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Abstract

Learning is an inherently continuous phenomenon.

When humans learn a new task there is no explicit distinc-

tion between training and inference. As we learn a task,

we keep learning about it while performing the task. What

we learn and how we learn it varies during different stages

of learning. Learning how to learn and adapt is a key

property that enables us to generalize effortlessly to new

settings. This is in contrast with conventional settings in

machine learning where a trained model is frozen during

inference. In this paper we study the problem of learn-

ing to learn at both training and test time in the context

of visual navigation. A fundamental challenge in naviga-

tion is generalization to unseen scenes. In this paper we

propose a self-adaptive visual navigation method (SAVN)

which learns to adapt to new environments without any ex-

plicit supervision. Our solution is a meta-reinforcement

learning approach where an agent learns a self-supervised

interaction loss that encourages effective navigation. Our

experiments, performed in the AI2-THOR framework, show

major improvements in both success rate and SPL for visual

navigation in novel scenes. Our code and data are available

at: https://github.com/allenai/savn.

1. Introduction

Learning is an inherently continuous phenomenon. We

learn further about tasks that we have already learned and

can learn to adapt to new environments by interacting in

these environments. There is no hard boundary between the

training and the testing phases while we are learning and

performing tasks: we learn as we perform. This stands in

stark contrast with many modern deep learning techniques,

where the network is frozen during inference.

What we learn and how we learn it varies during differ-

ent stages of learning. To learn a new task we often rely

on explicit external supervision. After learning a task, we

further learn as we adapt to new settings. This adaptation

does not necessarily need explicit supervision; we often do

this via interaction with the environment.

Figure 1. Traditional navigation approaches freeze the model dur-

ing inference (top row); this may result in difficulties generaliz-

ing to unseen environments. In this paper, we propose a meta-

reinforcement learning approach for navigation, where the agent

learns to adapt in a self-supervised manner (bottom row). In this

example, the agent learns to adapt itself when it collides with an

object once and acts correctly afterwards. In contrast, a standard

solution (top row) makes multiple mistakes of the same kind when

performing the task.

In this paper, we study the problem of learning to learn

and adapt at both training and test time in the context of

visual navigation; one of the most crucial skills for any vi-

sually intelligent agent. The goal of visual navigation is to

move towards certain objects or regions of an environment.

A key challenge in navigation is generalizing to a scene that

has not been observed during training, as the structure of

the scene and appearance of objects are unfamiliar. In this

paper we propose a self-adaptive visual navigation (SAVN)

model which learns to adapt during inference without any

explicit supervision using an interaction loss (Figure 1).

Formally, our solution is a meta-reinforcement learn-

ing approach to visual navigation, where an agent learns

to adapt through a self-supervised interaction loss. Our

approach is inspired by gradient based meta-learning al-

gorithms that learn quickly using a small amount of data

[13]. In our approach, however, we learn quickly using a
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small amount of self-supervised interaction. In visual navi-

gation, adaptation is possible without access to any reward

function or positive example. As the agent trains, it learns

a self-supervised loss that encourages effective navigation.

During training, we encourage the gradients induced by the

self-supervised loss to be similar to those we obtain from

the supervised navigation loss. The agent is therefore able

to adapt during inference when explicit supervision is not

available.

In summary, during both training and testing, the agent

modifies its network while performing navigation. This

approach differs from traditional reinforcement learning

where the network is frozen after training, and contrasts

with supervised meta-learning as we learn to adapt to new

environments during inference without access to rewards.

We perform our experiments using the AI2-THOR [23]

framework. The agent aims to navigate to an instance of

a given object category (e.g., microwave) using only vi-

sual observations. We show that SAVN outperforms the

non-adaptive baseline in terms of both success rate (40.8

vs 33.0) and SPL (16.2 vs 14.7). Moreover, we demonstrate

that learning a self-supervised loss provides improvement

over hand-crafted self-supervised losses. Additionally, we

show that our approach outperforms memory-augmented

non-adaptive baselines.

2. Related Work

Deep Models for Navigation. Traditional navigation meth-

ods typically perform planning on a given map of the

environment or build a map as the exploration proceeds

[26, 40, 21, 24, 9, 4]. Recently, learning-based navigation

methods (e.g., [50, 15, 27]) have become popular as they

implicitly perform localization, mapping, exploration and

semantic recognition end-to-end.

Zhu et al. [50] address target-driven navigation given a

picture of the target. A joint mapper and planner has been

introduced by [15]. [27] use auxiliary tasks such as loop

closure to speed up RL training for navigation. We differ

in our approach as we adapt dynamically to a novel scene.

[37] propose the use of topological maps for the task of

navigation. They explore the test environment for a long

period to populate the memory. In our work, we learn to

navigate without an exploration phase. [20] propose a self-

supervised deep RL model for navigation. However, no

semantic information is considered. [31] learn navigation

policies based on object detectors and semantic segmenta-

tion modules. We do not rely on heavily supervised detec-

tors and learn from a limited number of examples. [46, 44]

incorporate semantic knowledge to better generalize to un-

seen scenarios. Both of these approaches dynamically up-

date their manually defined knowledge graphs. However,

our model learns which parameters should be updated dur-

ing navigation and how they should be updated. Learning-

based navigation has been explored in the context of other

applications such as autonomous driving (e.g., [7]), map-

based city navigation (e.g., [5]) and game play (e.g., [43]).

Navigation using language instructions has been explored

by various works [3, 6, 17, 47, 29]. Our goal is different

since we focus on using meta-learning to more effectively

navigate new scenes using only the class label for the target.

Meta-learning. Meta-learning, or learning to learn, has

been a topic of continued interest in machine learning re-

search [41, 38]. More recently, various meta-learning tech-

niques have pushed the state of the art in low-shot problems

across domains [13, 28, 12].

Finn et al. [13] introduce Model Agnostic Meta-

Learning (MAML) which uses SGD updates to adapt

quickly to new tasks. This gradient based meta-learning ap-

proach may also be interpreted as learning a good parameter

initialization such that the network performs well after only

a few gradient updates. [25] and [48] augment the MAML

algorithm so that it uses supervision in one domain to adapt

to another. Our work differs as we do not use supervision

or labeled examples to adapt.

Xu et al. [45] use meta-learning to significantly speed up

training by encouraging exploration of the state space out-

side of what the actor’s policy dictates. Additionally, [14]

use meta-learning to augment the agent’s policy with struc-

tured noise. At inference time, the agent is able to better

adapt from a few episodes due to the variability of these

episodes. Our work instead emphasizes self-supervised

adaptation while executing a single visual navigation task.

Neither of these works consider this domain.

Clavera et al. [8] consider the problem of learning to

adapt to unexpected perturbations using meta-learning. Our

approach is similar as we also consider the problem of

learning to adapt. However, we consider the problem of

visual navigation and adapt via a self-supervised loss.

Both [18] and [48] learn an objective function. However,

[18] use evolutionary strategies instead of meta-learning.

Our approach for learning a loss is inspired by and simi-

lar to [48]. However, we adapt in the same domain without

explicit supervision while they adapt across domains using

a video demonstration.

Self-supervision. Different types of self-supervision have

been explored in the literature [1, 19, 11, 42, 49, 36, 34, 32].

Some works aim to maximize the prediction error in the rep-

resentation of future states [33, 39]. In this work, we learn

a self-supervised objective which encourages effective nav-

igation.

3. Adaptive Navigation

In this section, we begin by formally presenting the task

and our base model without adaptation. We then explain

how to incorporate adaptation and perform training and test-

ing in this setting.
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Figure 2. Model overview. Our network optimizes two objective functions, 1) self-supervised interaction loss L
φ
int and 2) navigation loss

Lnav. The inputs to the network at each time t are the egocentric image from the current location and word embedding of the target object

class. The network outputs a policy πθ(st). During training, the interaction and navigation-gradients are back-propagated through the

network, and the parameters of the self-supervised loss are updated at the end of each episode using navigation-gradients. At test time the

parameters of the interaction loss remain fixed while the rest of the network is updated using interaction-gradients. Note that the green

color in the figure represents the intermediate and final outputs.

3.1. Task Definition

Given a target object class, e.g. microwave, our goal is

to navigate to an instance of an object from this class using

only visual observations.

Formally, we consider a set of scenes S = {S1, ..., Sn}
and target object classes O = {o1, ..., om}. A task τ ∈ T
consists of a scene S, target object class o ∈ O, and initial

position p. We therefore denote each task τ by the tuple

τ = (S, o, p). We consider disjoint sets of scenes for the

training tasks Ttrain and testing tasks Ttest. We refer to the

trial of a navigation task as an episode.

The agent is required to navigate using only the egocen-

tric RGB images and the target object class (the target object

class is given as a Glove embedding [35]). At each time t

the agent takes an action a from the action set A until the

termination action is issued by the agent. We consider an

episode to be successful if, within certain number of steps,

the agent issues a termination action when an object from

the given target class is sufficiently close and visible. If

a termination action is issued at any other time, then the

episode concludes and the agent has failed.

3.2. Learning

Before we discuss our self-adaptive approach we begin

with an overview of our base model and discuss deep rein-

forcement learning for navigation in a traditional sense.

We let st, the egocentric RGB image, denote the agent’s

state at time t. Given st and the target object class, the net-

work (parameterized by θ) returns a distribution over the

actions which we denote πθ(st) and a scalar vθ(st). The

distribution πθ(st) is referred to as the agent’s policy while

vθ(st) is the value of the state. Finally, we let π
(a)
θ (st) de-

note the probability that the agent chooses action a.

We use a traditional supervised actor-critic navigation

loss as in [50, 27] which we denote Lnav. By minimiz-

ing Lnav, we maximize a reward function that penalizes the

agent for taking a step while incentivizing the agent to reach

the target. The loss is a function of the agent’s policies, val-

ues, actions, and rewards throughout an episode.

The network architecture is illustrated in Figure 2. We

use a ResNet18 [16] pretrained on ImageNet [10] to extract

a feature map for a given image. We then obtain a joint

feature-map consisting of both image and target information

and perform a pointwise convolution. The output is then

flattened and given as input to a Long Short-Term Memory

network (LSTM). For the remainder of this work we refer to

the LSTM hidden state and agent’s internal state represen-

tation interchangeably. After applying an additional linear

layer we obtain the policy and value. In Figure 2 we do not

show the ReLU activations we use throughout, or reference

the value vθ(st).

3.3. Learning to Learn

In visual navigation there is ample opportunity for the

agent to learn and adapt by interacting with the environ-

ment. For example, the agent may learn how to handle ob-

stacles it is initially unable to circumvent. We therefore pro-

pose a method in which the agent learns how to adapt from

interaction. The foundation of our method lies in recent

works which present gradient based algorithms for learning

to learn (meta-learning).

Background on Gradient Based Meta-Learning. We rely

on the meta-learning approach detailed by the MAML algo-

rithm [13]. The MAML algorithm optimizes for fast adap-

tation to new tasks. If the distribution of training and test-
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ing tasks are sufficiently similar then a network trained with

MAML should quickly adapt to novel test tasks.

MAML assumes that during training we have access to a

large set of tasks Ttrain where each task τ ∈ Ttrain has a small

meta-training dataset Dtr
τ and meta-validation set Dval

τ . For

example, in the problem of k-shot image classification, τ is

a set of image classes and Dtr
τ contains k examples of each

class. The goal is then to correctly assign one of the class

labels to each image in Dval
τ . A testing task τ ∈ Ttest then

consists of unseen classes.

The training objective of MAML is given by

min
θ

∑

τ∈Ttrain

L
(

θ − α∇θL
(

θ,Dtr
τ

)

,Dval
τ

)

, (1)

where the loss L is written as a function of a dataset and

the network parameters θ. Additionally, α is the step size

hyper-parameter, and ∇ denotes the differential operator

(gradient). The idea is to learn parameters θ such that they

provide a good initialization for fast adaptation to test tasks.

Formally, Equation (1) optimizes for performance on Dval
τ

after adapting to the task with a gradient step on Dtr
τ . In-

stead of using the network parameters θ for inference on

Dval
τ , we use the adapted parameters θ − α∇θL (θ,D

tr
τ ). In

practice, multiple SGD updates may be used to compute the

adapted parameters.

Training Objective for Navigation. Our goal is for an

agent to be continually learning as it interacts with an envi-

ronment. As in MAML, we use SGD updates for this adap-

tation. These SGD updates modify the agent’s policy net-

work as it interacts with a scene, allowing the agent to adapt

to the scene. We propose that these updates should occur

with respect to Lint, which we call an interaction loss. Min-

imizing Lint should assist the agent in completing its navi-

gation task, and it can be learned or hand-crafted. For exam-

ple, a hand-crafted variation may penalize the agent for vis-

iting the same location twice. In order for the agent to have

access to Lint during inference, we use a self-supervised

loss. Our objective is then to learn a good initialization θ,

such that the agent will learn to effectively navigate in an

environment after a few gradient updates using Lint.

For clarity, we begin by formally presenting our method

in a simplified setting in which we allow for a single SGD

update with respect to Lint. For a navigation task τ we let

Dint
τ denote the actions, observations, and internal state rep-

resentations (defined in Section 3.2) for the first k steps of

the agent’s trajectory. Additionally, let Dnav
τ denote this

same information for the remainder of the trajectory. Our

training objective is then formally given by

min
θ

∑

τ∈Ttrain

Lnav

(

θ − α∇θLint

(

θ,Dint
τ

)

,Dnav
τ

)

, (2)

which mirrors the MAML objective from Equation (1).

However, we have replaced the small training set Dtr
τ from

MAML with an interaction phase. The intuition for our ob-

jective is as follows: at first we interact with the environ-

ment and then we adapt to it. More specifically, the agent in-

teracts with the scene using the parameters θ. After k steps

an SGD update with respect to the self-supervised loss is

used to obtain the adapted parameters θ−α∇θLint

(

θ,Dint
τ

)

.

In domain adaptive meta-learning, two separate losses

are used for adaptation from one domain to another [25,

48]. A similar objective to Equation (2) is employed by

[48] for one-shot imitation from observing humans. Our

method differs in that we are learning how to adapt in the

same domain through self-supervised interaction.

As in [25], a first order Taylor expansion provides in-

tuition for our training objective. Equation (2) is approxi-

mated by

min
θ

∑

τ∈Ttrain

Lnav (θ,D
nav
τ )

− α
〈

∇θLint

(

θ,Dint
τ

)

,∇θLnav (θ,D
nav
τ )

〉

,

(3)

where 〈·, ·〉 denotes an inner product. We are therefore

learning to minimize the navigation loss while maximiz-

ing the similarity between the gradients we obtain from the

self-supervised interaction loss and the supervised naviga-

tion loss. If the gradients we obtain from both losses are

similar, then we are able to continue “training” during in-

ference when we do not have access to Lnav. However, it

may be difficult to choose Lint which allows for similar gra-

dients. This directly motivates learning the self-supervised

interaction loss.

3.4. Learning to Learn How to Learn

We propose to learn a self-supervised interaction objec-

tive that is explicitly tailored to our task. Our goal is for

the agent to improve at navigation by minimizing this self-

supervised loss in the current environment.

During training, we both learn this objective and learn

how to learn using this objective. We are therefore “learn-

ing to learn how to learn”. As input to this loss we use

the agent’s previous k internal state representations concate-

nated with the agent’s policy.

Formally, we consider the case where Lint is a neural net-

work parameterized by φ, which we denote Lφ
int. Our train-

ing objective then becomes

min
θ,φ

∑

τ∈Ttrain

Lnav

(

θ − α∇θL
φ
int

(

θ,Dint
τ

)

,Dnav
τ

)

(4)

and we freeze the parameters φ during inference. There is

no explicit objective for the learned-loss. Instead, we sim-

ply encourage that minimizing this loss allows the agent to

navigate effectively. This may occur if the gradients from
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Algorithm 1 SAVN-Training(Ttrain, α, β1, β2, k)

1: Randomly initialize θ, φ.

2: while not converged do

3: for mini-batch of tasks τi ∈ Ttrain do

4: θi ← θ

5: t← 0
6: while termination action is not issued do

7: Take action a sampled from πθi(st)
8: t← t+ 1
9: if t is divisible by k then

10: θi ← θi − α∇θiL
φ
int

(

θi,D
(t,k)
τ

)

11: θ ← θ − β1

∑

i∇θLnav(θi,Dτ )
12: φ← φ− β2

∑

i∇φLnav(θi,Dτ )

13: return θ, φ

both losses are similar. In this sense we are training the

self-supervised loss to imitate the supervised Lnav loss.

As in [48], we use one dimensional temporal convolu-

tions for the architecture of our learned loss. We use two

layers, the first with 10×1 filters and the next with 1×1. As

input we concatenate the past k hidden states of the LSTM

and the previous k policies. To obtain the scalar objective

we take the ℓ2 norm of the output. Though we omit the ℓ2
norm, we illustrate our interaction loss in Figure 2.

Hand Crafted Interaction Objectives. We also experi-

ment with two variations of simple hand crafted interaction

losses which can be used as an alternative to the learned

loss. The first is a diversity loss Ldiv
int which encourages the

agent to take varied actions. If the agent does happen to

reach the same state multiple times it should definitely not

repeat the action it previously took. Accordingly,

Ldiv
int

(

θ,Dint
τ

)

=
∑

i<j≤k

g(si, sj) log
(

π
(ai)
θ (sj)

)

, (5)

where st is the agent’s state at time t, at is the action the

agent takes at time t, and g calculates the similarity between

two states. For simplicity we let g(si, sj) be 1 if the pixel

difference between si and sj is below a certain threshold

and 0 otherwise.

Additionally, we consider a prediction loss Lpred
int where

the agent aims to predict the success of each action. The

idea is to avoid taking actions that the network predicts will

fail. We say that the agent’s action has failed if we detect

sufficient similarity in two consecutive states. This may oc-

cur when the agent bumps into an object or wall. In ad-

dition to producing a policy πθ over actions the agent also

predicts the success of each action. For state st we denote

the predicted probability that action a succeeds as q
(a)
θ (st).

Instead of sampling an action from πθ(st) we instead use

π̃θ(st) = πθ(st) ∗ qθ(st) where ∗ denotes element-wise

multiplication.

Algorithm 2 SAVN-Testing(Ttest, θ, φ, α, β, k)

1: for mini-batch of tasks τi ∈ Ttest do

2: θi ← θ

3: t← 0
4: while termination action is not issued do

5: Take action a sampled from πθi(st)
6: t← t+ 1
7: if t is divisible by k then

8: θi ← θi − α∇θiL
φ
int

(

θi,D
(t,k)
τ

)

For Lpred
int we use a standard binary cross entropy loss

between our success prediction q
(a)
θ and observed success.

Using the same g from Equation (5) we write our loss as

Lpred
int

(

θ,Dint
τ

)

=

k−1
∑

t=0

H
(

q
(at)
θ (st), 1− g(st, st+1)

)

, (6)

whereH(·, ·) denotes binary cross-entropy.

We acknowledge that in a non-synthetic environment it

may be difficult to produce a reliable function g. Therefore

we only use g in the hand-crafted variations of the loss.

3.5. Training and Testing

So far we have implicitly decomposed the agent’s trajec-

tory into an interaction and navigation phase. In practice,

we would like the agent to keep adapting until the object is

found during both training and testing. We therefore per-

form an SGD update with respect to the self-supervised in-

teraction loss every k steps. We compute the interaction

loss at time t by using the information from the previous k

steps of the agent’s trajectory, which we denoteD
(t,k)
τ . Note

that D
(t,k)
τ is analogous to Dint

τ in Equation (4). In addition,

the agent should be able to navigate efficiently. Hence, we

compute the navigation loss Lnav using the the information

from the complete trajectory of the agent, denoted by Dτ .

For the remainder of this work we refer to the gradient

with respect to Lint as the interaction-gradient and the gra-

dient with respect to Lnav as the navigation-gradient. These

gradients are illustrated in Figure 2 by red and green arrows,

respectively. Note that we do not update the loss parameters

φ via the interaction-gradient.

Though traditional works use testing and inference in-

terchangeably we may regard inference more abstractly as

any setting in which the task is performed without super-

vision. This occurs not only during testing but also within

each episode of navigation during training.

Algorithms 1 and 2 detail our method for training and

testing, respectively. In Algorithm 1 we learn a policy net-

work πθ and a loss network parameterized by φ with step-

size hyper-parameters α, β1, β2. Recall that k is a hyper-

parameter which prescribes the frequency of the interaction-
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Figure 3. Qualitative examples. We compare our method with the non-adaptive baseline. We illustrate the trajectory of the agent (white

corresponds to the beginning of the trajectory and dark blue shows the end). Black arrows represent rotation. We also show the egocentric

view of the agent at a few time steps. Our method may learn from its mistakes (e.g., getting stuck behind an object).

gradients. If we are instead considering a hand-crafted self-

supervised loss then we ignore φ and omit line 12.

Recall that the adapted parameters, which we denote

θi in Algorithm 1 and 2, are implicitly a function of θ, φ.

Therefore, the differentiation in lines 11 and 12 is well de-

fined though it requires the computation of Hessian vector-

products. We never compute more than 4 interaction-

gradients due to computational constraints.

At test time we may adapt in an environment with respect

to the self-supervised interaction loss, but we no longer have

access to Lnav. Note that the shared parameter θ is not up-

dated during testing, as detailed in Algorithm 2.

4. Experiments

Our goal in this section is to (1) evaluate our self-

adaptive navigation model in comparison to non-adaptive

baselines, (2) determine if the learned self-supervised ob-

jective provides any improvement over hand-crafted self-

supervised losses, and (3) gain insight into how and why

our method may be improving performance.

4.1. Experiment setup

We train and evaluate our models using the AI2-THOR

[23] environment. AI2-THOR provides indoor 3D synthetic

scenes in four room categories, kitchen, living room, bed-

room and bathroom. For each room type, we use 20 scenes

for training, 5 for validation and 5 for testing (a total of 120

scenes).

We choose a subset of target object classes as our nav-

igation targets such that (1) they are not hidden in cabi-

nets, fridges, etc., (2) they are not too large that they take

a big portion of the room and are visible from most parts of

the room (e.g., beds in bedrooms). We choose the follow-

ing sets of objects for each type of room: 1) Living room:

pillow, laptop, television, garbage can, box, and bowl. 2)

Kitchen: toaster, microwave, fridge, coffee maker, garbage

can, box, and bowl. 3) Bedroom: plant, lamp, book, and

alarm clock. 4) Bathroom: sink, toilet paper, soap bottle,

and light switch.

We consider the actions A = {MoveAhead,

RotateLeft, RotateRight, LookDown, LookUp,

Done}. Horizontal rotation occurs in increments of 45

degrees while looking up and down change the camera tilt

angle by 30 degrees. Done corresponds to the termination

action discussed in Section 3.1. The agent successfully

completes a navigation task if this action is issued when

an instance from the target object class is within 1 meter

from the agent’s camera and within the field of view. This

follows from the primary recommendation of [2]. Note that

if the agent ever issues the Done action when it has not

reached a target object then we consider the task a failure.
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4.2. Implementation details

We train our method and baselines until the success rate

saturates on the validation set. We train one model across

all scene types with an equal number of episodes per type

using 12 asynchronous workers. For Lnav, we use a re-

ward of 5 for finding the object and -0.01 for taking a

step. For each scene we randomly sample an object from

the scene as a target along with a random initial position.

For our interaction-gradient updates we use SGD and for

our navigation-gradients we use Adam [22]. For step size

hyper-parameters (α, β1, β2 in Algorithm 1) we use 10−4

and for k we use 6. Recall that k is the hyper-parameter

which prescribes the frequency of interaction-gradients. We

experimented with a schedule for k but saw no significant

improvement in performance.

For evaluation we perform inference for 1000 different

episodes (250 for each scene type). The scene, initial state

of the agent and the target object are randomly chosen. All

models are evaluated using the same set. For each training

run we select the model that performs best on the validation

set in terms of success.

4.3. Evaluation metrics

We evaluate our method on unseen scenes using both

Success Rate and Success weighted by Path Length (SPL).

SPL was recently proposed by [2] and captures informa-

tion about navigation efficiency. Success is defined as
1
N

∑N

i=1 Si and SPL is defined as 1
N

∑N

i=1 Si
Li

max(Pi,Li)
,

where N is the number of episodes, Si is a binary indicator

of success in episode i, Pi denotes path length and Li is the

length of the optimal trajectory to any instance of the target

object class in that scene. We evaluate the performance of

our model both on all trajectories and trajectories where the

optimal path length is at least 5. We denote this by L ≥ 5
(L refers to optimal trajectory length).

4.4. Baselines

We compare our models with the following baselines:

Random agent baseline. At each time step the agent ran-

domly samples an action using a uniform distribution.

Nearest neighbor (NN) baseline. At each time step we

select the most similar visual observation (in terms of Eu-

clidean distance between ResNet features) among scenes

in training set which contain an object of the class we are

searching for. We then take the action that is optimal in the

train scene when navigating to the same object class.

No adaptation (A3C) baseline. The architecture for the

baseline is the same as ours, however there is no interaction-

gradient and therefore no interaction loss. The training ob-

jective for this baseline is then minθ
∑

τ∈Ttrain
Lnav (θ,Dτ )

which is equivalent to setting α = 0 in Equation (4). This

baseline is trained using A3C [30].

All L ≥ 5
SPL Success SPL Success

Random 3.64(0.6) 8.0(1.3) 0.1(0.1) 0.28(0.1)
NN 6.09 7.90 1.38 1.66

No Adapt (A3C) 14.68(1.8) 33.04(3.5) 11.69(1.9) 21.44(3.0)
Scene Priors [46] 15.47(1.1) 35.13(1.3) 11.37(1.6) 22.25(2.7)
Ours - prediction 14.36(1.1) 38.06(2.9) 12.61(1.3) 26.41(2.4)
Ours - diversity 15.12(1.5) 39.52(3.0) 13.38(1.4) 27.66(3.5)
Ours - SAVN 16.15(0.5) 40.86(1.2) 13.91(0.5) 28.70(1.5)

Table 1. Quantitative results. We compare variations of our

method with random, nearest neighbor and non-adaptive base-

lines. We consider two evaluation metrics, Success Rate and SPL.

We provide results for all targets ‘All’ and a subset of targets whose

optimal trajectory length is greater than 5. We report the average

over 5 training runs with standard deviations shown in sub-scripted

parentheses.

4.5. Results

Table 1 summarizes the results of our approach and the

baselines. We consider three variations of our method,

which include SAVN (learned self-supervised loss) and the

hand-crafted prediction and diversity loss alternatives.

Our learned self-supervised loss outperforms all base-

lines by a large margin in terms of both success rate and

SPL metrics. Most notably, we observe about 8% abso-

lute improvement in success and 1.5 in SPL over the non-

adaptive (A3C) baseline. The self-supervised objective not

only learns to navigate more effectively but it also learns to

navigate efficiently.

The models trained with hand-crafted exploration losses

outperform our baselines by large margins in success, how-

ever, the SPL performance is not as impressive as with the

learned loss. We hypothesize that minimizing these hand-

crafted exploration losses are not as conducive to efficient

navigation.

Failed actions. We now explore a behavior which sets

us apart from the non-adaptive baseline. In the beginning

of an episode the agent looks around or explores the free

space in front of it. However, as the episode progresses, the

non-adaptive agent might issue the termination action or get

stuck. Our method (SAVN), however, exhibits this pattern

less frequently.

To examine this behavior we compute the ratio of actions

which fail. Recall that an agent’s action has failed if two

consecutive frames are sufficiently similar. Typically, this

will occur if an agent collides with an object. As shown in

Figure 4, our method experiences significantly fewer failed

actions than the baseline as the episode progresses.

Qualitative examples. Figure 3 qualitatively compares our

method with the non-adaptive (A3C) baseline. In scenario

(a) our baseline gets stuck behind the box and tries to move

forward multiple times, while our method adapts dynami-

cally and finds the way towards the television. Similarly in

scenario (c), the baseline tries to move towards the lamp but
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Figure 4. Failed actions. Our approach learns to adapt and not to

take unsuccessful actions as the navigation proceeds.

after bumping into the bed 5 times and rotating 9 times, it

issues Done in a distant location from the target.

4.6. Ablation Study

In this section we perform an ablation on our methods to

gain further insight into our result.

Adding modules to the non-adaptive baseline. In Ta-

ble 2 we experiment with the addition of various modules

to our non-adaptive baseline. We begin by augmenting

the baseline with an additional memory module which per-

forms self-attention on the latest k = 6 hidden states of the

LSTM. SAVN outperforms the memory-augmented base-

line as well.

Additionally, we add the prediction loss detailed in Sec-

tion 3.4 to the training objective. This experiment reveals

that our result is not simply a consequence of additional

losses. By using our training objective with the added hand-

crafted prediction loss (referred to as ‘Ours - prediction’),

we outperform the baseline non-adaptive model with pre-

diction (referred to as ‘A3C w/ prediction’) by 3.3% for all

trajectories and 4.8% for trajectories of at least length 5 in

terms of success rate. As discussed in the Section 4.5, min-

imizing the hand-crafted objectives during the episode may

not be optimal for efficient exploration. This may be why

we show a boost in SPL for trajectories of at least length

5 but not overall. We run the same experiment with the

diversity loss but find that the baseline model is unable to

converge with this additional loss.

Ablation of the number of gradients. To showcase the ef-

ficacy of our method we modify the number of interaction-

gradient steps that we perform during the adaptation phase

during training and testing. As discussed in Section 3.5,

we never perform more than 4 interaction-gradients due to

computational constraints. As illustrated by Figure 5, there

is an increase in success rate when more gradient updates

are used, demonstrating the importance of the interaction-

gradients.

Perfect object information. Issuing the termination action

at the correct location plays an important role in our nav-

All L ≥ 5
SPL Success SPL Success

No Adapt (A3C) 14.68 33.04 11.69 21.44
A3C w/ mem 15.54 34.30 11.21 20.50

A3C w/ prediction loss 14.95 34.80 10.94 21.60

Ours - prediction 14.36 38.06 12.61 26.41
Ours - SAVN 16.15 40.86 13.91 28.70

A3C (GT obj) 31.34 44.40 16.77 26.05

Ours - SAVN (GT obj) 35.55 54.40 23.47 37.87
Table 2. Ablation results. We compare our approach with the non-

adaptive baseline augmented with memory and our hand-crafted

loss. We also provide the result when we use ground truth object

information (bottom two rows).

S
u
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e
ss

Number	of	interaction-gradient	steps

S
P
L

Number	of	interaction-gradient	steps

Figure 5. Number of Gradients Ablation. Our success rate

increases as more interaction-gradients are taken during train-

ing/testing.

igation task. We observe that SAVN still outperforms the

baseline even when the termination signal is provided by

the environment (referred to as ‘GT obj’ in Table 2).

5. Conclusions

We introduce a self-adaptive visual navigation agent

(SAVN) that learns during both training and inference.

During training the model learns a self-supervised inter-

action loss that can be used when there is no supervision.

Our experiments show that this approach outperforms non-

adaptive baselines by a large margin. Furthermore, we show

that the learned interaction loss performs better than hand-

crafted losses. Additionally, we find that SAVN navigates

more effectively than a memory-augmented non-adaptive

baseline. We conjecture that this idea may be applied

in other domains where the agents may learn from self-

supervised interactions.

Acknowledgements: We thank Marc Millstone and the Beaker

team for providing a robust experiment platform and providing

tremendous support. We also thank Luca Weihs and Eric Kolve for

their help with setting up the framework, Winson Han for his help

with figures, and Chelsea Finn for her valuable suggestions. This

work is in part supported by NSF IIS-165205, NSF IIS-1637479,

NSF IIS-1703166, Sloan Fellowship, NVIDIA Artificial Intelli-

gence Lab, and Allen Institute for artificial intelligence.

6757



References

[1] Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning

to see by moving. In ICCV, 2015. 2

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

and Amir R. Zamir. On evaluation of embodied navigation

agents. arXiv, 2018. 6, 7

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In CVPR, 2018. 2
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[30] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,

Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In ICML, 2016. 7

[31] Arsalan Mousavian, Alexander Toshev, Marek Fiser, Jana

Kosecka, and James Davidson. Visual representations for

semantic target driven navigation. In ECCV Workshop on

Visual Learning and Embodied Agents in Simulation Envi-

ronments, 2018. 2

[32] Andrew Owens, Phillip Isola, Josh H. McDermott, Antonio

Torralba, Edward H. Adelson, and William T. Freeman. Vi-

sually indicated sounds. In CVPR, 2016. 2

[33] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor

Darrell. Curiosity-driven exploration by self-supervised pre-

diction. In ICML, 2017. 2

[34] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
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