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Abstract

Supervised learning methods to infer (hypothesize) depth
of a scene from a single image require costly per-pixel
ground-truth. We follow a geometric approach that exploits
abundant stereo imagery to learn a model to hypothesize
scene structure without direct supervision. Although we
train a network with stereo pairs, we only require a sin-
gle image at test time to hypothesize disparity or depth. We
propose a novel objective function that exploits the bilateral
cyclic relationship between the left and right disparities and
we introduce an adaptive regularization scheme that allows
the network to handle both the co-visible and occluded re-
gions in a stereo pair. This process ultimately produces a
model to generate hypotheses for the 3-dimensional struc-
ture of the scene as viewed in a single image. When used
to generate a single (most probable) estimate of depth, our
method outperforms state-of-the-art unsupervised monoc-
ular depth prediction methods on the KITTI benchmarks.
We show that our method generalizes well by applying our
models trained on KITTI to the Make3d dataset.

1. Introduction

Estimating the 3-dimensional geometry of a scene is a
fundamental problem in machine perception with a wide
range of applications, including autonomous driving [24],
robotics [32, 43], pose-estimation [41], localization [I8&],
and scene object composition [ 17, 26]. It is well-known that
3-d scene geometry can be recovered from multiple images
of a scene taken from different viewpoints, including stereo,
under suitable conditions. Under no conditions, however, is
a single image sufficient to recover 3-d scene structure, un-
less prior knowledge is available on the shape of objects
populating the scene. Even in such cases, metric informa-
tion is lost in the projection, so at best we can use a single
image to generate hypotheses, as opposed to estimates, of
scene geometry.

Recent works [3, 6, 31, 33, 34, 50, 51] sought to exploit
such strong scene priors by using pixel-level depth anno-

tation captured with a range sensor (e.g. depth camera, li-
dar) to regress depth from the RGB image. Cognizant of
the intrinsic limitations of this endeavor, we exploit stereo
imagery to train a network without ground-truth supervi-
sion for generating depth hypotheses, to be used as a refer-
ence for 3-d reconstruction. We evaluate our method against
ground-truth depths via two benchmarks from the KITTI
dataset [13] and show that it generalizes well by applying
models trained on KITTI to Make3d [40].

Rather than attempting to learn a prior by associating the
raw-pixel values with depth, we recast depth estimation as
an image reconstruction problem [12, 14] and exploit the
epipolar geometry between images in a rectified stereo pair
to train a deep fully convolutional network. Our network
learns to predict the dense pixel correspondences (disparity
field) between the stereo pair, despite only having seen one
of them. Hence, our network implicitly learns the relative
pose of the cameras used in training and hallucinates the ex-
istence of a second image taken from the same relative pose
when given a single image during testing. From the dispar-
ity predictions, we can synthesize depth using the known
focal length and baseline of the cameras used in training.

While [12, 14, 49] follow a similar training scheme,
[49] does not scale to high resolution, and [12] uses a
non-differentiable objectives. [14] proposed using two
uni-directional edge-aware disparity gradients and left-right
disparity consistency as regularizers. However, edge-
awareness should inform bidirectionally and left-right con-
sistency suffers from occlusions and dis-occlusions. More-
over, regularity should not only be data-driven, but also
model-driven.

Our contributions are three-fold: (i) A model-driven adap-
tive weighting scheme that is both space- and training-time
varying and can be applied generically to regularizers. (ii) A
bilateral consistency constraint that enforces the cyclic ap-
plication of left and right disparity to be the identity. (iii) A
two-branch decoder that specifically learns the features nec-
essary to maximize data fidelity and utilizes such features to
refine an initial prediction by enforcing regularity. We for-
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mulate our contributions as an objective function that, when
realized even by a generic encoder-decoder, achieves state-
of-the-art performance on two KITTI [13] benchmarks and
exhibits generalizability to Make3d [40].

2. Related Works

Supervised Monocular Depth Estimation. [39] proposed
a patch-based model that combined local estimates with
Markov random fields (MRF) to obtain the global depth.
Similarly, [20, 25, 29, 40] exploited local monocular fea-
tures to make global predictions. However, local methods
lack the global context needed to generate accurate depth
estimates. [34] instead employed a convolutional neural
network (CNN). [30] further improved monocular methods
by incorporating semantic cues into their model.

[5, 6] introduced a two scale network. [31] proposed
a residual network with up-sampling modules to produce
higher resolution depth maps. [3] learned depth using
crowd-sourced annotations and [10] learned the ordinal re-
lations using atrous spatial pyramid pooling. [38] used im-
age patches with neural forests. [27, 50, 51] used condi-
tional random fields (CRF) jointly with a CNN.
Unsupervised Monocular Depth Estimation. Recently,
[9] introduced novel view synthesis by predicting pixel val-
ues based on interpolation from nearby images. [49] mini-
mized an image reconstruction loss to hallucinate the exis-
tence of a right view of a stereo pair given the left by pro-
ducing the distribution of disparities for each pixel.

[12] trained a network for monocular depth prediction by
reconstructing the right image of a stereo pair with the left
and synthesizing disparity as an intermediate step. Yet, their
image formation model is not fully differentiable, making
their objective function difficult to optimize. Unsupervised
methods [14, 37, 57, 58] utilized a bilinear sampler mod-
eled after the Spatial Transformer Network [23] to allow for
a fully differentiable loss and end-to-end training of their
respective networks. Specifically, [14] used SSIM [46] as
a loss in addition to the image reconstruction loss. Also,
[14] predicted both left and right disparities and used them
for regularization via a left-right consistency check along
with an edge-aware smoothness term. [2] trains a Genera-
tive Adversarial Network (GAN) [15] to constrain the out-
put to reconstruct a realistic image to reduce the artifacts
seen from stereo reconstruction. This class of method is
also employed in depth completion [54].

Self-supervised methods [35, 44, 56, 59] used a pose net-
work to learn ego-motion and depth from monocular videos,
while [45, 52] leveraged visual odometry from off-the-shelf
methods [7, 42] and [8] gravity as supervisors. [55] fol-
lowed both unsupervised and self-supervised paradigms by
using stereo video streams and proposed a feature recon-
struction loss. While additional supervision and data are
used to improve predictions, [14] still remains as the state-

of-the-art in the unsupervised setting. Our method follows
the unsupervised paradigm and we show that it not only out-
performs [ 4], but also [55] who leveraged techniques from
both unsupervised and self-supervised domains.

Adaptive Regularization. A number of computer vision
problems can be formulated as energy minimization in a
variational framework with a data fidelity term and a regu-
larizer weighted by a fixed scalar. The solution found by the
minimal energy involves a trade-off between data fidelity
and regularization. Finding the optimal parameter for regu-
larity is a long studied problem as [ |] explored methods to
determine the regularization parameter in image de-noising,
while [36] used cross-validation as a selection criterion for
the weight. [14, 47, 48] used image gradients as cues for a
data-driven weighting scheme. [53] learned regularity con-
ditioned on an image. Recently, [21, 22] proposed that regu-
larity should not only be data-driven, but also model driven.
The amount of regularity imposed should adapt to the fit-
ness of the model in relation to the data rather than being
constant throughout the training process.

We propose a novel objective function using bilateral
cyclic consistency constraint along with a spatial and tem-
poral varying regularization modulator. We show that de-
spite using the fewer parameters than [14], we outperform
[14] and other unsupervised methods. We detail our loss
function with adaptive regularization, in Sec. 3, present
a two-branch decoder architecture in Sec. 4, and specify
hyper-parameters and data augmentation procedures used in
Sec. 5. We evaluate our model on the KITTI 2015, KITTI
Eigen Split, and Make3d benchmarks in Sec. 6. Lastly, we
end with a discussion of our work in Sec. 7.

3. Method Formulation

We learn a model to hypothesize or “estimate” the dis-
parity field d compatible with an image I° by exploiting
the availability of stereo pairs (I°, I') during training. We
then synthesize the depth z = F'B/d of the scene using the
focal length F and baseline B during test time. Given I°,
we estimate a function d € R that represents the disparity
of 1%, which we formulate as a loss function L (Eqn. 1),
comprised of data terms and adaptive regularizers.

Our network, parameterized by w, takes a single image
1Y as input and estimates a function d = f(I°;w), where
d represents the disparity (which is monotonically related
to inverse-depth) corresponding to I°. We drive the training
process with I*, which is only used in the loss function, by a
surrogate loss that minimizes the reprojection error of I° to
I' and vice versa. We will refer to the disparity estimated
by L as d” and d' for I° and I', respectively. Interested
readers may refer to Supplementary Materials (Supp. Mat.)
for more details on our formulation.

L= wphlph + wstlst + wsmlsm + wbclbc (1)
—_— ———
data fidelity regularization
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where each individual term [ will be described in the next
sections and their weights w in Sec. 5.

3.1. Data Fidelity

Our data fidelity terms seek to minimize the discrepancy
between the observed stereo pair (I°,11) and their recon-
structions (f 0 J'). We generate each I term by applying a
1-d horizontal disparity shift to I at each position (x, y):

foa:y = Ialcy—dgy and fl‘”y - Igy‘*'diy @

We do so by using a 1-d horizontal bilinear sampler mod-
eled after the image sampler from the Spatial Transformer
Network [23] — instead of applying an affine transformation
to activations, we warp an image to the domain of its stereo-
counterpart using disparities. Our sampler is locally fully
differentiable and each output pixel is the weighted sum of
two (left and right) pixels. We propose to minimize the re-
projection residuals as a two-part loss, which measures the
standard color constancy (photometric) and the difference
in illumination, contrast and image quality (structural).
Photometric loss. We model the image formation process
via a photometric loss [,,, which measures the L1 penalty
of the reprojection residual for each I and I on each channel
at every (z,y) position in the image space 2:

lph = Z |Igy

(z,y)eN

=101+ 12, - 12, 3)

Structural loss. In order to make inference invariant to
local illumination changes, we use a perceptual metric
(SSIM) that discounts such variability. We apply SSIM (¢)
to image patches of size 3 x 3 at corresponding (z,y) in I
and I. Since two similar images give a SSIM score close to
1, we subtract 1 by the score to represent a distance:

lst = Z 2- (¢(I§c)y7j2y) + ¢<I;y’ fiy)) )

(z,y)€Q

3.2. Residual-Based Adaptive Weighting Scheme

A point estimate d can be obtained by maximizing the
Bayesian criterion with a data fidelity term (energy) D(d)
and a Bayesian or Tikhonov regularizer R(d) in the form:

D(d) + aR(d) 5)

where the weight « is a pre-defined positive scalar parame-
ter that controls the regularity to impose on the model, lead-
ing to a trade-off between data fidelity and regularization.
The weight o modulates between data-fidelity and reg-
ularization, constraining the solution space. Yet, subject-
ing the entire solution, a dense disparity field, to the same
regularity fails to address cases where the assumptions do
not hold. Suppose one enforces a smoothness constraint

to the output disparity field by simply taking the dispar-
ity gradient Vd. This constraint would incorrectly penal-
ize object boundaries (regions of high image gradients) and
hence [14, 19] apply an edge-aware term to reduce the ef-
fects of regularization on edge regions. Although the edge-
awareness term gives a data-driven approach on regular-
ization, it is still static (the same image will always have
the same weights) and independent of the performance of
the model. Instead, we propose a space- and training-time
varying weighting scheme based on the performance of our
model measured by reprojection residuals.

Model-driven adaptive weight. We propose an adaptive
weight o, that varies in space and training time for every
position (z,y) of the solution based on the local residual
Pay = Loy — fzy| and the global residual, represented by

1

ﬁ Z |Ixy_jzy|

(z,y)€Q

the average per-pixel residual, o =

Qlgy = €XP (_ (6)
« is controlled by the local residual between an image I and
its reprojection I at each position while taking into account
of the global residual o, which correlates to the training time
step and decreases over time. c is a scale factor for the range
of av. avis naturally small when residuals are large and tends
to 1 as training converges.

Local adaptation. Consider a pair of poorly matched pix-
els, (Ipy, ny) where the residual | I, — ny| is large. By
reducing the regularity on the solution d,,,, we effectively
allow for exploration in the solution space to find a bet-
ter match and hence a d,, that minimizes the data fidelity
terms. Alternatively, consider a pair of perfectly matched
pixels, (Ipy, Iuy), where |1, — L] = 0. We should apply
regularization to decrease the scope of the solution space
such that we can allow for convergence and propagate the
solution. Hence, a spatially adaptive «,, must vary in-
versely to the local residual p,, such that we impose reg-
ularization when the residual is small and reduce it when
the residual is large.

Global adaptation. Consider a solution d, proposed at
the first training time step ¢ = 1. Imposing regularity effec-
tively reduces the solution space based on an assumption
about d, and biases the final solution. We propose that a
weighting scheme oy — 1 as ¢t — oo. However, if oy is
directly dependent on the ¢, then o, will change if we con-
tinue to train even after convergence — causing the model to
be unstable. Instead, let cv,;,, be inversely proportional to the
global residual o such that o, is small when the o is large
(generally corresponding to early time steps) and oy, — 1
as 0 — 0. When training converges (i.e. the global residual
has stabilized), o, likewise will be stable. This naturally
lends to an annealing schedule where «;, — 1 as time pro-
gresses in training steps.
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Figure 1: Left to right: left image, right image, left reconstruction, adaptive weights. The adaptive weights reduce regular-
ization at regions of high residual; hence, they discount dis-occlusions and occlusions as in the highlighted regions.

3.3. Adaptive Regularization

Our regularizers assume local smoothness and consis-
tency between the left and right disparities estimated. We
propose to minimize the disparity gradient (smoothness)
and the disparity reprojection error (bilateral cyclic consis-
tency) while adaptively weighting both with « (Sec. 3.2).
Smoothness loss. We encourage the predicted disparities
to be locally smooth by applying an L1 penalty to the dis-
parity gradients in the x (Jx) and y (0y') directions. How-
ever, such an assumption does not hold at object boundaries,
which generally correspond to regions of high changes in
pixel intensities; hence, we include an edge-aware term A
to allow for discontinuities in the disparity gradient. We
also weigh this term adaptively with a:

(z,y)en (7)
Ay Aoy 0x dgy | + A5, |0y dyy )

where \;, = e~IV?Leul and the V2 operator denotes the
image Laplacian. We use the image Laplacian over the first
order image gradients because it allows the disparity gra-
dients to be aware of intensity changes in both directions.
However, we regularize the disparity field using the dispar-
ity gradient so that we can allow for independent movement
in each direction. Prior to computing the image Laplacian
for A\, we smooth the image with a Gaussian kernel to re-
duce noise.
Bilateral cyclic consistency loss. A common regulariza-
tion technique in stereo-vision is to maintain the consis-
tency between the left (d°) and right (d') disparities by re-
constructing each disparity through projecting its counter-
part with its disparity shifts:

d% =d!

zy—d2,

and dif; = dgy-*-déy (®)
However, in doing so, the projected disparities suffer from
the unresolved correspondences of both the disparity ramps,
occlusions and dis-occlusions. We, propose a bilateral
cyclic consistency check that is designed to specifically rea-
son about occlusions while removing the effects of stereo
dis-occlusions. We follow the intuition that the disparities
d should have an identity mapping when projected to the
domain of its stereo-counterpart and back-projected to the
original domain as a reconstruction d so reconstruction of

dis-occlusion is ignored.

dgy = dgy+d;y—dgy and drlcy = dalsy—dgerd;y €))
By applying an L1 penalty on the disparity field and its re-
construction, we are constraining that the cyclic transforma-
tions should be the identity transform, which keeps d° and
d* consistent with each other in co-visible regions. If there
exists an occluded region, the region in the reconstruction
would be inconsistent with the original — yielding reprojec-
tion error. To avoid penalizing a model for an unresolvable
correspondence due to the nature of the data, we propose
to adaptively regularize the bilateral cyclic constraint using
our residual-based weighting scheme (Eqn. 6). Unsurpris-
ingly, local regions of high reprojection residual often cor-
respond to occluded regions.

le = Z agyldg‘y - J?:y| + azlvy|diy - dzlvy| (10
(z,y)EN

4. A Two-Branch Decoder

As our adaptive weighting scheme (Sec. 3.2) is function
of the data fidelity residuals, we seek to ensure that the net-
work learns a sufficient representation to minimize the data
fidelity loss (Sec. 3.1). We propose a two-branch decoder
(Fig. 2) with one branch (prefixed with ‘i°) dedicated to
learning the features, iconv, necessary to make a predic-
tion that minimizes data fidelity loss:

LO = wphlph + wstlst (1 1)

using the reconstructed features via up-convolution and the
corresponding skip connection from the encoder. We use
a residual block [16] to learn the skip connection residual,
rskip, necessary to minimize Eqn. 1 — both data fidelity
and regularity loss. By concatenating iconv and rskip
with the initial prediction (1disp) as features for the sec-
ond branch (prefixed with ‘r‘), we have provided the de-
coder branch with a prediction that satisfies data fidelity
along with features necessary to impose regularity. The
branch can now utilize such information to refine the ini-
tial prediction by adaptively applying regularization based
on the data fidelity residual. To maintain a similar network
size and run-time, we reduce the depth of the network by 1
and added a single convolution as the first layer to enable
a skip connection to the last layer. This, in fact, resulted
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Figure 2: Two-branch decoder. idisp produces an ini-
tial prediction based only on the data terms and rdisp
produces a refined prediction using the entire loss function
(Eqn. 1). By minimizing just the data terms (Eqn. 11) in
idisp, we force iconv to learn sufficient information for
the reconstruction task such that rdisp can utilize such
features along with the residual learned from the skip con-
nection to refine a prediction that satisfies data fidelity by
imposing regularity based on the data fidelity residual.

in our network having ~ 10 million fewer parameters than
[14]. We show qualitative results in Fig. 3 and 4 where
we observe the benefits of learning the features that satisfy
data fidelity as we recover more details about the scene ge-
ometry. Quantitatively, we show in Table 2 and 3 that this
structure improves over the state-of-the-art performance on
all metrics achieved by our generic encoder with a single
branch decoder, where the final predictions of both decoders
minimize our objective function (Eqn. 1).

5. Implementation Details

Our approach was implemented using TensorFlow [1].
There are ~ 31 million trainable parameters in the generic
encoder-decoder [14] and ~ 21 million in our proposed
structure (more details can be found in Supp. Mat. Table
2 and 3). Training takes ~ 18 hours using an Nvidia GTX
1080Ti. Inference takes ~ 32 ms per image. We used Adam
[28] to optimize our network with a base learning rate of
1.8 x 1074, 8 = 0.9, B = 0.999. We then increase the
learning rate to 2 x 10~* after 1 epoch, decrease it by half
after 46 epochs and by a quarter after 48 epochs for a total
of 50 epochs. We use a batch size of 8 with a 512 x 256
resolution and 4 levels in our loss pyramid. We are able to
achieve our results using the following set of weights for
each term in our loss function: wp, = 0.15, wy = 0.425,
Wem = 0.10 and wp. = 1.05. We choose the scale fac-
tor ¢ = 5.0 for the adaptive weight .. For our smoothness
term, we decrease it by a factor of 2" for each r-th resolu-
tion in the loss pyramid where » = 0 refers to our highest

Metric Definition

2y — 25,
1 2 zy
AbsRel &> —
(z,y)EQ Ty
‘Zzy — 28, |2
1 zy
s |y Lo
(z,y)EQ Zzy
t 2
RMS B D lzay — 24
(z,y)€Q
logRMS ﬁ Z |log zzy — log Zily‘Q
(z,y)EQ
log1, ﬁ Z | log 24y — log zi'y|
(z,y)€Q
gl
Accuracy % of Zgy s.t. 6 = max ( iéz R ZZ ) < threshold

Table 1: Error and accuracy metrics. zy is the predicted
depth at (z,y) € Q and 25, is the corresponding ground
truth. Three different thresholds (1.25, 1.252 and 1.253) are
used in the accuracy metric as a convention in the literature.

resolution at 512 x 256 and r = 3 the lowest.

Data augmentation is performed online during training.
We perform a horizontal flip (with a swap to maintain cor-
rect relative positions) on the stereo pairs with 50% proba-
bility. Color augmentations on brightness, gamma and color
shifts of each channel also occur with 50% chance. We uni-
formly sample from [0.5, 1.5] for brightness, and [0.8,1.2]
for gamma and each color channel separately.

6. Experiments and Results

We present our results on the KITTI dataset [13] un-
der two different training and testing schemes, the KITTI
2015 split [14] and the KITTI Eigen split [6, 12]. The
KITTI dataset contains 42,382 rectified stereo pairs from
61 scenes with approximate resolutions of 1242 x 375.
We evaluate our method on the monocular depth estima-
tion task on KITTI Eigen split and compare our approach
with similar variants on a disparity error metric as an ab-
lation study using the KITTI 2015 split. We show that our
method outperforms state-of-the-art unsupervised monocu-
lar approaches and even supervised approaches on KITTI
benchmarks, while generalizing to Make3d [40].

6.1. KITTI Eigen Split

We evaluate our method using the KITTI Eigen split [6],
which has 697 test images from 29 scenes. The remaining
32 scenes contain 23,488 stereo pairs, of which 22,600 pairs
are used for training and the rest for validation, following
[12]. We project the velodyne points into the left input color
camera frame to generate ground-truth depths. The ground-
truth depth maps are sparse (=~ 5% of the entire image) and
prone to errors from rotation of the velodyne and motion of
the vehicle and surrounding objects along with occlusions.
As a result, we use the cropping scheme proposed by [12],
which contains approximately 58% in height and 93% in
width of the image dimensions.

We compare our approach with the recent monocular
depth estimation methods at 80 and 50 meters caps in Ta-
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Error Metrics Accuracy Metrics

Method Dataset Cap Abs Rel Sq Rel RMS logRMS 6 <1.25 § < 1.25% § < 1.25%
Zhou et al. [56] K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Mahjourian et al. [35] K 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Gargetal. [12] K 80m 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Godard et al. [14] K 80m 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Zhan et al. [55] (w/ video) K 80m 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Ours (Full Model) K 80m 0.135 1.157 5.556 0.234 0.820 0.932 0.968
Ours (Full Model)* K 80m 0.133 1.126 5.515 0.231 0.826 0.934 0.969
Zhou et al. [50] CS+K 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [35] CS+K 80m 0.159 1.231 5912 0.243 0.784 0.923 0.970
Godard et al. [14] CS+K 80m 0.124 1.076 5.311 0.219 0.847 0.942 0.973
Ours (Full Model)* CS+K 80m 0.118 0.996 5.134 0.215 0.849 0.945 0.975
Zhou et al. [56] K 50m 0.201 1.391 5.181 0.264 0.696 0.900 0.966
Gargetal. [12] K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard et al. [14] K 50m 0.140 0.976 4.471 0.232 0.818 0.931 0.969
Zhan et al. [55] (w/ video) K 50m 0.135 0.905 4.366 0.225 0.818 0.937 0.973
Ours (Full Model) K 50m 0.128 0.856 4.201 0.220 0.835 0.939 0.972
Ours (Full Model)* K 50m 0.126 0.832 4.172 0.217 0.840 0.941 0.973

Table 2: Quantitative results' on the KITTI [13] Eigen split [6] benchmark. Depths are capped at 50 and 80 meters. K
denotes training on KITTI. CS+K denotes pretraining on Cityscape [4] and fine-tuning on KITTI. Our full model using a
generic encoder-decoder consistently outperforms other methods in all metrics across both depth caps with the exception of
§ < 1.252 where [55], which used temporal information (sequences of stereo-pairs), marginally beats our us by 0.1%. Our
proposed decoder (*) improves over our encoder-decoder model across all metrics and is the state-of-the-art.

Figure 3: Qualitative results on KITTI Eigen split. From left to right: input images, ground-truth disparities, results of Godard
et al. [14], our results with a generic decoder and our results with the proposed decoder. Our method under both decoders
recovers more scene structures (row 2, 3: street signs, row 5: car in middle). Moreover, the predictions of the proposed

two-branch structure are more realistic (row 1: pedestrian on
hollow trunk of truck on left, where both [14] and the generic

ble 2. Fig. 3 provides a qualitative comparison between
our method and the baseline. We note that [55] trained two
networks using stereo video streams (as opposed to a sin-
gle network with stereo pairs like ours and [14]), which al-
lows their networks to learn a depth prior in both spatial

right, row 4: tail of another car at bottom right corner, row 5:
decoder predicted as a surface).

and temporal domains. Using the network of [14] (generic
encoder with a single branch decoder), we outperforms all
competing methods in all metrics under both depth caps ex-
cept for § < 1.25% where we are comparable to [55]. We
improve consistently over [14] and [55] by an average of
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Error Metrics Accuracy Metrics

Method AbsRel  SqRel RMS logRMS  Dl-all §<1.25 §<1.252 §<1.25%
[14] w/ Deep3D [49] 0.412 16.37 13.693 0.512 66.850 0.690 0.833 0.891
[14] w/ Deep3Ds [49] 0.151 1.312 6.344 0.239 59.640 0.781 0.931 0.976
ph + st + A% sm ([14] w/o Left-Right Consistency) 0.123 1.417 6.315 0.220 30.318 0.841 0.937 0.973
ph + st + AGsm + Ir [14] 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
ph + st + aX®sm + alr ([14] w/ Our Adaptive Regularization) 0.120 1.367 6.013 0.211 30.132 0.849 0.942 0.975
Aleotti et al. [2] 0.119 1.239 5.998 0.212 29.864 0.846 0.940 0.976
ph + st + AL sm + be (Ours wio Adaptive Regularization) 0.117 1.264 5.874 0.207 29.793 0.851 0.944 0.977
ph + st + aAlsm + alr (Ours w/o Bilateral Cyclic Consistency) 0.117 1.251 5.876 0.206 29.536 0.851 0.944 0.977
ph + st + arCsm + abe (Ours w/o Bidirectional Edge-Awareness) 0.115 1.211 5.743 0.203 28.942 0.852 0.945 0.977
ph + st + aA’sm + abe (Ours Full Model) 0.114 1.172 5.651 0.202 28.142 0.855 0.947 0.979
ph + st + aA¥sm + abe * (Ours Full Model w/ 2 Branch Decoder) 0.110 1.119 5.576 0.200 27.149 0.856 0.947 0.980

1

Table 3: Quantitative comparison' amongst variants of our model on KITTI 2015 split proposed by [14]. Each variant is

named according to its loss function. ph and st denote data terms, sm local smoothness, a our adaptive weights, A& image
gradients [14], A’ image Laplacian, I left-right consistency [14], and bc our bilateral cyclic consistency. We show the
effectiveness of our adaptive regularization (Sec. 3.3) by applying it to [14] and improving their model. Our full model using
a generic encoder-decoder outperforms all variants on every metric, including [2] which predicts disparities that generate
photo-realistic images. Our full model using our proposed two-branch decoder (*) further improves the state-of-the-art.

Figure 4: Qualitative results on KITTI 2015 split. From left to right: input images, ground-truth depths, results of Godard
et al.[14], our results using a generic decoder and our results the proposed decoder. Our approach generates more consistent
depths (row 1: walls on right, row 2: building on left) and recovers more detailed structures (row 3: biker and poles on right,
rows 4, 5: street signs), with the two-branch decoder recovering the most.

8.7% and 5.75% in AbsRel, 13.1% and 10.5% in SqRel and can be found in our Supp. Mat.
even 5.25% and 2.55% in logRMS, respectively. Further- .
more, we score significantly higher in § < 1.25 (the hard- 6.2. KITTI 2015 Split

est accuracy metric), which suggests that our model pro- We eva.luate our method on 200 high que.lli.ty disparity
duces more correct and realistically detailed depths than all maps provided as part of the official KITTI training set [ 1 3].
competing methods. In addition, our two-branch decoder These 200 stereo pairs cover 28 of the total 61 scenes. From
improves over the said results across all metrics and depth 30,159 stereo pairs covering the remaining 33 scenes, we
caps and is the current state-of-the-art. Table 2 shows that choose 29,000 for training and the rest for validation. While
our model also beats [ 14] when pretraining on Cityscape [4] typical training and evaluation schemes project Yelodype
and fine-tuning on KITTL An ablation study on Eigen Split lasc?r values to depth, we choose to use the provided dis-
examining the effects of each of our contributions (Sec. 3.3) parity maps as they are less erroneous than velodyne data

points. In addition, we also use the official KITTI dispar-
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Error Metrics

Method Supervised ~ AbsRel  Sq Rel RMS log,o
Karsch et al. [25] Yes 0.417 4.894 8.172 0.144
Liuetal. [34] Yes 0.462 6.625 9.972 0.161
Lainaetal. [31] Yes 0.198 1.665 5.461 0.082
Godard et al. [14] No 0.468 9.236 12525 0.165
Ours No 0.454 8.470 12211 0.163
Ours* No 0.427 8.183 11.781  0.156

(d)

Figure 5: Qualitative (a) and quantitative (b) results' on Make3d [40] with maximum depth of 70 meters. In (a), top to
bottom: input images, ground-truth disparities, our results. In (b), unsupervised methods listed are all trained on KITTI
Eigen split. Despite being trained on KITTI, we perform comparably to a number of supervised methods trained on Make3d.

ity metric of end-point-error (D1-all) to measure our per-
formance as it is a more appropriate metric on our class of
approach that outputs disparity and synthesizes depth from
the output using camera focal length and baseline.

We show qualitative comparisons in Fig. 4 and quan-
titative comparisons in Table 3. Table 3 also serves as an
ablation study on variants belonging to the stereo unsuper-
vised paradigm using different image formation model and
regularization terms. We show that by simply applying our
adaptive regularization to [14], we achieve improvement
over their model. We also study the effects of substitut-
ing our bilateral cyclic consistency with the left-right con-
sistency regularizer [14]. We also substitute image Lapla-
cian with image gradients for edge-aware weights. In ad-
dition, we find that adaptive regularization and bilateral
cyclic consistency contribute similarly to the improvements
of the models. However, when combined they achieve sig-
nificantly improvements over the baseline method (and all
variants) in every metric. Furthermore, when using our pro-
posed decoder, we again surpass all variants on every met-
ric. We additionally outperform [2], who uses a GAN to
constrain the output disparities to produce photo-realistic
images during reconstruction. This result aligns with our
performance on accuracy metrics — our method produces
accurate and realistic depths.

6.3. Generalizing to Different Datasets: Make3d

To show that our model generalizes, we present our qual-
itative and quantitative results in Fig. 5 on the Make3d
dataset [40] containing 134 test images with 2272 x 1707
resolution. Make3d provides range maps (resolution of
305 x 55) for ground-truth depths, which must be rescaled
and interpolated. We use the central cropping proposed by
[14] where we generate a 852 x 1707 crop centered on the
image. We use the standard C'1 evaluation metrics' pro-
posed for Make3d and limit the maximum depth to 70 me-
ters. The results of the supervised methods are taken from
[14]. Because Make3d does not provide stereo pairs, we
are unable to train on it. However, we find that despite

having trained our model on KITTI Eigen split, our perfor-
mance is comparable to that of supervised methods trained
on Make3d and is better than the baseline across all metrics.

7. Discussion

In this work, we proposed an adaptive weighting scheme
(Sec. 3.3) that is both spatially and time varying, allow-
ing for not only a data-driven, but also model-driven ap-
proach to regularization. Moreover, we introduce a bilateral
cyclic consistency constraint that not only enforces consis-
tency between the left and right disparities, but also removes
stereo dis-occlusions while discounting unresolved occlu-
sions when combined with our weighting scheme. Finally,
we propose a two-branch decoder that achieves the state-of-
the-art by learning features to improve data residual for im-
posing our adaptive regularity. We achieve state-of-the-art
performance on two KITTI benchmarks and show that our
method generalizes to Make3d. Our two-branch decoder
further improves over those results. Our experiments (Table
2 and 3) show that our approach produces depth maps with
more details while maintaining global correctness.

For future work, we plan to improve robustness to specu-
lar and transparent surfaces as these regions tend to produce
inconsistent depths. We are also exploring more sophisti-
cated regularizers in place of the simple disparity gradient.
Finally, we believe that the task should drive the network
architecture. Rather than using a generic network, finding
a better architectural fit could prove to be ground-breaking
and further push the state-of-the-art.
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