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Abstract

We present AdaFrame, a framework that adaptively

selects relevant frames on a per-input basis for fast video

recognition. AdaFrame contains a Long Short-Term Mem-

ory network augmented with a global memory that pro-

vides context information for searching which frames to use

over time. Trained with policy gradient methods, AdaFrame

generates a prediction, determines which frame to observe

next, and computes the utility, i.e., expected future rewards,

of seeing more frames at each time step. At testing time,

AdaFrame exploits predicted utilities to achieve adaptive

lookahead inference such that the overall computational

costs are reduced without incurring a decrease in accuracy.

Extensive experiments are conducted on two large-scale

video benchmarks, FCVID and ActivityNet. AdaFrame

matches the performance of using all frames with only 8.21

and 8.65 frames on FCVID and ActivityNet, respectively.

We further qualitatively demonstrate learned frame usage

can indicate the difficulty of making classification deci-

sions; easier samples need fewer frames while harder ones

require more, both at instance-level within the same class

and at class-level among different categories.

1. Introduction

The explosive increase of Internet videos, driven by the

ubiquity of mobile devices and sharing activities on social

networks, is phenomenal: around 300 hours of video are up-

loaded to YouTube every minute of every day! Such growth

demands effective and scalable approaches that can recog-

nize actions and events in videos automatically for tasks like

indexing, summarization, recommendation, etc. Most exist-

ing work focuses on learning robust video representations

to boost accuracy [24, 29, 19, 28], while limited effort has

been devoted to improving efficiency [31, 38].

State-of-the-art video recognition frameworks rely on

the aggregation of prediction scores from uniformly sam-
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Figure 1: A conceptual overview of our approach.

AdaFrame aims to select a small number of frames to make

correct predictions conditioned on different input videos so

as to reduce the overall computational cost.

pled frames 1, if not every single frame [16], during infer-

ence. While uniform sampling has been shown to be effec-

tive [19, 28, 29], the analysis of even a single frame is still

computationally expensive due to the use of high-capacity

backbone networks such as ResNet [7], ResNext [34], In-

ceptionNet [22], etc. On the other hand, uniform sampling

assumes information is evenly distributed over time, which

could therefore incorporate noisy background frames that

are not relevant to the class of interest.

It is also worth noting that the difficulty of making recog-

nition decisions relates to the category to be classified—

one frame might be sufficient to recognize most static ob-

jects (e.g., “dogs” and “cats”) or scenes (e.g., “forests” or

“sea”) while more frames are required to differentiate sub-

tle actions like “drinking coffee” and “drinking beer”. This

also holds for samples even within the same category due

to large intra-class variations. For example, a “playing bas-

ketball” event can be captured from multiple view points

(e.g., different locations of a gymnasium), occur at different

locations (e.g., indoor or outdoor), with different players

(e.g., professionals or amateurs). As a result, the number of

frames required to recognize the same event are different.

With this in mind, to achieve efficient video recognition,

we explore how to automatically adjust computation within

a network on a per-video basis such that—conditioned on

different input videos, a small number of informative frames

1Here, we use frame as a general term, and it can be in the forms of

a single RGB image, stacked RGB images (snippets), and stacked optical

flow images.
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are selected to produce correct predictions (See Figure 1).

However, this is a particularly challenging problem, since

videos are generally weakly-labeled for classification tasks,

one annotation for a whole sequence, and there is no super-

vision informing which frames are important. Therefore, it

is unclear how to effectively explore temporal information

over time to choose which frames to use, and how to encode

temporal dynamics in these selected frames.

In this paper, we propose AdaFrame, a Long Short-Term

Memory (LSTM) network augmented with a global mem-

ory, to learn how to adaptively select frames conditioned

on inputs for fast video recognition. In particular, a global

memory derived from representations computed with spa-

tially and temporally downsampled video frames is intro-

duced to guide the exploration over time for learning frame

usage policies. The memory-augmented LSTM serves as an

agent interacting with video sequences; at a time step, it ex-

amines the current frame, and with the assistance of global

context information derived by querying the global mem-

ory, generates a prediction, decides which frame to look at

next and calculates the utility of seeing more frames in the

future. During training, AdaFrame is optimized using pol-

icy gradient methods with a fixed number of steps to max-

imize a reward function that encourages predictions to be

more confident when observing one more frame. At testing

time, AdaFrame is able to achieve adaptive inference con-

ditioned on input videos by exploiting the predicted future

utilities that indicate the advantages of going forward.

We conduct extensive experiments on two large-scale

and challenging video benchmarks for generic video cate-

gorization (FCVID [11]) and activity recognition (ACTIV-

ITYNET [8]). AdaFrame offers similar or better accura-

cies measured in mean average precision over the widely

adopted uniform sampling strategy, a simple yet strong

baseline, on FCVID and ACTIVITYNET respectively, while

requiring 58.9% and 63.3% fewer computations on aver-

age, going as high as savings of 90.6%. AdaFrame also

outperforms by clear margins alternative methods [36, 3]

that learn to select frames. We further show that, among

other things, frame usage is correlated with the difficulty of

making predictions—different categories produce different

frame usage patterns and instance-level frame usage within

the same class also differs. These results corroborate that

AdaFrame can effectively learn to generate frame usage

policies that adaptively select a small number of relevant

frames for classification for each input video.

2. Related Work

Video Analysis. Extensive studies have been conducted

on video recognition [33]. Most existing work focuses on

extending 2D convolution to the video domain and mod-

eling motion information in videos [19, 29, 28, 35, 24].

Only a few methods consider efficient video classifica-

tion [38, 31, 40, 20, 10]. However, these approaches per-

form mean-pooling of scores/features from multiple frames,

either uniformly sampled or decided by an agent, to classify

a video clip. In contrast, we focus on selecting a small num-

ber of relevant frames, whose temporal relations are mod-

eled by an LSTM, on a per-video basis for efficient recog-

nition. Note that our framework is also applicable to 3D

CNNs; the inputs to our framework can be easily replaced

with features from stacked frames. A few recent approaches

attempt to reduce computation cost in videos by exploring

similarities among adjacent frames [39, 17], while our goal

is to selectively choose relevant frames based on inputs.

Our work is more related to [36] and [3] that choose

frames with policy search methods [2]. Yeung et al. in-

troduce an agent to predict whether to stop and where to

look next through sampling from the whole video for ac-

tion detection [36]. For detection, ground-truth temporal

boundaries are available, providing strong feedback about

whether viewed frames are relevant. In the context of clas-

sification, there is no such supervision, and thus directly

sampling from the entire sequence is difficult. To overcome

this issue, Fan et al. propose to sample from a predefined

action set deciding how many steps to jump [3], which re-

duces the search space but sacrifices flexibility. In contrast,

we introduce a global memory module that provides context

information to guide the frame selection process. We also

decouple the learning of frame selection and when to stop,

exploiting predicted future returns as stop signals.

Adaptive Computation. Our work also relates to adaptive

computation to achieve efficiency by deciding whether to

stop inference based on the confidence of classifiers. The

idea dates back to cascaded classifiers [27] that quickly re-

ject easy negative sub-windows for fast face detection. Sev-

eral recent approaches propose to add decision branches

to different layers of CNNs to learn whether to exit the

model [23, 9, 13, 4]. Graves introduce a halting unit to

RNNs to decide whether computation should continue [6].

Related are also [30, 26, 32, 15, 5] that learn to drop lay-

ers in residual networks or learn where to look in images

conditioned on inputs. In this paper, we focus on adaptive

computation for videos to adaptively select frames rather

than layers/units in neural networks for fast inference.

3. Approach

Our goal is, given a testing video, to derive an effective

frame selection strategy that produces a correct prediction

while using as few frames as possible. To this end, we

introduce AdaFrame, a memory-augmented LSTM (Sec-

tion 3.1), to explore the temporal space of videos effectively

with the guidance of context information from a global

memory. AdaFrame is optimized to choose which frames

to use on a per-video basis, and to capture the temporal dy-
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Figure 2: An overview of the proposed framework. A memory-agumented LSTM serves as an agent, interacting with

a video sequence. At each time step, it takes features from the current frame, previous states, and a global context vector

derived from a global memory to generate the current hidden states. The hidden states are used to produce a prediction,

decides where to look next and calculates the utility of seeing more frames in the future. See texts for more details.

namics of these selected frames. Given the learned model,

we perform adaptive lookahead inference (Section 3.2) to

accommodate different computational needs through ex-

ploring the utility of seeing more frames in the future.

3.1. Memory­augmented LSTM

The memory-augmented LSTM can be seen as an agent

that recurrently interacts with a video sequence of T frames,

whose representations are denoted as {v1,v2, . . . ,vT }.

More formally, the LSTM, at the t-th time step, takes fea-

tures of the current frame vt, previous hidden states ht−1

and cell outputs ct−1, as well as a global context vector ut

derived from a global memory M as its inputs, and produces

the current hidden states ht and cell contents ct:

ht, ct = LSTM([vt,ut], ht−1, ct−1), (1)

where vt and ut are concatenated. The hidden states ht are

further input into a prediction network fp for classification,

and the probabilities are used to generate a reward rt mea-

suring whether the transition from the last time step brings

information gain. Furthermore, conditioned on the hidden

states, a selection network fs decides where to look next,

and a utility network fu calculates the advantage of seeing

more frames in the future. Figure 2 gives an overview of the

framework. In the following, we elaborate detailed compo-

nents in the memory-augmented LSTM.

Global memory. The LSTM is expected to make reliable

predictions and explore the temporal space to select frames

guided by rewards received. However, learning where to

look next is difficult due to the huge search space and lim-

ited capacity of hidden states [1, 37] to remember input

history. Therefore, for each video, we introduce a global

memory to provide context information, which consists of

representations of spatially and temporally downsampled

frames, M = [vs
1,v

s
2, . . . ,v

s
Td
]. Here, Td denotes the num-

ber of frames (Td < T ), and the representations are com-

puted with a lightweight network using spatially downsam-

pled inputs (more details in Sec. 4.1). This is to ensure the

computational overhead of the global memory is small. As

these representations are computed frame by frame without

explicit order information, we further utilize positional en-

coding [25] to encode positions in the downsampled repre-

sentations. To obtain global context information, we query

the global memory with the hidden states of the LSTM to

get an attention weight for each element in the memory:

zt,j = (Whht−1)
⊤PE(vs

j ), βt =Softmax(zt),

where Wh maps hidden states to the same dimension as the

j-th downsampled feature vs
j in the memory, PE denotes

the operation of adding positional encoding to features, and

βt is the normalized attention vector over the memory. We

can further derive the global context vector as the weighted

average of the global memory: ut = β⊤
t M. The intuition

of computing a global context vector with soft-attention as

inputs to the LSTM is to derive a rough estimate of the cur-

rent progress based on features in the memory block, serv-

ing as global context to assist the learning of which frame

in the future to examine.

Prediction network. The prediction network fp(ht;Wp)

parameterized by weights Wp maps the hidden states ht to

outputs st ∈ R
C with one fully-connected layer, where C

is the number of classes. In addition, st is further normal-
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ized with Softmax to produce probability scores for each

class. The network is trained with cross-entropy loss using

predictions from the last time step Te:

Lcls(Wp) = −
C
∑

c=1

yc log(scTe
), (2)

where y is a one-hot vector encoding the label of the corre-

sponding sample. In addition, we constrain Te ≪ T , since

we wish to use as few frames as possible.

Reward function. Given the classification scores st of the

t-th time step, a reward is given to evaluate whether the tran-

sition from the previous time step is useful—observing one

more frame is expected to produce more accurate predic-

tions. Inspired by [12], we introduce a reward function that

forces the classifier to be more confident when seeing addi-

tional frames, taking the following form (when t > 1):

rt = max{0, mt − max
t′∈[0,t−1]

mt′}. (3)

Here, mt = s
gt
t − max{sc

′

t |c
′ 6= gt} is the margin be-

tween the probability of the ground-truth class (indexed by

gt) and the largest probabilities from other classes, pushing

the score of the ground-truth class to be higher than other

classes by a margin. And the reward function in Eqn. 3 en-

courages the current margin to be larger than historical ones

to receive a positive reward, which demands that the confi-

dence of the classifier increases when seeing more frames.

Such a constraint acts as a proxy to measure if the transition

from the last time step brings additional information for rec-

ognizing target classes, as there is no supervision providing

feedback about whether a single frame is informative.

Selection network. The selection network fs defines a pol-

icy with a Gaussian distribution using fixed variance, to

decide which frame to observe next, using hidden states

ht that contain information of current inputs and histori-

cal context. In particular, the network, parameterized by

Ws, transforms the hidden states to a 1-dimensional output

fs(ht;Ws) = at = sigmoid(W⊤
s ht), as the mean of the

location policy. Following [14], during training, we sample

from the policy ℓt+1 ∼ π(·|ht) = N (at, 0.1
2), and at test-

ing time, we directly use the output as the location. We also

clamp ℓt+1 to be in the interval of [0, 1], so that it can be

further transfered to a frame index multiplying by the total

number of frames. It is worth noting that at the current time

step, the policy searches through the entire time horizon and

there is no constraint; it can not only jump forward to seek

future informative frames but also go back to re-examine

past information. We train the selection network to maxi-

mize the expected future reward:

Jsel(Ws) = Eℓt∼π(·|ht;Ws)

[

Te
∑

t=0

rt

]

. (4)

Utility network. The utility network, parameterized by

Wu, produces an output fu(ht;Wu) = V̂t = W⊤
u ht using

one fully-connected layer. It serves as a critic to provide an

approximation of expected future rewards from the current

state, which is also known as the value function [21]:

Vt = Eht+1:Te
,

at:Te

[

Te−t
∑

i=0

γirt+i

]

, (5)

where γ is the discount factor fixed to 0.9. The intuition

is to estimate the value function Vt derived from empirical

rollouts with the network output V̂t to update policy param-

eters in the direction of performance improvement. More

importantly, by estimating future returns, it provides the

agent with the ability to look ahead, measuring the utility of

subsequently observing more frames. The utility network is

trained with the following regression loss:

Lutl(Wu) =
1

2
‖V̂t − Vt‖2. (6)

Optimization. Combining Eqn. 2, Eqn. 4 and Eqn. 6, the

final objective function can be written as:

minimize
Θ

Lcls + λLutl − λJsel,

where λ controls the trade off between classification and

temporal exploration and Θ denotes all trainable parame-

ters. Note that the first two terms are differentiable, and we

can directly use back propagation with stochastic gradient

descent to learn the optimal weights. Thus, we only dis-

cuss how to maximize the expected reward Jsel in Eqn. 4.

Following [21], we derive the expected gradient of Jsel as:

∇ΘJsel = E

[

Te
∑

t=0

(Rt − V̂t)∇Θ log πθ(· | ht)

]

, (7)

where Rt denotes the expected future reward, and V̂t serves

as a baseline function to reduce variance during train-

ing [21]. Eqn. 7 can be approximated with Monte-Carlo

sampling using samples in a mini-batch, and further back-

propagated downstream for training.

3.2. Adaptive Lookahead Inference

While we optimize the memory-augmented LSTM for a

fixed number of steps during training, we aim to achieve

adaptive inference at testing time such that a small num-

ber of informative frames are selected conditioned on in-

put videos without incurring any degradation in classifica-

tion performance. Recall that the utility network is trained

to predict expected future rewards, indicating the util-

ity/advantage of seeing more frames in the future. There-

fore, we explore the outputs of the utility network to de-

termine whether to stop inference through looking ahead.
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A straightforward way is to calculate the utility V̂t at each

time step, and exit the model once it is less than a threshold.

However, it is difficult to find an optimal value that works

well for all samples. Instead, we maintain a running max

of utility V̂ max over time for each sample, and at each time

step, we compare the current utility V̂t with the max value

V̂ max
t ; if V̂ max

t is larger than V̂t by a margin µ more than

p times, predictions from the current time step will be used

as the final score and inference will be stopped. Here, µ
controls the trade-off between computational cost and ac-

curacy; a small µ constrains the model to make early pre-

dictions once the predicted utility begins to decrease while a

large µ tolerates a drop in utility, allowing more considera-

tions before classification. Further, we also introduce p as a

patience metric, which permits the current utility to deviate

from the max value for a few iterations. This is similar in

spirit to reducing learning rates on plateaus, which instead

of intermediately decays learning rate waits for a few more

epochs when the loss does not further decrease.

Note that although the same threshold µ is used for all

samples, comparisons made to decide whether to stop or

not is based on the utility distribution of each sample in-

dependently, which is softer than comparing V̂t with µ di-

rectly. One can add another network to predict whether to

stop inference using the hidden states as in [36, 3], how-

ever coupling the training of frame selection with learning a

binary policy to stop makes optimization challenging, par-

ticularly with reinforcement learning, as will be shown in

experiments. In contrast, we leverage the utility network to

achieve adaptive lookahead inference.

4. Experiments

4.1. Experimental Setup

Datasets and evaluation metrics. We experiment with two

challenging large-scale video datasets, Fudan-Columbia

Video Datasets (FCVID) [11] and ACTIVITYNET [8], to

evaluate the proposed approach. FCVID consists of 91, 223
videos from YouTube with an average duration of 167 sec-

onds, manually annotated into 239 classes. These cat-

egories cover a wide range of topics, including scenes

(e.g., “river”), objects (e.g., “dog”), activities (e.g., “fenc-

ing”), and complicated events (e.g., “making pizza”). The

dataset is split evenly for training (45, 611 videos) and test-

ing (45, 612 videos). ACTIVITYNET is an activity-focused

large-scale video dataset, containing YouTube videos with

an average duration of 117 seconds. Here we adopt the

latest release (version 1.3), which consists of around 20K
videos belonging to 200 classes. We use the official split

with a training set of 10, 024 videos, a validation set of

4, 926 videos and a testing set of 5, 044 videos. Since the

testing labels are not publicly available, we report perfor-

mance on the validation set. We compute average pre-

cision (AP) for each class and use mean average preci-

sion (mAP) to measure the overall performance on both

datasets. It is also worth noting that videos in both datasets

are untrimmed, for which efficient recognition is extremely

critical given the redundant nature of video frames.

Implementation details. We use a one-layer LSTM with

2, 048 and 1, 024 hidden units for FCVID and ACTIVI-

TYNET respectively. To extract inputs for the LSTM, we

decode videos at 1fps and compute features from the penul-

timate layer of a ResNet-101 model [7]. The ResNet model

is pretrained on ImageNet with a top-1 accuracy of 77.4%
and further finetuned on target datasets. To generate the

global memory that provides context information, we com-

pute features using spatially and temporally downsampled

video frames with a lightweight CNN to reduce overhead.

In particular, we lower the resolution of video frames to

112× 112, and sample 16 frames uniformly. We use a pre-

trained MobileNetv2 [18] as the lightweight CNN, which

achieves a top-1 accuracy of 52.3% on ImageNet with

downsampled inputs. We adopt PyTorch for implementa-

tion and leverage SGD for optimization with a momentum

of 0.9, a weight decay of 1e − 4 and a λ of 1. We train the

network for 100 epochs with a batch size of 128 and 64 for

FCVID and ACTIVITYNET, respectively. The initial learn-

ing rate is set to 1e− 3 and decayed by a factor of 10 every

40 epochs. For the patience p during inference, it is set to

2 when µ < 0.7, and K/2 + 1 when µ = 0.7, where K is

number of time steps the model is trained for.

4.2. Main Results

Effectiveness of learned frame usage. We first optimize

AdaFrame with K steps during training and then at test-

ing time we perform adaptive lookahead inference with

µ = 0.7, allowing each video to see K ′ frames on aver-

age while maintaining the same accuracy as viewing all K
frames. We compare AdaFrame with the following alter-

native methods to produce final predictions during testing:

(1) AVGPOOLING, which simply computes a prediction for

each sampled frame and then performs a mean pooling over

frames as the video-level classification score; (2) LSTM,

which generates predictions using hidden states from the

last time step of an LSTM. We also experiment with dif-

ferent number of frames (K + ∆) used as inputs for AVG-

POOLING and LSTM, which are sampled either uniformly

(U) or randomly (R). Here, we use K for AdaFrame while

K + ∆ for other methods to offset the additional compu-

tation cost incurred, which will be discussed later. Table 1

presents the results. We observe AdaFrame achieves bet-

ter results than AVGPOOLING and LSTM whiling using

fewer frames under all settings on both datasets. In par-

ticular, AdaFrame achieves an mAP of 78.6%, and 69.5%
using an average of 4.92 and 3.8 frames on FCVID and AC-

TIVITYNET respectively. These results, requiring 3.08 and
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FCVID ACTIVITYNET

Method R8 U8 R10 U10 R25 U25 All R8 U8 R10 U10 R25 U25 All

AvgPooling 78.3 78.4 79.0 78.9 79.7 80.0 80.2 67.5 67.8 68.9 68.6 69.8 70.0 70.2

LSTM 77.8 77.9 78.7 78.1 78.0 79.8 80.0 68.7 68.8 69.8 70.4 69.9 70.8 71.0

AdaFrame
78.6 79.2 80.2 69.5 70.4 71.5

5 → 4.92 8 → 6.15 10 → 8.21 5 → 3.8 8 → 5.82 10 → 8.65

Table 1: Performance of different frame selection strategies on FCVID and ACTIVITYNET. R and U denote random

and uniform sampling, respectively. We use K →K ′ to denote the frame usage for AdaFrame, which uses K frames during

training and K ′ frames on average when performing adaptive inference. See texts for more details.

4.2 fewer frames, are better than AVGPOOLING and LSTM

with 8 frames and comparable with their results with 10

frames. It is also promising to see that AdaFrame can match

the performance of using all frames with only 8.21 and 8.65

frames on FCVID and ACTIVITYNET. This verifies that

AdaFrame can indeed learn to derive frame selection poli-

cies while maintaining the same accuracies.

In addition, the performance of random sampling and

uniform sampling for AVGPOOLING and LSTM are similar

and LSTM is worse than AVGPOOLING on FCVID, pos-

sibly due to the diverse set of categories incur significant

intra-class variations. Note that although AVGPOOLING is

simple and straightforward, it is a very strong baseline and

has been widely adopted during testing for almost all CNN-

based approaches due to its strong performance.

Computational savings with adaptive inference. We now

discuss computational savings of AdaFrame with adaptive

inference and compare with state-of-the-art-methods. We

use average GFLOPs, a hardware independent metric, to

measure the computation needed to classify all the videos

in the testing set. We train AdaFrame with fixed K time

steps to obtain different models, denoted as AdaFrame-K to

accommodate different computational requirements during

testing; and for each model we vary µ such that adaptive

inference can be achieved within the same model.

In addition to selecting frames based on heuristics, we

also compare AdaFrame with FrameGlimpse [36] and Fast-

Forward [3]. FrameGlimpse is developed for action detec-

tion with a location network to select frames and a stop

network to decide whether to stop; ground-truth bound-

aries of actions are used as feedback to estimate the qual-

ity of selected frames. For classification, there is no

such ground-truth and thus we preserve the architecture

of FrameGlimpse but use our reward function. FastFor-

ward [3] samples from a predefined action set, determining

how many steps to go forward. It also consists of a stop

branch to decide whether to stop. In addition, we also at-

tach the global memory to these frameworks for fair com-

parisons, denoted as FrameGlimpse-G and FastForward-G,

respectively. Figure 3 presents the results. For AVGPOOL-

ING and LSTM, accuracies gradually increase when more

(a) FCVID (b) ActivityNet

Figure 3: Mean average precision vs. computational cost.

Comparisons of AdaFrame with FrameGlimpse [36], Fast-

Forward [3], and alternative frame selection methods based

on heuristics.

computation (frames) is used and then become saturated.

Note that the computational cost for video classification

grows linearly with the number of frames used, as the most

expensive operation is extracting features with CNNs. For

ResNet-101 it needs 7.82 GFLOPs to compute features and

for AdaFrame, it takes an extra 1.32 GFLOPs due to the

computation in global memory. Therefore, we expect more

savings from AdaFrame when more frames are used.

Compared with AVGPOOLING and LSTM using 25

frames, AdaFrame-10 achieves better results while requir-

ing 58.9% and 63.3% less computation on average on

FCVID (80.2 vs. ∼195 GFLOPs 2) and ACTIVITYNET

(71.5 vs. ∼195 GFLOPs), respectively. Similar trends can

also be found for AdaFrame-5 and AdaFrame-3 on both

datasets. While the computational saving of AdaFrame

over AVGPOOLING and LSTM reduces when fewer frames

are used, accuracies of AdaFrame are still clearly better,

i.e., 66.1% vs. 64.2% on FCVID, and 56.3% vs. 53.0%
on ACTIVITYNET. Further, AdaFrame also outperforms

FrameGlimpse [36] and FastForward [3] that aim to learn

frame usage by clear margins, demonstrating that coupling

the training of frame selection and learning to stop with re-

inforcement learning on large-scale datasets without suffi-

2195.5 GFLOPS for AVGPOOLING and 195.8 GFLOPs for LSTM.
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1 2 3 4 5 6 7 8 9 10

Figure 4: Dataflow through AdaFrame over time. Each

circle represents, by size, the percentage of samples that are

classified at the corresponding time step.

cient background videos is difficult. In addition, the use of

a global memory, providing context information improves

accuracies of the original model in both frameworks.

We can also see that changing the threshold µ within the

same model can also adjust computation needed; the perfor-

mance and average frame usage declines simultaneously as

the threshold becomes smaller, forcing the model to make

predictions as early as possible. But the resulting policies

with different thresholds still outperform alternative coun-

terparts in both accuracy and computation required.

Comparing across different models of AdaFrame, we

observe that the best model of AdaFrame trained with

a smaller K achieves better or comparable results over

AdaFrame optimized with a large K using a smaller thresh-

old. For example, AdaFrame-3 with µ = 0.7 achieves an

mAP of 76.5% using 25.1 GFLOPs on FCVID, which is

better than AdaFrame-5 with µ = 0.5 that produces an mAP

of 76.6% with 31.6 GFLOPs on average. This possibly re-

sults from the discrepancies between training and testing—

during training a large K allows the model to “ponder” be-

fore emitting predictions. While computation can be ad-

justed with varying thresholds at test time, AdaFrame-10 is

not fully optimized for classification with extremely limited

information as is AdaFrame-3. This highlights the need to

use different models based on computational requirements.

Analyses of learned policies. To gain a better understand-

ing of what is learned in AdaFrame, we take the trained

AdaFrame-10 model and vary the threshold to accommo-

date different computational needs. And we visualize in

Figure 4, at each time step, how many samples are classi-

fied, and the prediction accuracies of these samples. We can

see high prediction accuracies tend to appear in early time

steps, pushing difficult decisions that require more scrutiny

downstream. And more samples emit predictions at later

time steps when computational budget increases (larger µ).

We further investigate whether computations vary for
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Figure 5: Learned inference policies for different classes

over time. Each square, by density, indicates the fraction

of samples that are classified at the corresponding time step

from a certain class in FCVID.

different categories. To this end, we show the fraction of

samples from a subset of classes in FCVID that are classi-

fied at each time step in Figure 5. We observe that, for sim-

ple classes like objects (e.g., “gorilla” and “elephants”) and

scenes (“Eiffel tower” and “cathedral exterior”), AdaFrame

makes predictions for most of the samples in the first three

steps; while for some complicated DIY categories (e.g.,

“making ice cream” and “making egg tarts”), it tends to

classify in the middle of the entire time horizon. In addition,

AdaFrame takes additional time steps to differentiate very

confusing classes like “dining at restaurant” and “dining at

home”. Figure 6 further illustrates samples using different

numbers of frames for inference. We can see that frame us-

age varies not only across different classes but also within

the same category (see the top two rows of Figure 6) due

to large intra-class variations. For example, for the “mak-

ing cookies” category, it takes AdaFrame four steps to make

correct predictions when the video contains severe camera

motions and cluttered backgrounds.

In addition, we also examine where the model jumps

at each step; for AdaFrame-10 with µ = 0.7, we found

that it goes backward at least once for 42.8% of videos on

FCVID to re-examine past information instead of always

going forward, confirming the flexibility AdaFrame enjoys

when searching over time.

4.3. Discussions

In this section, we conduct a set of experiments to justify

our design choices of AdaFrame.

Global memory. We perform an ablation study to see how

many frames are needed in the global memory. Table 2

presents the results. The use of a global memory module

improves the non-memory model with clear margins. In ad-

dition, we observe using 16 frames offers the best trade-off

between computational overheads and accuracies.
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MakingCookies
Easy: 1 frame Medium: 3 frames Hard: 4 frames

MarriageProposal Very Hard: 8 frames

HikingEasy: 1 frame Medium: 3 frames Hard: 4 frames

Figure 6: Validation videos from FCVID using different number of frames for inference. Frame usage differs not only

among different categories but also within the same class (e.g., “making cookies” and “hiking”).

Global Memory Inference

# Frames Overhead mAP # Frames

0 0 77.9 8.40
12 0.98 79.2 8.53
32 2.61 80.2 8.24

16 1.32 80.2 8.21

Table 2: Results of using different global memories on

FCVID. Different number of frames are used to generate

different global memories. The overhead is measured for

each frame compared to a standard ResNet-101.

Reward function mAP # Frames

PREDICTION REWARD 78.7 8.34
PREDICTION TRANSITION REWARD 78.9 8.31

Ours 80.2 8.21

Table 3: Comparisons of different reward functions on

FCVID. Frames used on average and the resulting mAP.

Reward function. Our reward function forces the model

to increase its confidence when seeing more frames, to

measure the transition from the last time step. We fur-

ther compare with two reward functions: (1) PREDIC-

TION REWARD, that uses the prediction confidence of the

ground-truth class pgtt as reward; (2) PREDICTION TRANSI-

TION REWARD, that uses pgtt − pgtt−1 as reward. The results

are summarized in Table 3. We can see that our reward func-

tion and PREDICTION TRANSITION REWARD, both mod-

eling prediction differences over time, outperform PREDIC-

TION REWARD that is simply based on predictions from the

current step. This verifies that forcing the model to increase

its confidence when viewing more frames can provide feed-

back about the quality of selected frames. Our result is also

better than PREDICTION TRANSITION REWARD by further

introducing a margin between predictions from the ground-

truth class and other classes.

Stop criterion. In our framework, we use the predicted

utility, measuring future rewards of seeing more frames, to

decide whether to continue inference or not. An alternative

is to simply rely on the entropy of predictions, as a proxy

to measure the confidence of classifiers. We also experi-

mented with entropy to stop inference, however we found

that it cannot enable adaptive inference based on different

thresholds. We observed that predictions over time are not

as smooth as predicted utilities, i.e., high entropies in early

steps and extremely low entropies in the last few steps. In

contrast, utilities are computed to measure future rewards,

explicitly considering future information from the very first

step, which leads to smooth transitions over time.

5. Conclusion

In this paper, we presented AdaFrame, an approach that

derives an effective frame usage policy so as to use a small

number of frames on a per-video basis with an aim to re-

duce the overall computational cost. It contains an LSTM

network augmented with a global memory to inject global

context information. AdaFrame is trained with policy gradi-

ent methods to predict which frame to use and calculate fu-

ture utilities. During testing, we leverage the predicted util-

ity for adaptive inference. Extensive results provide strong

qualitative and quantitative evidence that AdaFrame can de-

rive strong frame usage policies based on inputs.
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