0, I1) and their recon-

structions (Î0, Î1). We generate each Î term by applying a

1-d horizontal disparity shift to I at each position (x, y):

Î0xy = I1xy−d0
xy

and Î1xy = I0xy+d1
xy

(2)

We do so by using a 1-d horizontal bilinear sampler mod-

eled after the image sampler from the Spatial Transformer

Network [23] – instead of applying an affine transformation

to activations, we warp an image to the domain of its stereo-

counterpart using disparities. Our sampler is locally fully

differentiable and each output pixel is the weighted sum of

two (left and right) pixels. We propose to minimize the re-

projection residuals as a two-part loss, which measures the

standard color constancy (photometric) and the difference

in illumination, contrast and image quality (structural).

Photometric loss. We model the image formation process

via a photometric loss lph, which measures the L1 penalty

of the reprojection residual for each I and Î on each channel

at every (x, y) position in the image space Ω:

lph =
∑

(x,y)∈Ω

|I0xy − Î0xy|+ |I1xy − Î1xy| (3)

Structural loss. In order to make inference invariant to

local illumination changes, we use a perceptual metric

(SSIM) that discounts such variability. We apply SSIM (φ)

to image patches of size 3 × 3 at corresponding (x, y) in I
and Î . Since two similar images give a SSIM score close to

1, we subtract 1 by the score to represent a distance:

lst =
∑

(x,y)∈Ω

2− (φ(I0xy, Î
0
xy) + φ(I1xy, Î

1
xy)) (4)

3.2. Residual­Based Adaptive Weighting Scheme

A point estimate d can be obtained by maximizing the

Bayesian criterion with a data fidelity term (energy) D(d)
and a Bayesian or Tikhonov regularizer R(d) in the form:

D(d) + αR(d) (5)

where the weight α is a pre-defined positive scalar parame-

ter that controls the regularity to impose on the model, lead-

ing to a trade-off between data fidelity and regularization.

The weight α modulates between data-fidelity and reg-

ularization, constraining the solution space. Yet, subject-

ing the entire solution, a dense disparity field, to the same

regularity fails to address cases where the assumptions do

not hold. Suppose one enforces a smoothness constraint

to the output disparity field by simply taking the dispar-

ity gradient ∇d. This constraint would incorrectly penal-

ize object boundaries (regions of high image gradients) and

hence [14, 19] apply an edge-aware term to reduce the ef-

fects of regularization on edge regions. Although the edge-

awareness term gives a data-driven approach on regular-

ization, it is still static (the same image will always have

the same weights) and independent of the performance of

the model. Instead, we propose a space- and training-time

varying weighting scheme based on the performance of our

model measured by reprojection residuals.

Model-driven adaptive weight. We propose an adaptive

weight αxy that varies in space and training time for every

position (x, y) of the solution based on the local residual

ρxy = |Ixy − Îxy| and the global residual, represented by

the average per-pixel residual, σ =
1

1
|Ω|

∑

(x,y)∈Ω

|Ixy − Îxy|
:

αxy = exp
(

−
cρxy
σ

)

(6)

α is controlled by the local residual between an image I and

its reprojection Î at each position while taking into account

of the global residual σ, which correlates to the training time

step and decreases over time. c is a scale factor for the range

of α. α is naturally small when residuals are large and tends

to 1 as training converges.

Local adaptation. Consider a pair of poorly matched pix-

els, (Ixy, Îxy), where the residual |Ixy − Îxy| is large. By

reducing the regularity on the solution dxy , we effectively

allow for exploration in the solution space to find a bet-

ter match and hence a dxy that minimizes the data fidelity

terms. Alternatively, consider a pair of perfectly matched

pixels, (Ixy, Îxy), where |Ixy − Îxy| = 0. We should apply

regularization to decrease the scope of the solution space

such that we can allow for convergence and propagate the

solution. Hence, a spatially adaptive αxy must vary in-

versely to the local residual ρxy such that we impose reg-

ularization when the residual is small and reduce it when

the residual is large.

Global adaptation. Consider a solution dxy proposed at

the first training time step t = 1. Imposing regularity effec-

tively reduces the solution space based on an assumption

about dxy and biases the final solution. We propose that a

weighting scheme αxy → 1 as t → ∞. However, if αxy is

directly dependent on the t, then αxy will change if we con-

tinue to train even after convergence – causing the model to

be unstable. Instead, let αxy be inversely proportional to the

global residual σ such that αxy is small when the σ is large

(generally corresponding to early time steps) and αxy → 1
as σ → 0. When training converges (i.e. the global residual

has stabilized), αxy likewise will be stable. This naturally

lends to an annealing schedule where αxy → 1 as time pro-

gresses in training steps.
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Figure 1: Left to right: left image, right image, left reconstruction, adaptive weights. The adaptive weights reduce regular-

ization at regions of high residual; hence, they discount dis-occlusions and occlusions as in the highlighted regions.

3.3. Adaptive Regularization

Our regularizers assume local smoothness and consis-

tency between the left and right disparities estimated. We

propose to minimize the disparity gradient (smoothness)

and the disparity reprojection error (bilateral cyclic consis-

tency) while adaptively weighting both with α (Sec. 3.2).

Smoothness loss. We encourage the predicted disparities

to be locally smooth by applying an L1 penalty to the dis-

parity gradients in the x (∂X ) and y (∂Y ) directions. How-

ever, such an assumption does not hold at object boundaries,

which generally correspond to regions of high changes in

pixel intensities; hence, we include an edge-aware term λ
to allow for discontinuities in the disparity gradient. We

also weigh this term adaptively with α:

lsm =
∑

(x,y)∈Ω

α0
xy(λ

0
xy|∂Xd0xy|+ λ0

xy|∂Y d
0
xy|)+

α1
xy(λ

1
xy|∂Xd1xy|+ λ1

xy|∂Y d
1
xy|)

(7)

where λxy = e−|∇2Ixy| and the ∇2 operator denotes the

image Laplacian. We use the image Laplacian over the first

order image gradients because it allows the disparity gra-

dients to be aware of intensity changes in both directions.

However, we regularize the disparity field using the dispar-

ity gradient so that we can allow for independent movement

in each direction. Prior to computing the image Laplacian

for λ, we smooth the image with a Gaussian kernel to re-

duce noise.

Bilateral cyclic consistency loss. A common regulariza-

tion technique in stereo-vision is to maintain the consis-

tency between the left (d0) and right (d1) disparities by re-

constructing each disparity through projecting its counter-

part with its disparity shifts:

d0pxy = d1xy−d0
xy

and d1pxy = d0xy+d1
xy

(8)

However, in doing so, the projected disparities suffer from

the unresolved correspondences of both the disparity ramps,

occlusions and dis-occlusions. We, propose a bilateral

cyclic consistency check that is designed to specifically rea-

son about occlusions while removing the effects of stereo

dis-occlusions. We follow the intuition that the disparities

d should have an identity mapping when projected to the

domain of its stereo-counterpart and back-projected to the

original domain as a reconstruction d̂ so reconstruction of

dis-occlusion is ignored.

d̂0xy = d0xy+d1
xy−d0

xy
and d̂1xy = d1xy−d0

xy+d1
xy

(9)

By applying an L1 penalty on the disparity field and its re-

construction, we are constraining that the cyclic transforma-

tions should be the identity transform, which keeps d0 and

d1 consistent with each other in co-visible regions. If there

exists an occluded region, the region in the reconstruction

would be inconsistent with the original – yielding reprojec-

tion error. To avoid penalizing a model for an unresolvable

correspondence due to the nature of the data, we propose

to adaptively regularize the bilateral cyclic constraint using

our residual-based weighting scheme (Eqn. 6). Unsurpris-

ingly, local regions of high reprojection residual often cor-

respond to occluded regions.

lbc =
∑

(x,y)∈Ω

α0
xy|d

0
xy − d̂0xy|+ α1

xy|d
1
xy − d̂1xy| (10)

4. A Two-Branch Decoder

As our adaptive weighting scheme (Sec. 3.2) is function

of the data fidelity residuals, we seek to ensure that the net-

work learns a sufficient representation to minimize the data

fidelity loss (Sec. 3.1). We propose a two-branch decoder

(Fig. 2) with one branch (prefixed with ‘i‘) dedicated to

learning the features, iconv, necessary to make a predic-

tion that minimizes data fidelity loss:

L0 = wphlph + wstlst (11)

using the reconstructed features via up-convolution and the

corresponding skip connection from the encoder. We use

a residual block [16] to learn the skip connection residual,

rskip, necessary to minimize Eqn. 1 – both data fidelity

and regularity loss. By concatenating iconv and rskip

with the initial prediction (idisp) as features for the sec-

ond branch (prefixed with ‘r‘), we have provided the de-

coder branch with a prediction that satisfies data fidelity

along with features necessary to impose regularity. The

branch can now utilize such information to refine the ini-

tial prediction by adaptively applying regularization based

on the data fidelity residual. To maintain a similar network

size and run-time, we reduce the depth of the network by 1

and added a single convolution as the first layer to enable

a skip connection to the last layer. This, in fact, resulted
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Figure 2: Two-branch decoder. idisp produces an ini-

tial prediction based only on the data terms and rdisp

produces a refined prediction using the entire loss function

(Eqn. 1). By minimizing just the data terms (Eqn. 11) in

idisp, we force iconv to learn sufficient information for

the reconstruction task such that rdisp can utilize such

features along with the residual learned from the skip con-

nection to refine a prediction that satisfies data fidelity by

imposing regularity based on the data fidelity residual.

in our network having ≈ 10 million fewer parameters than

[14]. We show qualitative results in Fig. 3 and 4 where

we observe the benefits of learning the features that satisfy

data fidelity as we recover more details about the scene ge-

ometry. Quantitatively, we show in Table 2 and 3 that this

structure improves over the state-of-the-art performance on

all metrics achieved by our generic encoder with a single

branch decoder, where the final predictions of both decoders

minimize our objective function (Eqn. 1).

5. Implementation Details

Our approach was implemented using TensorFlow [1].

There are ≈ 31 million trainable parameters in the generic

encoder-decoder [14] and ≈ 21 million in our proposed

structure (more details can be found in Supp. Mat. Table

2 and 3). Training takes ≈ 18 hours using an Nvidia GTX

1080Ti. Inference takes ≈ 32 ms per image. We used Adam

[28] to optimize our network with a base learning rate of

1.8 × 10−4, β1 = 0.9, β2 = 0.999. We then increase the

learning rate to 2 × 10−4 after 1 epoch, decrease it by half

after 46 epochs and by a quarter after 48 epochs for a total

of 50 epochs. We use a batch size of 8 with a 512 × 256
resolution and 4 levels in our loss pyramid. We are able to

achieve our results using the following set of weights for

each term in our loss function: wph = 0.15, wst = 0.425,

wsm = 0.10 and wbc = 1.05. We choose the scale fac-

tor c = 5.0 for the adaptive weight α. For our smoothness

term, we decrease it by a factor of 2r for each r-th resolu-

tion in the loss pyramid where r = 0 refers to our highest

Metric Definition

AbsRel 1
|Ω|

∑

(x,y)∈Ω

|zxy − zgt
xy|

z
gt
xy

SqRel 1
|Ω|

∑

(x,y)∈Ω

|zxy − zgt
xy|

2

z
gt
xy

RMS

√

1
|Ω|

∑

(x,y)∈Ω

|zxy − z
gt
xy|

2

logRMS

√

1
|Ω|

∑

(x,y)∈Ω

| log zxy − log z
gt
xy|

2

log10
1

|Ω|

∑

(x,y)∈Ω

| log zxy − log z
gt
xy|

Accuracy % of zxy s.t. δ
.
= max

( zxy

z
gt
xy

,
z

gt
xy

zxy

)

< threshold

Table 1: Error and accuracy metrics. zxy is the predicted

depth at (x, y) ∈ Ω and zgt
xy is the corresponding ground

truth. Three different thresholds (1.25, 1.252 and 1.253) are

used in the accuracy metric as a convention in the literature.

resolution at 512× 256 and r = 3 the lowest.

Data augmentation is performed online during training.

We perform a horizontal flip (with a swap to maintain cor-

rect relative positions) on the stereo pairs with 50% proba-

bility. Color augmentations on brightness, gamma and color

shifts of each channel also occur with 50% chance. We uni-

formly sample from [0.5, 1.5] for brightness, and [0.8, 1.2]
for gamma and each color channel separately.

6. Experiments and Results

We present our results on the KITTI dataset [13] un-

der two different training and testing schemes, the KITTI

2015 split [14] and the KITTI Eigen split [6, 12]. The

KITTI dataset contains 42,382 rectified stereo pairs from

61 scenes with approximate resolutions of 1242 × 375.

We evaluate our method on the monocular depth estima-

tion task on KITTI Eigen split and compare our approach

with similar variants on a disparity error metric as an ab-

lation study using the KITTI 2015 split. We show that our

method outperforms state-of-the-art unsupervised monocu-

lar approaches and even supervised approaches on KITTI

benchmarks, while generalizing to Make3d [40].

6.1. KITTI Eigen Split

We evaluate our method using the KITTI Eigen split [6],

which has 697 test images from 29 scenes. The remaining

32 scenes contain 23,488 stereo pairs, of which 22,600 pairs

are used for training and the rest for validation, following

[12]. We project the velodyne points into the left input color

camera frame to generate ground-truth depths. The ground-

truth depth maps are sparse (≈ 5% of the entire image) and

prone to errors from rotation of the velodyne and motion of

the vehicle and surrounding objects along with occlusions.

As a result, we use the cropping scheme proposed by [12],

which contains approximately 58% in height and 93% in

width of the image dimensions.

We compare our approach with the recent monocular

depth estimation methods at 80 and 50 meters caps in Ta-
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Error Metrics Accuracy Metrics

Method Dataset Cap Abs Rel Sq Rel RMS logRMS δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [56] K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Mahjourian et al. [35] K 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Garg et al. [12] K 80m 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Godard et al. [14] K 80m 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhan et al. [55] (w/ video) K 80m 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Ours (Full Model) K 80m 0.135 1.157 5.556 0.234 0.820 0.932 0.968

Ours (Full Model)* K 80m 0.133 1.126 5.515 0.231 0.826 0.934 0.969

Zhou et al. [56] CS+K 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian et al. [35] CS+K 80m 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Godard et al. [14] CS+K 80m 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Ours (Full Model)* CS+K 80m 0.118 0.996 5.134 0.215 0.849 0.945 0.975

Zhou et al. [56] K 50m 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Garg et al. [12] K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [14] K 50m 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Zhan et al. [55] (w/ video) K 50m 0.135 0.905 4.366 0.225 0.818 0.937 0.973

Ours (Full Model) K 50m 0.128 0.856 4.201 0.220 0.835 0.939 0.972

Ours (Full Model)* K 50m 0.126 0.832 4.172 0.217 0.840 0.941 0.973

Table 2: Quantitative results1 on the KITTI [13] Eigen split [6] benchmark. Depths are capped at 50 and 80 meters. K

denotes training on KITTI. CS+K denotes pretraining on Cityscape [4] and fine-tuning on KITTI. Our full model using a

generic encoder-decoder consistently outperforms other methods in all metrics across both depth caps with the exception of

δ < 1.253 where [55], which used temporal information (sequences of stereo-pairs), marginally beats our us by 0.1%. Our

proposed decoder (*) improves over our encoder-decoder model across all metrics and is the state-of-the-art.

Figure 3: Qualitative results on KITTI Eigen split. From left to right: input images, ground-truth disparities, results of Godard

et al. [14], our results with a generic decoder and our results with the proposed decoder. Our method under both decoders

recovers more scene structures (row 2, 3: street signs, row 5: car in middle). Moreover, the predictions of the proposed

two-branch structure are more realistic (row 1: pedestrian on right, row 4: tail of another car at bottom right corner, row 5:

hollow trunk of truck on left, where both [14] and the generic decoder predicted as a surface).

ble 2. Fig. 3 provides a qualitative comparison between

our method and the baseline. We note that [55] trained two

networks using stereo video streams (as opposed to a sin-

gle network with stereo pairs like ours and [14]), which al-

lows their networks to learn a depth prior in both spatial

and temporal domains. Using the network of [14] (generic

encoder with a single branch decoder), we outperforms all

competing methods in all metrics under both depth caps ex-

cept for δ < 1.253 where we are comparable to [55]. We

improve consistently over [14] and [55] by an average of
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Error Metrics Accuracy Metrics

Method Abs Rel Sq Rel RMS logRMS D1-all δ < 1.25 δ < 1.252 δ < 1.253

[14] w/ Deep3D [49] 0.412 16.37 13.693 0.512 66.850 0.690 0.833 0.891

[14] w/ Deep3Ds [49] 0.151 1.312 6.344 0.239 59.640 0.781 0.931 0.976

ph + st + λGsm ([14] w/o Left-Right Consistency) 0.123 1.417 6.315 0.220 30.318 0.841 0.937 0.973

ph + st + λGsm + lr [14] 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

ph + st + αλGsm + αlr ([14] w/ Our Adaptive Regularization) 0.120 1.367 6.013 0.211 30.132 0.849 0.942 0.975

Aleotti et al. [2] 0.119 1.239 5.998 0.212 29.864 0.846 0.940 0.976

ph + st + λLsm + bc (Ours w/o Adaptive Regularization) 0.117 1.264 5.874 0.207 29.793 0.851 0.944 0.977

ph + st + αλLsm + αlr (Ours w/o Bilateral Cyclic Consistency) 0.117 1.251 5.876 0.206 29.536 0.851 0.944 0.977

ph + st + αλGsm + αbc (Ours w/o Bidirectional Edge-Awareness) 0.115 1.211 5.743 0.203 28.942 0.852 0.945 0.977

ph + st + αλLsm + αbc (Ours Full Model) 0.114 1.172 5.651 0.202 28.142 0.855 0.947 0.979

ph + st + αλLsm + αbc * (Ours Full Model w/ 2 Branch Decoder) 0.110 1.119 5.576 0.200 27.149 0.856 0.947 0.980

Table 3: Quantitative comparison1 amongst variants of our model on KITTI 2015 split proposed by [14]. Each variant is

named according to its loss function. ph and st denote data terms, sm local smoothness, α our adaptive weights, λG image

gradients [14], λL image Laplacian, lr left-right consistency [14], and bc our bilateral cyclic consistency. We show the

effectiveness of our adaptive regularization (Sec. 3.3) by applying it to [14] and improving their model. Our full model using

a generic encoder-decoder outperforms all variants on every metric, including [2] which predicts disparities that generate

photo-realistic images. Our full model using our proposed two-branch decoder (*) further improves the state-of-the-art.

Figure 4: Qualitative results on KITTI 2015 split. From left to right: input images, ground-truth depths, results of Godard

et al.[14], our results using a generic decoder and our results the proposed decoder. Our approach generates more consistent

depths (row 1: walls on right, row 2: building on left) and recovers more detailed structures (row 3: biker and poles on right,

rows 4, 5: street signs), with the two-branch decoder recovering the most.

8.7% and 5.75% in AbsRel, 13.1% and 10.5% in SqRel and

even 5.25% and 2.55% in logRMS, respectively. Further-

more, we score significantly higher in δ < 1.25 (the hard-

est accuracy metric), which suggests that our model pro-

duces more correct and realistically detailed depths than all

competing methods. In addition, our two-branch decoder

improves over the said results across all metrics and depth

caps and is the current state-of-the-art. Table 2 shows that

our model also beats [14] when pretraining on Cityscape [4]

and fine-tuning on KITTI. An ablation study on Eigen Split

examining the effects of each of our contributions (Sec. 3.3)

can be found in our Supp. Mat.

6.2. KITTI 2015 Split

We evaluate our method on 200 high quality disparity

maps provided as part of the official KITTI training set [13].

These 200 stereo pairs cover 28 of the total 61 scenes. From

30,159 stereo pairs covering the remaining 33 scenes, we

choose 29,000 for training and the rest for validation. While

typical training and evaluation schemes project velodyne

laser values to depth, we choose to use the provided dis-

parity maps as they are less erroneous than velodyne data

points. In addition, we also use the official KITTI dispar-
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(a)

Error Metrics

Method Supervised AbsRel Sq Rel RMS log10

Karsch et al. [25] Yes 0.417 4.894 8.172 0.144

Liu et al. [34] Yes 0.462 6.625 9.972 0.161

Laina et al. [31] Yes 0.198 1.665 5.461 0.082

Godard et al. [14] No 0.468 9.236 12.525 0.165

Ours No 0.454 8.470 12.211 0.163

Ours* No 0.427 8.183 11.781 0.156

(b)

Figure 5: Qualitative (a) and quantitative (b) results1 on Make3d [40] with maximum depth of 70 meters. In (a), top to

bottom: input images, ground-truth disparities, our results. In (b), unsupervised methods listed are all trained on KITTI

Eigen split. Despite being trained on KITTI, we perform comparably to a number of supervised methods trained on Make3d.

ity metric of end-point-error (D1-all) to measure our per-

formance as it is a more appropriate metric on our class of

approach that outputs disparity and synthesizes depth from

the output using camera focal length and baseline.

We show qualitative comparisons in Fig. 4 and quan-

titative comparisons in Table 3. Table 3 also serves as an

ablation study on variants belonging to the stereo unsuper-

vised paradigm using different image formation model and

regularization terms. We show that by simply applying our

adaptive regularization to [14], we achieve improvement

over their model. We also study the effects of substitut-

ing our bilateral cyclic consistency with the left-right con-

sistency regularizer [14]. We also substitute image Lapla-

cian with image gradients for edge-aware weights. In ad-

dition, we find that adaptive regularization and bilateral

cyclic consistency contribute similarly to the improvements

of the models. However, when combined they achieve sig-

nificantly improvements over the baseline method (and all

variants) in every metric. Furthermore, when using our pro-

posed decoder, we again surpass all variants on every met-

ric. We additionally outperform [2], who uses a GAN to

constrain the output disparities to produce photo-realistic

images during reconstruction. This result aligns with our

performance on accuracy metrics – our method produces

accurate and realistic depths.

6.3. Generalizing to Different Datasets: Make3d

To show that our model generalizes, we present our qual-

itative and quantitative results in Fig. 5 on the Make3d

dataset [40] containing 134 test images with 2272 × 1707
resolution. Make3d provides range maps (resolution of

305 × 55) for ground-truth depths, which must be rescaled

and interpolated. We use the central cropping proposed by

[14] where we generate a 852 × 1707 crop centered on the

image. We use the standard C1 evaluation metrics1 pro-

posed for Make3d and limit the maximum depth to 70 me-

ters. The results of the supervised methods are taken from

[14]. Because Make3d does not provide stereo pairs, we

are unable to train on it. However, we find that despite

having trained our model on KITTI Eigen split, our perfor-

mance is comparable to that of supervised methods trained

on Make3d and is better than the baseline across all metrics.

7. Discussion

In this work, we proposed an adaptive weighting scheme

(Sec. 3.3) that is both spatially and time varying, allow-

ing for not only a data-driven, but also model-driven ap-

proach to regularization. Moreover, we introduce a bilateral

cyclic consistency constraint that not only enforces consis-

tency between the left and right disparities, but also removes

stereo dis-occlusions while discounting unresolved occlu-

sions when combined with our weighting scheme. Finally,

we propose a two-branch decoder that achieves the state-of-

the-art by learning features to improve data residual for im-

posing our adaptive regularity. We achieve state-of-the-art

performance on two KITTI benchmarks and show that our

method generalizes to Make3d. Our two-branch decoder

further improves over those results. Our experiments (Table

2 and 3) show that our approach produces depth maps with

more details while maintaining global correctness.

For future work, we plan to improve robustness to specu-

lar and transparent surfaces as these regions tend to produce

inconsistent depths. We are also exploring more sophisti-

cated regularizers in place of the simple disparity gradient.

Finally, we believe that the task should drive the network

architecture. Rather than using a generic network, finding

a better architectural fit could prove to be ground-breaking

and further push the state-of-the-art.

Acknowledgements. Byung-Woo Hong (hong@cau.ac.kr;

Chung-Ang University, Korea) provided mentorship and

helpful discussions, which we believe warrant author-

ship. Here, we recognize him as an author (as listed

in other versions of this paper) and thank him for

his contributions. This work was supported by NRF-

2017R1A2B4006023, NRF-2018R1A4A1059731, ONR

N00014-17-1-2072, ARO W911NF-17-1-0304.

5651



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016. 5

[2] F. Aleotti, F. Tosi, M. Poggi, and S. Mattoccia. Generative

adversarial networks for unsupervised monocular depth pre-

diction. In 15th European Conference on Computer Vision

(ECCV) Workshops, 2018. 2, 7, 8

[3] W. Chen, Z. Fu, D. Yang, and J. Deng. Single-image depth

perception in the wild. In Advances in Neural Information

Processing Systems, pages 730–738, 2016. 1, 2

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3213–3223, 2016. 6, 7

[5] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2650–2658, 2015. 2

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Advances in neural information processing systems, pages

2366–2374, 2014. 1, 2, 5, 6

[7] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

IEEE transactions on pattern analysis and machine intelli-

gence, 40(3):611–625, 2018. 2

[8] X. Fei, A. Wong, and S. Soatto. Geo-supervised visual depth

prediction. arXiv preprint arXiv:1807.11130, 2018. 2

[9] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep-

stereo: Learning to predict new views from the world’s im-

agery. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5515–5524, 2016. 2

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.

Deep ordinal regression network for monocular depth esti-

mation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2002–2011, 2018. 2

[11] N. P. Galatsanos and A. K. Katsaggelos. Methods for choos-

ing the regularization parameter and estimating the noise

variance in image restoration and their relation. IEEE Trans-

actions on image processing, 1(3):322–336, 1992. 2

[12] R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised

cnn for single view depth estimation: Geometry to the res-

cue. In European Conference on Computer Vision, pages

740–756. Springer, 2016. 1, 2, 5, 6

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In Com-

puter Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on, pages 3354–3361. IEEE, 2012. 1, 2, 5, 6, 7

[14] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

monocular depth estimation with left-right consistency. In

CVPR, volume 2, page 7, 2017. 1, 2, 3, 5, 6, 7, 8

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 4

[17] T. He, H. Huang, L. Yi, Y. Zhou, C. Wu, J. Wang, and

S. Soatto. Geonet: Deep geodesic networks for point cloud

analysis. arXiv preprint arXiv:1901.00680, 2019. 1

[18] T. He and S. Soatto. Mono3d++: Monocular 3d vehicle de-

tection with two-scale 3d hypotheses and task priors. arXiv

preprint arXiv:1901.03446, 2019. 1

[19] P. Heise, S. Klose, B. Jensen, and A. Knoll. Pm-huber:

Patchmatch with huber regularization for stereo matching.

In Computer Vision (ICCV), 2013 IEEE International Con-

ference on, pages 2360–2367. IEEE, 2013. 3

[20] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. International Journal of Computer

Vision, 75(1):151–172, 2007. 2

[21] B.-W. Hong, J.-K. Koo, M. Burger, and S. Soatto. Adaptive

regularization of some inverse problems in image analysis.

arXiv preprint arXiv:1705.03350, 2017. 2

[22] B.-W. Hong, J.-K. Koo, H. Dirks, and M. Burger. Adaptive

regularization in convex composite optimization for varia-

tional imaging problems. In German Conference on Pattern

Recognition, pages 268–280. Springer, 2017. 2

[23] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in neural information

processing systems, pages 2017–2025, 2015. 2, 3
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