
Deep Incremental Hashing Network for Efficient Image Retrieval

Dayan Wu1,2∗, Qi Dai3, Jing Liu1,2, Bo Li1†, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

3Microsoft Research Asia

{wudayan,liujing,libo,wangweiping}@iie.ac.cn qid@microsoft.com

Abstract

Hashing has shown great potential in large-scale image

retrieval due to its storage and computation efficiency, es-

pecially the recent deep supervised hashing methods. To

achieve promising performance, deep supervised hashing

methods require a large amount of training data from dif-

ferent classes. However, when images of new categories

emerge, existing deep hashing methods have to retrain the

CNN model and generate hash codes for all the database

images again, which is impractical for large-scale retrieval

system. In this paper, we propose a novel deep hash-

ing framework, called Deep Incremental Hashing Network

(DIHN), for learning hash codes in an incremental man-

ner. DIHN learns the hash codes for the new coming im-

ages directly, while keeping the old ones unchanged. Simul-

taneously, a deep hash function for query set is learned by

preserving the similarities between training points. Exten-

sive experiments on two widely used image retrieval bench-

marks demonstrate that the proposed DIHN framework can

significantly decrease the training time while keeping the

state-of-the-art retrieval accuracy.

1. Introduction

Learning to hash has achieved great successes in various

computer vision tasks, e.g., image retrieval [5, 8, 27, 17, 30,

20, 21, 33], classification [24], and person re-identification

[35, 31]. It aims to encode documents, images, videos or

other sorts of multimedia data into short binary hash codes,

while preserving the similarity of the original data. With

the compact hash codes, the storage and computation costs

are significantly reduced. In this paper, we focus on the re-

cent deep hashing methods which incorporate deep neural

networks into the learning of hash codes. Such approaches

[13, 16] have shown superior improvements over the con-

∗This work was done during an internship at Microsoft Research Asia.
†Corresponding author.

Figure 1. Framework of the traditional deep hashing methods for

model updates. When new semantic concepts emerge, traditional

methods have to retrain the models using both the previous training

images and the new coming images. The database images are re-

quired to be fed into the new models to generate hash codes again.

ventional hashing methods like Locality Sensitive Hashing

(LSH) [6], Spectral Hashing (SH) [28] and Iterative Quan-

tization [7].

To date in the literature, the state-of-the-art deep hash-

ing methods typically exploit the powerful convolutional

neural networks (CNN) to capture the underlying semantic

structures of images. By simultaneously learning the fea-

ture representations and hash functions, these methods take

full advantage of the pre-trained CNN and show satisfactory

performance. Numerous approaches have been proposed,

including both the single-label image hashing [13, 16] and

multi-label image hashing [29, 36] methods.

One practical challenge in modern image retrieval sys-

tem is how to keep the model up to date. With the explo-

sive growth of various web images, lots of the new semantic

concepts constantly emerge, while the up to date model is

not always timely available. In other words, we have to up-

date the retrieval model once new concepts appear. Such

requirement is highly difficult for existing hashing meth-

ods, as illustrated in Figure 1. On the one hand, the learned

hash codes of the same images from the updated model

would change. One has to feed all the database images

into the model to generate the codes again, which is very

time-consuming, especially for large database. On the other

hand, retraining the model with both original and additional

data further increases the time cost of update.

9069

In this paper, we introduce a novel deep hashing frame-

work for learning binary hash codes in an incremental way,

named Deep Incremental Hashing Network (DIHN). An

overview of the proposed framework is illustrated in Fig-

ure 2. Given the incremental images, the query images,

and the hash codes of original images, we learn the hash

functions for query images and hash codes of incremen-

tal images simultaneously. Specifically, a deep convolu-

tional neural network is utilized as the hash function only

for query images, while the hash codes of incremental im-

ages are directly learned. With such asymmetric design, the

hash codes of original images are kept unchanged. We fur-

ther devise an incremental hashing loss function for model

training, which elaborately involve the similarity preserva-

tion between training points. The main contribution of this

work can be summarized as follows:

• We propose a novel deep hashing framework, named

Deep Incremental Hashing Network (DIHN), for

learning binary hash codes in an incremental way. To

the best of our knowledge, DIHN is the first deep hash-

ing approach which can incrementally learn the hash

codes for training images from new categories while

holding the original ones invariant. The proposed

method provides a flexible way for updating modern

image retrieval system.

• An incremental hashing loss function is devised by

preserving the similarities between training images. It

incorporates the existing binary hash codes for origi-

nal images to train the hash function for query images.

Meanwhile, the binary hash codes for incremental im-

ages can be directly obtained during the optimization

as well.

• Extensive experiments demonstrate that the proposed

approach can significantly decrease the training time1

with almost no loss on retrieval accuracy, compared

with the state-of-the-art methods.

2. Related Work

We summarize recent works related to our proposed ap-

proach into two categories: deep hash learning and incre-

mental learning. The former emphasizes encoding data

points into compact binary codes for efficient data retrieval,

while the later focuses on the class incremental learning that

learns about more and more concepts over time.

Deep hash learning has recently shown very strong per-

formance improvements over the shallow learning meth-

ods. Convolutional neural network hashing (CNNH) [32]

learns the model to fit the binary codes computed from

1Please note that the training time includes both model training time

and hash codes generation time for database images.

Figure 2. Framework of the proposed method for model updates.

A CNN model is utilized as the hash function only for query im-

ages, while the hash codes of incremental database images are di-

rectly learned. With such asymmetric design, the hash codes of

original database images are kept unchanged.

the pairwise similarity matrix. Network In Network Hash-

ing (NINH) [11] and Deep Regularized Similarity Com-

parison Hashing (DRSCH) [35] try to preserve the simi-

larities between image triplets. In addition, pairwise la-

bels are utilized for hash function learning in Deep Super-

vised Hashing (DSH) [16] and Deep Pairwise Supervised

Hashing (DPSH) [14]. Deep Supervised Discrete Hashing

(DSDH) [13] further incorporate classification information

within a single stream. Some methods also consider the

multi-level semantic similarity between multi-label images

[29, 36]. More recently, several asymmetric deep hash-

ing methods are proposed, including Asymmetric Deep Su-

pervised Hashing (ADSH) [8] and Deep Asymmetric Pair-

wise Hashing (DAPH) [23]. Specifically, ADSH only learns

hash function for query points, while DAPH jointly trains

two different models to learn pairwise similarity-preserving

codes. The advantages of asymmetric hashing scheme are

thoroughly discussed in [19]. The above methods are all

batch learning methods which learn hash functions on a

given dataset. To handle data which comes sequentially,

online hashing methods [1, 12] are proposed. They have

demonstrated good performance-complexity trade-offs by

learning hash functions from streaming data.

While all the aforementioned methods achieve impres-

sive results, it is difficult and time-consuming for them to

perform model updates. To solve this problem, our work

mainly focuses on how to incrementally learn binary codes

for the images from new categories. For our DIHN, we

adopt the asymmetric idea from ADSH. However, they

are fundamentally different in the way that DIHN simply

treats the asymmetry as a mean of keeping the original

hash codes unchanged, and concentrates on the incremen-

tal framework. In contrast, ADSH explores the asymmetric

method for hash function learning. Besides, our DIHN is

different from online hashing methods since the latter still

require updating the hash codes for all database images dur-

ing training.

Incremental learning aims to extend the existing

9070

model’s knowledge with new training data. Developing in-

cremental algorithms could actually help address the issues

of training cost and data availability. One direction of in-

cremental learning is to utilize fixed data representation.

Nearest Class Mean (NCM) [18] represents each class as

a prototype vector that is the average vector of all exam-

ples for the class so far. A new example is classified to

its nearest prototype class. Multiclass Transfer Incremental

Learning [10] shows that a loss of accuracy can be avoided

when incorporating new classes to the classifier, as long as

the classifier can be retrained from a small set of data. On

the contrary, recent methods try to learn data representa-

tion incrementally. ICaRL [22] learns the representation by

exploiting the distillation and exemplar images, which can

reduces the requirement of storing old data. Different from

above methods, in this paper we present a novel incremental

learning framework for hashing, which guarantees both the

fixed original hash codes and the representation learning for

query data.

3. Deep Incremental Hashing Network

3.1. Problem Definition

Assume we are given m database images D = {di}
m
i=1

and the set of class labels L = {L1, L2, ..., Lc}, where

each image di is associated with a class label Lj ∈ L(1 ≤
j ≤ c). So far we have learned the binary hash codes

B = {bi}
m
i=1 ∈ {−1,+1}k×m for the database images

utilizing existing deep hashing methods, where k denotes

the length of binary codes. Now, a set of n images D′ =
{di}

m+n
i=m+1 each of which is associated with a new class la-

bel L′

j ∈ L′ = {L′

1, L
′

2, ..., L
′

c′}(1 ≤ j ≤ c′) emerge. Our

goal is to learn the binary hash codes B′ = {bi}
m+n
i=m+1 ∈

{−1,+1}k×n for the images in new categories while leav-

ing the ones in old categories unchanged. In addition, for

the query set Q = {ai}
q
i=1 of size q, which consists of

images from both old and new categories, a CNN model

is learned as the hash functions for generating their hash

codes BQ = {bQi
}qi=1 ∈ {−1,+1}k×q . The pairwise su-

pervised information, denoted as S ∈ {−1,+1}(m+n)×q , is

available during training. The first m rows of S denote the

semantic similarities between D and Q, and the remaining

n rows denote that between D′ and Q. Sij = 1 indicates

that di and aj are semantically similar, while Sij = −1 is

the opposite.

3.2. Framework Overview

As illustrated in Figure 2, the proposed Deep Incremen-

tal Hashing Network (DIHN) has three inputs, i.e., the orig-

inal database images, the incremental database images, and

the query images, respectively. In practical scenarios, the

query images are generally unavailable. Therefore, we sam-

ple both the original and incremental databases to form

the set of query images. DIHN contains two important

parts: hash function learning part and incremental hash

code learning part. The hash function learning part exploits

a deep CNN model to extract appropriate feature represen-

tations for query images. Subsequently, deep hash functions

are learned on top of them to generate the binary hash codes

BQ. Note that this module is only employed for query set.

The incremental hash code learning part directly learns the

hash codes B′ for incremental database images. To achieve

the above two goals, an incremental hashing loss function

is proposed to preserve the similarities between query and

database points. While the binary hash codes for the origi-

nal database images (B) are already given, they remain un-

changed during the whole training process.

3.3. Deep Hash Functions

To exploit the recent advances in image representation

with deep convolutional neural networks, we construct the

hash functions by incorporating a CNN model, forcing the

output of its last fully-connected layer to be length k, i.e.,

the length of binary hash codes. Accordingly, our deep hash

function is defined as

bQi
= h (ai; θ) = sign (f(ai; θ)) (1)

where θ denotes the parameters of CNN model, and f (·)
denotes the output of the last fully-connected layer.

3.4. Incremental Hashing Loss

The incremental hashing loss is devised to preserve the

semantic similarities between training points. With the pair-

wise label S, the target is to reduce/enlarge the Hamming

distances between the binary codes of similar/dissimilar

pairs. We thus adopt the L2-norm loss to minimize the dif-

ference between the inner product of binary code pairs and

the similarity, which can be formulated as

min
B′,BQ

J(B′, BQ) =

m∑

i=1

q∑

j=1

(bTi bQj
− kSij)

2

+

m+n∑

i=m+1

q∑

j=1

(bTi bQj
− kSij)

2,

s.t. B′ = {bm+1, bm+2, ..., bm+n} ∈ {−1,+1}k×n,

BQ = {bQ1
, bQ2

, ..., bQq
} ∈ {−1,+1}k×q.

(2)

Since the binary codes for the original database imagesB =
{b1, b2, ..., bm} are fixed, we only need to learn the B′ and

BQ. By integrating the CNN learning model into the above

loss, we combine Eqn. (1) and Eqn. (2), obtaining the loss

9071

function as follows

min
B′,θ

J(B′, θ) =

m∑

i=1

q∑

j=1

[bTi sign (f(aj ; θ))− kSij]
2

+
m+n∑

i=m+1

q∑

j=1

[bTi sign (f(aj ; θ))− kSij]
2,

s.t. B′ = {bm+1, bm+2, ..., bm+n} ∈ {−1,+1}k×n.
(3)

Note that the problem in Eqn. (3) is in general NP-hard be-

cause of the sign function sign (·). Hence, a common con-

tinuous relaxation that replace it with the function tanh (·)
is adopted, bringing the new formulation as

min
B′,θ

J(B′, θ) =
m∑

i=1

q∑

j=1

[bTi tanh (f(aj ; θ))− kSij]
2

+
m+n∑

i=m+1

q∑

j=1

[bTi tanh (f(aj ; θ))− kSij]
2,

s.t. B′ = {bm+1, bm+2, ..., bm+n} ∈ {−1,+1}k×n.
(4)

As aforementioned, the query images are sampled from

both original and incremental database images. Let Ψ =
{1, 2, 3, ...,m} denotes the indices of the original database

images, and Φ = {m + 1,m + 2,m + 3, ...,m + n} be

the indices of the incremental database images. Specif-

ically, we denote the ψ = {i1, i2, i3, ..., iq∗} ⊂ Ψ and

φ = {j1, j2, j3, ..., jq′} ⊂ Φ as the indices of the query

images sampled from the original and incremental database

sets respectively, where q∗ and q′ are the number of their

images, with q∗ + q′ = q. We then rewrite the above objec-

tive function J(B′, θ) as

min
B′,θ

J(B′, θ) =
∑

i∈Ψ

∑

j∈(ψ∪φ)

[bTi tanh (f(dj ; θ))− kSij]
2

+
∑

i∈Φ

∑

j∈(ψ∪φ)

[bTi tanh (f(dj ; θ))− kSij]
2

+ λ
∑

j∈(ψ∪φ)

[bj − tanh (f(dj ; θ))]
2

+ µ
∑

j∈(ψ∪φ)

(tanh (f(dj ; θ))
T

1)2,

s.t. B′ = {bi|i ∈ Φ} ∈ {−1,+1}k×n,
(5)

where additional terms λ
∑
j∈(ψ∪φ)[bj − tanh (f(dj ; θ))]

2

and µ
∑
j∈(ψ∪φ)[tanh (f(dj ; θ))

T
1]2 are further added,

and λ, µ are two hyper-parameters. For the first term, the

reason is that we have two hash code representations for

each image dj in query set: one is the fixed or learned bi-

nary hash codes bj from database set, and the other is the

deep CNN representation tanh (f(dj ; θ)). By exploiting

this regularization, we hope to minimize the gap between

them. While the second term makes a balance for each bit,

which encourages the numbers of −1 and +1 to be approx-

imately equal among all the query images.

3.5. Optimization

We learn the parameters θ and B′ in problem (5) with an

alternating strategy. More specifically, in θ-step, we learn θ

with B′ fixed. While in B′-step, we learn B′ with θ fixed.

The two steps are repeated for several iterations.

3.5.1 θ-step.

With B′ fixed, it is easy to optimize the parameters of the

CNN model with the standard back-propagation algorithm.

For simplicity, we denote uj = tanh(f(dj ; θ)) and zj =
f(dj ; θ). The partial derivative of J(B′, θ) with respect to

zj could be calculated by

∂J

∂zj
= 2(

∑

i∈Ψ

[(bTi uj − kSij)bi] +
∑

i∈Φ

[(bTi uj − kSij)bi]

+ λ(uj − bj) + µuj) · (1 − uj · uj),
(6)

where 1 is the all-ones vector, and the operator (·) means

the element-wise multiplication between two vectors. This

gradient is then utilized to update θ.

3.5.2 B′-step.

Once θ is fixed, updatingB′ is not straightforward. To solve

this problem, we first rewrite Eqn. (5) into the following

matrix form,

min
B′

J(B′) = ||B′TU − kS||2F + λ||B′

φ − Uφ||
2
F

= ||B′TU ||2F − 2ktr(B′SUT)

− 2λtr(B′

φU
T
φ) + const,

s.t. B′ = {bi|i ∈ Φ} ∈ {−1,+1}k×n,

(7)

where S = {−1,+1}n×q is the similarity matrix between

the query set and the incremental database set, U = {ui|i ∈
(ψ ∪ φ)} ∈ [−1,+1]k×q and Uφ = {ui|i ∈ φ} ∈

[−1,+1]k×q
′

are the relaxed binary-like representations for

all the query images and query images sampled from incre-

mental database set respectively, and B′

φ is the binary hash

codes of the incremental database images indexed by φ, i.e.,

B′

φ = {bi|i ∈ φ} ∈ {−1,+1}k×q
′

.

To further simplify (7), we define Ũ = {ũi|i ∈ Φ} ∈
[−1,+1]k×n, where ũi is given by

ũi =

{
ui, i ∈ φ,

0, otherwise,
(8)

9072

and rewrite the equation (7) as follows

min
B′

J(B′) = ||B′TU ||2F − 2tr(B′T [kUST + λŨ])

= ||B′TU ||2F + tr(B′TP),

s.t. B′ = {bi|i ∈ Φ} ∈ {−1,+1}k×n,

(9)

where P = −2kUST − 2λŨ . Note that the constant term

in (7) is omitted for simplicity.

When optimizing Eqn. (9), we adopt the discrete

cyclic coordinate descent (DCC) algorithm proposed in

[25]. Specifically, we update B′ bit by bit, which means

each time we update one row of B′ with other rows fixed.

We denote B′

l∗ as the l-th row of B′, l = 1, ..., k and B̂′

l

as the matrix of B′ excluding B′

l∗. Similarly, let Ul∗ be the

l-th row of U and Ûl be the matrix of U excluding Ul∗. For

P , let Pl∗ denote the l-th row of P and P̂l denote the matrix

of P excluding Pl∗. Therefore, Eqn. (9) can be transformed

to

min
B′

l∗

J(B′

l∗) = ||B′TU ||2F + tr(B′TP)

= tr(B′

l∗(2B̂
′T
l ÛlU

T
l∗ + PTl∗)),

s.t. B′

l∗ ∈ {−1,+1}1×n.

(10)

It is obvious that when the sign of each bit inB′

l∗ is different

from that of the corresponding bit in 2B̂′T
l ÛlU

T
l∗ + PTl∗ , the

loss J(B′

l∗) can reach its minimum value. Therefore, the

solution to problem (10) is as follows

B′

l∗ = −sign(2B̂′T
l ÛlU

T
l∗ + PTl∗). (11)

We then replace the l-th row of B′ with B′

l∗ to update B′.

All rows are updated sequentially by repeating (11).

The learning algorithm for DIHN is summarized in Al-

gorithm 1. It is worth noting that if the size of B is large,

the computational complexity of the learning algorithm will

be high. To handle the problem, we can replace B with a

subset sampled from it.

3.6. Original Hash Codes Learning

The DIHN learning algorithm only focuses on the incre-

mental hash codes learning. Note that DIHN puts no lim-

its on the methods for learning the original hash codes B,

which means that all the existing hashing methods can be

used. There is no doubt that the quality of original hash

codes directly influence the performance of DIHN. There-

fore, it is better to adopt more powerful deep hashing meth-

ods, e.g., ADSH and DSDH, for original code generation.

3.7. Computational Complexity

The computational complexity for training DIHN in-

cludes the one for optimizing θ and the other one for op-

timizing B′. For the former part, the complexity is O((m+

Algorithm 1: The learning algorithm for DIHN

Input: original database set D; incremental

database set D′; similarity matrix S; original

hash codes B; code length k; iteration

number T .

Output: incremental hash codes B′ and neural

network parameter θ.

Initialize B′ ∈ {−1,+1}k×n;

Initialize neural network parameter θ.

repeat

for i=1→T do
1.Forward computation to compute f(d; θ) from

the raw images in mini-batch;

2.Compute derivation according to (6);

3.Update the neural network θ by utilizing back

propagation.

end

Update B′ according to (11)

until convergence or reach maximum iterations

Table 1. Split details of two datasets. # Original denotes the num-

ber of original classes, while # Incremental denotes the number of

incremental classes.

Datasets # Original / # Incremental

CIFAR-10 7/3 8/2 9/1 4/6

NUS-WIDE 18/3 19/2 20/1 10/11

n)qk). For the later part, the complexity is O(nqk2). In

practice, q and k are much smaller than m and n. There-

fore, the computational complexities become O(m+n) and

O(n) respectively. For traditional symmetric deep hashing

methods, when all database images are used for training,

the complexity is at least O(m2). For triplet loss functions,

the complexity will reach O(m3). Even for the asymmetric

hashing method ADSH, its complexity for optimizing B′ is

O((m + n)qk2), which is much higher than DIHN. Com-

pared with existing deep hashing methods, the complexity

of training DIHN is much smaller, proving that DIHN is an

efficient incremental hashing method.

4. Experiments

4.1. Evaluation Setup

We conduct extensive evaluations of our proposed

method on two widely used datasets, CIFAR-10 [9] and

NUS-WIDE [4].

• CIFAR-102 consists of 60,000 color images in 10

classes, and each class has 6,000 images of size 32 ×
32.

2http://www.cs.toronto.edu/ kriz/cifar.html

9073

Table 2. Comparison of MAP w.r.t. different number of bits on two datasets. Note that the MAP performance is calculated on the top 5,000

returned images for NUS-WIDE dataset. The best results for MAP are shown in bold.

Methods
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH 0.1830 0.1640 0.1610 0.1610 0.6210 0.6160 0.6150 0.6120

ITQ 0.2619 0.2754 0.2861 0.2941 0.7143 0.7361 0.7457 0.7553

FastH 0.5971 0.6632 0.6847 0.7020 0.7267 0.7692 0.7817 0.8037

LFH 0.4178 0.5738 0.6414 0.6927 0.7116 0.7681 0.7949 0.8135

SDH 0.4539 0.6334 0.6514 0.6603 0.7646 0.7998 0.8017 0.8142

DSH 0.6441 0.7421 0.7703 0.7992 0.7125 0.7313 0.7401 0.7485

DHN 0.6805 0.7213 0.7233 0.7332 0.7719 0.8013 0.8051 0.8146

DPSH 0.6818 0.7204 0.7341 0.7464 0.7941 0.8249 0.8351 0.8442

DQN 0.5540 0.5580 0.5640 0.5800 0.7680 0.7760 0.7830 0.7920

DSDH 0.7400 0.7860 0.8010 0.8200 0.7760 0.8080 0.8200 0.8290

ADSH 0.8898 0.9280 0.9310 0.9390 0.8400 0.8784 0.8951 0.9055

DIHN1+ADSH 0.8933 0.9279 0.9386 0.9346 0.8357 0.8862 0.8987 0.9070

DIHN2+ADSH 0.8975 0.9294 0.9293 0.9385 0.8470 0.8926 0.8964 0.9103

DIHN3+ADSH 0.8916 0.9273 0.9330 0.9456 0.8353 0.8821 0.9004 0.9115

DIHN6+ADSH 0.8784 0.9172 0.9293 0.9401 - - - -

DIHN11+ADSH - - - - 0.8120 0.8727 0.8880 0.8972

• NUS-WIDE3 contains 269,648 images collected from

Flickr. The association between images and 81 con-

cepts are manually annotated. Following [16, 37], we

use the images associated with the 21 most frequent

concepts, where each of these concepts associates with

at least 5,000 images, resulting in a total of 195,834

images.

For CIFAR-10, we randomly select 1,000 images (100 im-

ages per class) as query set, with the remaining images as

database images. Similarly, for NUS-WIDE, we randomly

choose 2,100 images (also 100 images per class) as query

set, leaving the rest as database. Note that the “query” set

here is different from the query set in previous sections. The

former set is the testing set while the later set is an input for

training, which is sampled from the database.

For incremental learning setting, we split the database

into two parts, i.e., the original and incremental database

sets. Detailed splitting strategies are listed in Table 1.

For each dataset, we have 4 split settings. In CIFAR-10,

“7/3” means the original set contains images from 7 classes

while the incremental set includes images from the other

3 classes. In NUS-WIDE, which is a multi-label dataset,

“18/3” means the images in original set are associated with

at most 18 concepts, while the images in incremental set are

associated with at least one concept of the remaining 3 con-

cepts. Note that we also design two challenging settings, in

which the number of the incremental classes is larger than

that of the original classes, i.e. 4/6 for CIFAR-10 and 10/11

for NUS-WIDE.

3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

We compare DIHN with several competitors, including

both traditional and deep hashing methods. All competitors

are trained on the whole database set, without the incremen-

tal setting. For traditional approaches, we compare with SH

[28], ITQ [7] from unsupervised hashing, and FastH [15],

LFH [34], SDH [25] from supervised hashing. The deep

hashing methods include DSDH [13], DQN [2], DHN [37],

DPSH [14], DSH [16], and ADSH [8]. To reduce the com-

putational complexity of DIHN when B is very large, we

design a variant of DIHN, denoted as DIHN∗, which re-

places the large B with its subset B∗. We report the re-

sults of DIHN∗ with different sample rates. In implemen-

tation, following [8], we adopt the CNN-F model [3] as

the basic network architecture for both DIHN and all the

other deep hashing approaches. This CNN architecture has

5 convolutional layers and 2 FC layers. For traditional (non-

deep) methods, we utilize the 4,096-dim deep features ex-

tracted from the CNN-F model pre-trained on ImageNet.

For DIHN, we set λ = 200, q = 2000 and µ = 50 by cross-

validation for both datasets.

We report the Mean Average Precision (MAP) to evalu-

ate the retrieval accuracy of the proposed DIHN and base-

lines. For NUS-WIDE dataset, the MAP performance is

calculated on the top 5,000 returned images. To verify the

effectiveness of DIHN, we report the MAP results of DIHN

with different dataset split strategies, denoted as DIHN1,

DIHN2, DIHN3, DIHN6 and DIHN11, in which DIHNi
(i = 1, 2, 3, 6, 11) means that the number of incremental

classes is i. In order to perform a fair comparison, most of

the MAP results are directly reported from previous works.

All of our proposed approaches are implemented on

9074

Table 3. Comparison of MAP w.r.t. different number of bits on two datasets. DIHN∗
0.2 denotes DIHN∗ with sample rate 0.2. Note that the

MAP performance is calculated on the top 5,000 returned images for NUS-WIDE dataset.

Methods
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DIHN3+ADSH 0.8916 0.9273 0.9330 0.9456 0.8353 0.8821 0.9004 0.9115

DIHN∗

0.2+ADSH 0.7823 0.8770 0.8901 0.9079 0.8113 0.8680 0.8952 0.9075

DIHN∗

0.4+ADSH 0.8539 0.9175 0.9260 0.9319 0.8300 0.8749 0.8978 0.9078

DIHN∗

0.6+ADSH 0.8910 0.9262 0.9264 0.9372 0.8321 0.8776 0.8977 0.9111

DIHN∗

0.8+ADSH 0.8815 0.9221 0.9306 0.9303 0.8291 0.8820 0.8993 0.9103

MatConvNet [26] framework. We carry out the experiments

on a PC with 4 AMD Opteron cores (8 threads), 64GB

RAM, and NVIDIA Tesla P100.

4.2. Accuracy Comparison

Table 2 shows the MAP performance comparisons on

two datasets. In most cases, the supervised methods out-

perform the unsupervised methods, and the deep hashing

methods further exceed the traditional hashing methods.

Among all the deep hashing methods, two discrete hash-

ing methods ADSH and DSDH achieve the best perfor-

mance. ADSH further shows a large improvement over

DSDH, indicating the advantages of asymmetric hashing

scheme. To verify the effectiveness of DIHN, we adopt the

asymmetric deep hashing method ADSH to generate origi-

nal binary hash codes B. For normal incremental settings,

i.e. i = 1, 2, 3, DIHNi+ADSH can achieve competitive re-

trieval performance. For challenging incremental settings,

i.e. i = 6, 11, the performance of DIHNi+ADSH is a little

inferior to that of DIHNi+ADSH under the normal settings.

This is mainly because the original database images under

the challenging incremental settings are less than the ones

under the normal settings, resulting in less discriminative

original binary hash codes B.

We further verify the effectiveness of DIHN∗ with three

different sample rates: 0.2, 0.4, 0.6 and 0.8. The MAP re-

sults are listed in Table 3. Note that the number of incre-

mental classes for DIHN∗ is 3. In general, compared to

DIHN3, DIHN∗ can achieve competitive retrieval perfor-

mance for sample rates 0.6 and 0.8. For lower sample rates

0.2 and 0.4, the performance of DIHN∗ becomes poor, and

DIHN∗

0.4 achieves much better performance than DIHN∗

0.2,

indicating the importance of the original binary hash codes

B. As can be seen in optimization process, B is highly re-

lated to θ, and θ can affect B′.

To deal with the situation when only parts of the in-

cremental database images are labeled, we investigate a

DIHN variant, called DIHN-S. DIHN-S directly learns bi-

nary hash codes for the labeled incremental database images

while generating hash codes for unlabeled ones through

the learned CNN model. For example, DIHN3-S0.2 de-

notes DIHN3 with 20%/80% labeled/unlabeled incremental

database images. The MAP results are shown in Table 4.

In general, DIHN-S is inferior to DIHN mainly beacause of

the quantization error and less sampled labeled incremental

images. However, due to the advantages of the asymmetric

hashing scheme, DIHN-S can efficiently utilize the learned

hash codes and still achieve competitive retrieval perfor-

mance. As expected, the MAP results increase with the in-

creasing of the number of the labeled incremental database

images.

4.3. Time Complexity

We further compare the training costs of DIHN3+ADSH

and DIHN∗

0.2+ADSH with other approaches. The number

of incremental classes for DIHN∗

0.2+ADSH is 3. For the

competitor, we only choose the ADSH, since it has been

shown in [8] that ADSH already performs much faster than

other deep hashing methods. We report the MAP results at

different training time points.

Figure 3 details the performances and time costs on

NUS-WIDE dataset. In all cases, DIHN3+ADSH shows

much better training efficiency than ADSH, as expected in

complexity analysis section. The reason is that DIHN does

not need to take the original database into account. For ex-

ample, it takes only about 28 minutes for DIHN3+ADSH

to achieve promising performance when the code length is

12. In contrast, ADSH has to cost three times (83 min-

utes) as much as DIHN3+ADSH to reach the similar re-

trieval accuracy. This somewhat reveals the weakness of

ADSH that it is not suitable for the incremental scenario.

ADSH has to retrain the model when updating, even the

previous hash codes and model are already available. While

our DIHN is much more flexible to handle the newly-

emerging data. Moreover, compared to DIHN3+ADSH,

our DIHN∗

0.2+ADSH could further reduce the training time

to get convergence. Specifically, when the code length is

48, DIHN∗

0.2+ADSH takes about 20 minutes to get con-

vergence, while DIHN3+ADSH costs 40 minutes. Table

5 further shows the comparison of training time spent in

one iteration (θ-step+B′-step) on NUS-WIDE dataset. As

expected, ADSH takes much more time than DIHN3 and

DIHN∗

0.2 in one iteration, which is consistent with complex-

ity analysis.

9075

Table 4. Comparison of MAP w.r.t. different number of bits on two datasets. DIHN3-S0.2 denotes DIHN3 with 20%/80% labeled/unlabeled

incremental database images. Note that the MAP performance is calculated on the top 5,000 returned images for NUS-WIDE dataset.

Methods
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DIHN3+ADSH 0.8916 0.9273 0.9330 0.9456 0.8353 0.8821 0.9004 0.9115

DIHN3-S0.2+ADSH 0.7594 0.8423 0.8714 0.8774 0.8151 0.8337 0.8529 0.8640

DIHN3-S0.4+ADSH 0.8374 0.8983 0.9156 0.9205 0.8097 0.8490 0.8630 0.8692

DIHN3-S0.6+ADSH 0.8799 0.9091 0.9249 0.9278 0.8179 0.8525 0.8681 0.8733

DIHN3-S0.8+ADSH 0.8769 0.9269 0.9379 0.9352 0.8171 0.8652 0.8811 0.8901

(a) 12 bits (b) 24 bits (c) 32 bits (d) 48 bits

Figure 3. The MAP results vs. training time costs curves of DIHN3+ADSH, DIHN∗
0.2+ADSH, and ADSH on NUS-WIDE dataset. DIHN

shows much better training efficiency.

Table 5. Comparison of the training time (in seconds) spent in one

iteration w.r.t. different number of bits on NUS-WIDE dataset.

Methods 12 bits 24 bits 32 bits 48 bits

ADSH 122.78 178.97 216.26 296.41

DIHN3 65.06 76.83 79.88 86.49

DIHN∗

0.2 42.66 48.06 51.60 58.60

(a) NUS-WIDE (b) CIFAR-10

Figure 4. The MAP with the change of hyper-parameters q, λ and

µ on two datasets. The code length is 12.

4.4. Parameter Sensitivity

The MAP results of DIHN3+ADSH under different val-

ues of the hyper-parameters λ, q, and µ are shown in Figure

4. We tune one parameter with the other two fixed. For in-

stance, we tune λ in the range of [1, 10, 100, 200, 500] by

fixing q = 2000 and µ = 50, respectively. Similarly, we

set λ = 200, q = 2000 when tuning µ, and set λ = 200,

µ = 50 when tuning q. As demonstrated in Figure 4, the

performance varies with different values of the three hyper-

parameters. Specifically, λ, q and µ have a wide range

[1, 500], [500, 2500] and [0.1, 100], respectively. Note that

the MAP value increases with the increasing of q in the

range [500, 2500], indicating that sampling more images

can boost the retrieval performance. However, as discussed

before, the computational complexity increases with the in-

creasing of q. Hence, we set q = 2000 in consideration of

both computational complexity and retrieval performance.

5. Conclusion

In this paper, we have proposed a deep incremental hash

learning architecture for large-scale image retrieval, called

DIHN. The DIHN has the following three features: capa-

bility of learning new data, preservation of old codes, and

efficiency of training. To the best of our knowledge, DIHN

is the first deep incremental hashing approach. We care-

fully design an incremental hashing loss function that aims

at simultaneously generating hash codes for incremental

database images and learning a CNN model for produc-

ing hash codes for query images. Extensive experiments

demonstrate that the proposed deep incremental hashing

method DIHN can significantly decrease the training time

with almost no loss of accuracy.

Acknowledgments

This work was supported by the Strategic Priority Re-

search Program of the Chinese Academy of Sciences

(XDC02050200) and Beijing Municipal Science and Tech-

nology Project (Z181100002718004).

9076

References

[1] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff.

Mihash: Online hashing with mutual information. In ICCV,

pages 437–445, 2017.

[2] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and

Qingfu Wen. Deep quantization network for efficient image

retrieval. In AAAI, pages 3457–3463, 2016.

[3] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Return of the devil in the details: Delving

deep into convolutional nets. In BMVC, 2014.

[4] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yantao Zheng. Nus-wide: a real-world web im-

age database from national university of singapore. In CIVR,

2009.

[5] Qi Dai, Jianguo Li, Jingdong Wang, and Yu-Gang Jiang. Bi-

nary optimized hashing. In MM, pages 1247–1256. ACM,

2016.

[6] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similar-

ity search in high dimensions via hashing. In VLDB, pages

518–529, 1999.

[7] Yunchao Gong and Svetlana Lazebnik. Iterative quantiza-

tion: A procrustean approach to learning binary codes. In

CVPR, pages 817–824, 2011.

[8] Qing-Yuan Jiang and Wu-Jun Li. Asymmetric deep super-

vised hashing. In AAAI, 2018.

[9] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, 2009.

[10] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo.

From n to n+1: Multiclass transfer incremental learning. In

CVPR, pages 3358–3365, 2013.

[11] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simul-

taneous feature learning and hash coding with deep neural

networks. In CVPR, pages 3270–3278, 2015.

[12] Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, and Han-

qing Lu. Online sketching hashing. In CVPR, pages 2503–

2511, 2015.

[13] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised

discrete hashing. In NIPS, pages 2482–2491, 2017.

[14] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature

learning based deep supervised hashing with pairwise labels.

In IJCAI, pages 1711–1717, 2016.

[15] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton Van den

Hengel, and David Suter. Fast supervised hashing with deci-

sion trees for high-dimensional data. In CVPR, pages 1963–

1970, 2014.

[16] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin

Chen. Deep supervised hashing for fast image retrieval. In

CVPR, pages 2064–2072, 2016.

[17] Fuchen Long, Ting Yao, Qi Dai, Xinmei Tian, Jiebo Luo, and

Tao Mei. Deep domain adaptation hashing with adversarial

learning. In SIGIR, pages 725–734. ACM, 2018.

[18] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and

Gabriela Csurka. Distance-based image classification: Gen-

eralizing to new classes at near-zero cost. TPAMI, pages

2624–2637, 2013.

[19] Behnam Neyshabur, Nati Srebro, Ruslan R Salakhutdinov,

Yury Makarychev, and Payman Yadollahpour. The power of

asymmetry in binary hashing. In NIPS, pages 2823–2831,

2013.

[20] Yingwei Pan, Ting Yao, Houqiang Li, Chong-Wah Ngo, and

Tao Mei. Semi-supervised hashing with semantic confidence

for large scale visual search. In SIGIR, 2015.

[21] Zhaofan Qiu, Yingwei Pan, Ting Yao, and Tao Mei. Deep

semantic hashing with generative adversarial networks. In

SIGIR, 2017.

[22] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classi-

fier and representation learning. In CVPR, pages 5533–5542,

2017.

[23] Fumin Shen, Xin Gao, Li Liu, Yang Yang, and Heng Tao

Shen. Deep asymmetric pairwise hashing. In MM, 2017.

[24] Fumin Shen, Yadong Mu, Yang Yang, Wei Liu, Li Liu,

Jingkuan Song, and Heng Tao Shen. Classification by re-

trieval: Binarizing data and classifiers. In SIGIR, pages 595–

604, 2017.

[25] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen.

Supervised discrete hashing. In CVPR, pages 37–45, 2015.

[26] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional

neural networks for matlab. In MM, pages 689–692, 2015.

[27] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and

Heng Tao Shen. A survey on learning to hash. TPAMI,

40(4):769–790, 2018.

[28] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral

hashing. In NIPS, pages 1753–1760, 2009.

[29] Dayan Wu, Zheng Lin, Bo Li, Mingzhen Ye, and Weiping

Wang. Deep supervised hashing for multi-label and large-

scale image retrieval. In ICMR, pages 150–158, 2017.

[30] Dayan Wu, Jing Liu, Bo Li, and Weiping Wang. Deep index-

compatible hashing for fast image retrieval. In ICME, pages

1–6. IEEE, 2018.

[31] Lin Wu, Yang Wang, Zongyuan Ge, Qichang Hu, and Xue

Li. Structured deep hashing with convolutional neural net-

works for fast person re-identification. CVIU, 167:63–73,

2018.

[32] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and

Shuicheng Yan. Supervised hashing for image retrieval via

image representation learning. In AAAI, 2014.

[33] Ting Yao, Fuchen Long, Tao Mei, and Yong Rui. Deep

semantic-preserving and ranking-based hashing for image

retrieval. In IJCAI, 2016.

[34] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. Su-

pervised hashing with latent factor models. In SIGIR, pages

173–182, 2014.

[35] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo,

and Lei Zhang. Bit-scalable deep hashing with regular-

ized similarity learning for image retrieval and person re-

identification. TIP, pages 4766–4779, 2015.

[36] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan.

Deep semantic ranking based hashing for multi-label image

retrieval. In CVPR, pages 1556–1564, 2015.

[37] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao.

Deep hashing network for efficient similarity retrieval. In

AAAI, pages 2415–2421, 2016.

9077

