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Abstract

Person re-identification (Re-ID), for matching pedestri-

ans across non-overlapping camera views, has made great

progress in supervised learning with abundant labelled da-

ta. However, the scalability problem is the bottleneck for

applications in large-scale systems. We consider the scala-

bility problem of Re-ID from three aspects: (1) low labelling

cost by reducing label amount, (2) low extension cost by

reusing existing knowledge and (3) low testing computation

cost by using lightweight models. The requirements ren-

der scalable Re-ID a challenging problem. To solve these

problems in a unified system, we propose a Multi-teacher

Adaptive Similarity Distillation Framework, which requires

only a few labelled identities of target domain to transfer

knowledge from multiple teacher models to a user-specified

lightweight student model without accessing source domain

data. We propose the Log-Euclidean Similarity Distillation

Loss for Re-ID and further integrate the Adaptive Knowl-

edge Aggregator to select effective teacher models to trans-

fer target-adaptive knowledge. Extensive evaluations show

that our method can extend with high scalability and the

performance is comparable to the state-of-the-art unsuper-

vised and semi-supervised Re-ID methods.

1. Introduction

With the development of surveillance systems, person

re-identification (Re-ID) has drawn much attention in re-

cent years. Most researches focus on supervised learning

[25, 67, 31, 28, 1, 47] and have made great progress. How-

ever, system extension is still a significant obstacle for ap-

plying Re-ID in large-scale surveillance systems because

of the scalability problem, which is still under-explored.

Some previous works attempt to improve scalability from

different aspects, such as unsupervised and transfer learn-

ing [42, 24, 62, 52, 51, 11] for reducing label amount and
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Figure 1. A scalable adaptation Re-ID system. We propose to store

the knowledge in teacher models trained in existing scenes. When

extending to a new scene, we can flexibly transfer the knowledge

from teacher models to a user-specified lightweight student model

by using unlabelled data and little labelled data of the new scene,

without using source domain data which may not be accessible.

fast retrieval [56, 73] for large-scale applications. To build

a more scalable Re-ID system, it is expected that these scal-

ability problems can be addressed in a unified system.

We consider the requirements and challenges of the scal-

ability problem of Re-ID mainly from three aspects:

(1) Low labelling cost. Existing supervised Re-ID methods

require abundant labelled identities, which is unrealistic for

a large-scale system. A scalable Re-ID system should be

able to learn from unlabelled data and limited labelled data,

which provide very limited information for learning.

(2) Low extension cost. When extending to a new scene,

most existing Re-ID methods apply transfer learning, which

requires auxiliary source domain data for pretraining or

joint training. In some cases, source domain data of other

scenes may not be accessible because of privacy problem or

transfer problem. Even if source domain data is available,

joint training increases computation costs. Moreover, pre-

trained models may not be applicable due to different user-

specified requirements of model architecture and capacity.

Thus, a scalable Re-ID system should be able to extend to a

new scene flexibly with low cost. Knowledge transfer with-

out accessing source domain data is a challenge.

(3) Low testing computation cost. Existing state-of-the-art
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methods for Re-ID are based on large neural network mod-

els, e.g. ResNet-50 [20], which cannot meet the require-

ment of the camera hardware development trend of front-

end processing on the chips. Thus, a scalable Re-ID system

should be able to learn lightweight models.

To solve the above problems, we propose a scalable

adaptation Re-ID system based on knowledge reuse as

shown in Fig. 1. The system can extend with unlabelled

data and only a few labelled identities in the target domain,

without using source domain data. Instead of storing raw

data, we store the knowledge of Re-ID for an existing scene

i in a teacher model HTi. When extending to a new scene,

knowledge in a teacher model pool {HTi}
M
i=1 is aggregated

and transferred to a new user-specified lightweight student

model HS for the target domain. In this system, knowledge

transfer and knowledge aggregation are two key problems

and we address them as follows.

Knowledge transfer in our system is challenging, be-

cause limited labelled target data and absence of source data

lead to little information for learning and knowledge need

be compressed in a lightweight model. To solve these prob-

lems, we need to imitate and distill the knowledge in the

teacher models, which is knowledge distillation [21]. For

Re-ID, we exploit knowledge embedded in similarity and

propose the Log-Euclidean Similarity Distillation Loss for

imitating the sample pairwise similarity matrix of the teach-

er. Most knowledge distillation methods [21, 37, 61] are de-

signed for closed-set classification and they convey knowl-

edge by soft labels. They are not suitable for Re-ID, be-

cause Re-ID is an open-set identification problem, in which

the identities are non-overlapping in training and testing.

Furthermore, to effectively aggregate knowledge from

multiple teachers, we propose the Adaptive Knowledge Ag-

gregator for adjusting the contributions of multiple teach-

ers in the distillation loss dynamically, in order to selec-

t effective teachers and aggregate effective knowledge for

the target domain. Only a few labelled identities (e.g. 10)

are needed as validation data for computing empirical risk

to guide knowledge aggregation. We further integrate the

Log-Euclidean Similarity Distillation Loss and the Adap-

tive Knowledge Aggregator into a Multi-teacher Adaptive

Similarity Distillation Framework as shown in Fig. 2.

In summary, the contributions of this paper are: (1) We

propose the Log-Euclidean Similarity Distillation Loss for

knowledge distillation for Re-ID, which is an open-set iden-

tification problem. (2) We propose the Adaptive Knowledge

Aggregator for aggregating effective knowledge from mul-

tiple teacher models for learning a lightweight student mod-

el. (3) We further integrate them in a Multi-teacher Adap-

tive Similarity Distillation Framework for scalable person

re-identification, which can simultaneously reduce labelling

cost, extension cost and testing computation cost.

2. Related Work

Supervised Person Re-identification. Person Re-

identification has witnessed a fast growing development in

recent years, from feature design [19, 15, 32, 31, 35, 69, 58]

to distance metric learning [54, 19, 43, 25, 67, 36, 41, 30,

58, 33, 38, 31, 9, 68, 60, 63, 69, 29, 52, 6] and end-to-end

deep learning [28, 1, 55, 57, 49, 22, 64, 65, 70, 47]. Most

existing works rely on abundant labelled data. Although

high performance can be achieved by deep models, heavy

labelling cost hinders the scalability of these methods.

Scalable Person Re-identification. Recently, scalable

person re-identification has drawn more attention for re-

ducing costs of system extension. Unsupervised learning

[42, 24, 62, 51, 14, 53, 13, 7, 27, 71], transfer learning

[72, 53, 13, 11], small sample learning [63, 2] and active

learning [34, 50, 45] are for reducing labelling cost by min-

imizing the requirement of labelled data or selecting specif-

ic data for labelling. Fast adaptation [5, 39] is for reducing

computation cost in training. Fast retrieval by lightweight

model [56] and binary representation [8, 73] are for reduc-

ing computation cost in testing. These methods only ad-

dress one of the problems of labelling cost, extension cost

or testing computation cost, while our method address these

problems simultaneously in a unified framework.

Knowledge Transfer/Distillation. Knowledge trans-

fer/distillation [21] is for transferring knowledge from a

large teacher model to a smaller student model by imita-

tion. A vast majority of knowledge distillation methods

such as [21, 37, 61, 16] are designed for closed-set classi-

fication problems by using soft labels of the teacher model

to guide learning the student model. However, person re-

identification is an open-set identification problem, in which

the identities in training and testing are non-overlapping,

and thus the soft-label-based distillation methods are not so

suitable for Re-ID. Some methods also consider using in-

formation other than soft labels as knowledge. Fitnets [44]

and FSP [59] exploit feature maps and PKT [40] exploits

the probability distribution of data, which are not directly

related to measuring similarity for matching in Re-ID. To

more effectively represent and convey knowledge, we distill

the knowledge embedded in sample similarity by imitating

the teacher similarity matrix. As for distilling from mul-

tiple teacher models as in our proposed method, [16, 61]

exploit the ensemble of multiple teachers, but they are for

closed-set classification and the contributions of different

teachers cannot be adaptively adjusted as in our method.

Semi-supervised teacher-student frameworks [48, 17] are

for closed-set classification and cannot solve our problem.

Hypothesis transfer learning (HTL) [26] studies learn-

ing from source models without source data. Existing HTL

methods [3, 12] are for closed-set domain adaptation, which

cannot solve the open-set identification problem for Re-ID.
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3. Similarity Knowledge Distillation

As designed in the scalable adaptation Re-ID system

(Fig. 1) in Section 1, to learn a model for the target do-

main with only a few labelled data, we can transfer knowl-

edge from other domains. To transfer knowledge without

accessing source domain data, we regard the model as a stu-

dent, which learns to imitate the teacher models by knowl-

edge distillation. In most knowledge distillation methods

[21, 37, 16], soft labels are utilized. However, it is not so

suitable to convey knowledge by identity soft labels for Re-

ID, because Re-ID is an open-set identification problem in

which there is no overlap of identity in training and testing.

To overcome this problem, we exploit the knowledge

embedded in similarity and make the student model imitate

the pairwise similarities of the teacher model. For N un-

labelled image samples {Ii}
N
i=1, let A denote the pairwise

similarity matrix, where the element ai,j in the i-th row and

the j-th column of A is the similarity between samples Ii

and Ij determined by model H . Let HS denote the student

model to be learned and HT denote the teacher model that is

fixed. The pairwise similarity matrices of the student model

HS and the teacher model HT are denoted by AS and AT ,

respectively. To transfer knowledge from teacher to studen-

t, we minimize the distance between the student similarity

matrix AS and the teacher similarity matrix AT as follow:

min dist(AS ,AT ), (1)

where dist(·) is a distance metric for similarity matrices.

Note that AT is fixed as the target for learning AS .

3.1. Construction of Similarity Matrices

Student Similarity Matrix AS . To obtain the pairwise

similarity matrix AS for student model HS , we use cosine

similarity, which is commonly used in neural networks for

Re-ID [47]. For a sample Ii, the student model HS extract-

s a d-dimensional feature vector HS(Ii;ΘS), where ΘS

is the parameter of HS . Let xS,i ∈ R
d denote the non-

negative normalized unit feature vector formulated by

xS,i = ReLU(HS(Ii;ΘS))/ ‖ReLU(HS(Ii;ΘS))‖ , (2)

where ReLU(x) = max(0, x) is an activation function ap-

plied after the feature layer of HS .

Let XS = [xS,1,xS,2, ...,xS,N ] ∈ R
d×N denote the fea-

ture matrix for samples {Ii}
N
i=1. The student similarity ma-

trix AS is computed by

AS = X
⊤

SXS , (3)

where aS,i,j = x
⊤
S,ixS,j in AS is the cosine similarity be-

tween samples Ii and Ij .

Properties of Student Similarity Matrix. We derive the

properties of the student similarity matrix AS as follows:

(1) The range of similarities in AS is [0, 1]. The cosine sim-

ilarity between non-negative unit feature vectors extracted

by Eq. (2) is between 0 and 1.

(2) AS is a symmetric positive semi-definite matrix. In E-

q. (3), X⊤
SXS is symmetric positive semi-definite. In our

case of mini-batch learning, the feature dimension d is larg-

er than the batch size N . Generally, XS ∈ R
d×N satisfies

rank(XS) = N and has full rank, so that AS ∈ R
N×N is

a symmetric positive definite (SPD) matrix in this case.

Teacher Similarity Matrix AT . The teacher similarity

matrix AT , as the target of student similarity matrix AS ,

should satisfy the properties of student similarity matrix.

Generally, when using neural network as teacher model,

the teacher similarity matrix AT can be computed as the

student model in Eq. (3) by using the feature matrix XT =
[xT,1,xT,2, ...,xT,N ] extracted by the teacher model HT .

In other cases, the teacher similarity matrix AT may not

satisfy the two properties of the student similarity matrix.

For example, when pairwise verification neural network is

used as teacher model without constraint, the similarity ma-

trix may not be SPD. Some simple transformations can be

applied to make the teacher similarity matrix valid. First, if

the range of similarities in AT is not [0, 1], it can be mapped

to [0, 1] by normalization. Second, if AT is not symmet-

ric positive definite, we can project it onto the cone of all

positive semi-definite matrices as in [54]. More details are

provided in the supplementary due to space limitation.

3.2. Log­Euclidean Similarity Distillation

After constructing the similarity matrices for student and

teacher, we aim to distill the knowledge by minimizing the

distance between the similarity matrices in Eq. (1). As ana-

lyzed above, the student and teacher similarity matrices are

symmetric positive definite (SPD) matrices, which are in-

trinsically lying on a Riemannian manifold [4] instead of a

vector space. Hence, when measuring the distance between

AS and AT , we take this property into consideration and

measure the distance in a log-Euclidean Riemannian frame-

work [4] instead of using Euclidean metric as follow:

dist(AS ,AT ) = ‖log(AS)− log(AT )‖F , (4)

where log(A) is the matrix logarithm of A. For any SPD

matrix A, the logarithm of it is

log(A) = Udiag(log(λ1), log(λ2), ..., log(λN ))U⊤, (5)

where U is the orthonormal matrix of eigenvectors and λi

is the eigenvalue, which are obtained from the eigendecom-

position A = Udiag(λ1, λ2, ..., λN )U⊤.

We distill the knowledge embedded in the similarity

from teacher to student by minimizing the Log-Euclidean

distance as follow:

min
ΘS

LT (XS) =
∥

∥

∥
log(X⊤

SXS)− log(AT )
∥

∥

∥

2

F
, (6)

where ΘS is the parameter of student model HS , XS is the

feature matrix extracted by HS and processed by Eq. (2),
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Figure 2. Overview of the Multi-teacher Adaptive Similarity Distillation Framework. Unlabelled data and a few labelled identities of target

domain are required. The teacher models are fixed feature extractors for existing scenes in the system. The student model is a new user-

specified lightweight model to be trained. The teacher weight αi is for controlling the contribution of Log-Euclidean Similarity Distillation

Loss LTi of teacher HTi and it is learned by minimizing validation empirical risk loss LV ER. The student model is trained by unlabelled

data with the Adaptive Aggregated Distillation Loss LTA. (← denotes forward propagation and L99 denotes backward propagation.)

X
⊤
SXS is AS as computed in Eq. (3) and AT is fixed sim-

ilarity matrix provided by teacher model HT . We call LT

the Log-Euclidean Similarity Distillation Loss for HT . The

effectiveness of the Log-Euclidean metric is further validat-

ed in our experiments as compared to the Euclidean metric.

4. Learning to learn from Multiple Teachers

We have illustrated learning from a single teacher mod-

el by similarity knowledge distillation. In this section, we

study learning from multiple teacher models. Since not all

teachers can provide effective and complementary knowl-

edge due to variations between cameras (e.g. illumination

and background), we need learning to adjust the contribu-

tions of multiple teachers, i.e. learning to learn. We pro-

pose the Adaptive Knowledge Aggregator to aggregate ef-

fective knowledge from multiple teachers for learning a s-

tudent model, which requires only a few labelled identities

for reducing labelling cost. It is integrated with similarity

knowledge distillation to form the Multi-teacher Adaptive

Similarity Distillation Framework as shown in Fig. 2.

4.1. Multi­teacher Adaptive Aggregated Distillation

To learn a student model HS from multiple teacher mod-

els in a teacher model pool {HTi}
M
i=1 simultaneously, the

Log-Euclidean Similarity Distillation Loss LT in Eq. (6)

for a single teacher HT is generalized as follow:

min
ΘS

LTA(XS ; {αi}
M
i=1) =

M
∑

i=1

αiLTi(XS), (7)

where LTi is the Log-Euclidean Similarity Distillation Loss

for teacher model HTi, αi is the teacher weight for control-

ling the contribution of LTi. The teacher weight αi should

satisfy
∑M

i=1 αi = 1 and αi ≥ 0. XS is the feature matrix

extracted by student model HS parameterized by ΘS .

The constrain
∑M

i=1 αi = 1 is for normalizing the scale

of αi. It can be simply satisfied by αi = |α̃i|/
∑M

j=1 |α̃j |,
where α̃i is an unconstrained real number parameter.

For unsupervised learning without prior knowledge, αi

can be set equally as 1/M . However, in practice, there

may be some ineffective teacher models that provide wrong

knowledge. Hence, instead of regarding αi as fixed hyper-

parameter which needs tuning, we aim to learn αi dynam-

ically to make the loss LTA adaptive to the target domain.

We call LTA the Adaptive Aggregated Distillation Loss.

4.2. Adaptive Knowledge Aggregation

To learn the teacher weights {αi}
M
i=1, guiding informa-

tion is required. Generally, for validating whether a Re-ID

system is working normally, it is necessary and feasible for

human operator to label a small amount of identities (e.g. ≤
10). Although the small amount of data is far from enough

for training an effective model from scratch due to overfit-

ting, we can compute the validation empirical risk on it to

provide guiding information for aggregating knowledge.

Validation Empirical Risk. For the target domain, we have

a large amount of unlabelled data DU = {IUi }
N
i=1. Addi-

tionally, we label data of a few identities (not in DU ) to

form a small validation set DL = {(ILi , yi)}
Nv

i=1, where

yi = 1, 2..., Cv is the label (Cv = 10 in our case). To

indicate whether the student is learning correct knowledge

from teachers, the empirical risk on validation data DL can

be computed. Let xU
S,k and x

L
S,i denote the features of unla-

belled sample I
U
k and labelled sample I

L
i , respectively. Let

PL = {(i, j)|yi = yj} denote the set of index pair (i, j)
of positive sample pair (ILi , I

L
j ) in the validation set DL.

As there is no overlap identity in DL and DU , (ILi , I
U
k ) is

a negative sample pair. We apply a Softmax cross entropy
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loss for computing the validation empirical risk by

LV ER(X
U
S ,X

L
S ) =

∑

(i,j)∈PL

−log
exp(xL⊤

S,i x
L
S,j)

exp(xL⊤
S,i

x
L
S,j

) +
∑

N
k=1 exp(xL⊤

S,i
x
U
S,k

)
.

(8)

We call LV ER the validation empirical risk loss. When

the similarity of positive pair xL⊤
S,i x

L
S,j becomes larger and

the similarity of negative pair x
L⊤
S,i x

U
S,k becomes smaller,

the loss LV ER becomes smaller. Thus, it can indicate the

empirical risk effectively.

Adaptive Knowledge Aggregator. To learn teacher

weights {αi}
M
i=1 that can minimize the validation empirical

risk LV ER, we propose the Adaptive Knowledge Aggrega-

tor for optimizing {αi}
M
i=1 by gradient descent.

In the learning process of student model HS , at each

step, we have the feature matrices X
U
S and X

L
S for un-

labelled and labelled data, respectively. Feature learning

is guided by gradient descent of the Adaptive Aggregat-

ed Distillation Loss LTA. To evaluate whether the cur-

rent teacher weights {αi}
M
i=1 are effective, it is expected

that the features updated by LTA parameterized by {αi}
M
i=1

can decrease the validation empirical risk loss LV ER to the

most extent. We simulate one step update of the features

X
U
S and X

L
S by using gradients of LTA(X

U
S ; {αi}

M
i=1) and

LTA(X
L
S ; {αi}

M
i=1) with respect to X

U
S and X

L
S by

X
U′

S = X
U
S − β

∂LTA(XU
S ; {αi}

M
i=1)

∂XU
S

,

X
L′

S = X
L
S − β

∂LTA(XL
S ; {αi}

M
i=1)

∂XL
S

,

(9)

where XU ′

S and X
L′

S are the simulated updated features and

β is the step size of the simulated updating.

Then, we compute the validation empirical risk

LV ER(X
U ′

S ,XL′

S ) of the updated features X
U ′

S and X
L′

S .

Note that, the updated features X
U ′

S and X
L′

S are re-

lated to the teacher weights αi because the gradients
∂LTA(XU

S ;{αi}
M
i=1)

∂XU
S

and
∂LTA(XL

S ;{αi}
M
i=1)

∂XL
S

contain αi. Thus,

to minimize the validation empirical risk loss LV ER, the

gradient
∂LV ER(XU′

S ,XL′

S )
∂αi

can be computed and the teacher

weights αi can be learned by gradient descent as follow:

α′

i = αi − γα
∂LV ER(XU′

S ,XL′

S )

∂αi

, (10)

where α′
i is the updated value of teacher weight αi by using

learning rate γα.

With the objective of minimizing the validation

empirical risk during training, the learning target

LTA(XS ; {αi}
M
i=1) parameterized by teacher weights

{αi}
M
i=1 can adaptively select effective teacher models by

weighting to provide better guidance for student model.

Optimization. Before training, the teacher weights α1,

α2,..., αM are initialized as 1/M . There are mainly three

steps in training: (1) Feature extraction and similarity ma-

trix construction as illustrated in Section 3.1; (2) Updating
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Figure 3. Change of teacher weights αi (the upper figure) and

change of validation empirical risk loss LV ER with and with-

out using Adaptive Knowledge Aggregator (the lower figure) in

the training process of Market-1501. The teacher weights can

select more effective teacher models trained on larger dataset-

s (MSMT17, DukeMTMC). The validation empirical risk loss

LV ER can be further minimized with the learned teacher weights.

teacher weights {αi}
M
i=1 by Adaptive Knowledge Aggrega-

tor; (3) Updating student model HS by distillation loss LTA

with updated teacher weights {αi}
M
i=1. The three steps are

repeated for training student model HS . This process is also

shown in Algorithm 1 in the supplementary.

Visual Understanding. To better understand the effect of

the adaptive teacher weights αi, change of αi and change

of the validation empirical risk loss LV ER during training

on Market-1501 are shown in Fig. 3. The experiment de-

tails are illustrated later in Section 5. It can be observed

that, with the Adaptive Knowledge Aggregator, the learned

teacher weights are larger for effective teachers (trained on

large datasets MSMT17, DukeMTMC) and smaller for the

ineffective teacher model (trained on small dataset ViPER).

Compared with the case without using aggregator (i.e. using

equal teacher weights), adaptive teacher weights can further

minimize the validation empirical risk loss LV ER.

5. Experiments
We conducted extensive experiments on two large per-

son re-identification benchmark datasets Market-1501 [66]

and DukeMTMC [70]. Our Multi-teacher Adaptive Similar-

ity Distillation Framework was evaluated and compared to

knowledge distillation, unsupervised, semi-supervised and

small sample learning methods. Further evaluations show

the effectiveness of the Log-Euclidean Similarity Distilla-

tion Loss and the Adaptive Knowledge Aggregator.

Experiment Settings and Datasets. We used Market-

1501 [66] and DukeMTMC [70] as target datasets. Source

datasets were for training teacher models. To increase the

diversity of effectiveness of teacher models for the target

scene to simulate the practical situation, datasets of dif-

ferent scales collected in different scenes were used. We

trained 5 teacher models T1, T2, T3, T4, T5 with labelled

data in the training sets of MSMT17 [53], CUHK03 [28],

ViPER [18], DukeMTMC [70] and Market-1501 [66], re-
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Table 1. Basic information of datasets.
Teacher Dataset Images Identities Cameras Scene

T1 MSMT17 [53] 126,441 4,101 15 outdoor, indoor

T2 CUHK03 [28] 28,192 1,467 2 indoor

T3 VIPeR [18] 1,264 632 2 outdoor

T4 DukeMTMC [70] 36,411 1,812 8 outdoor

T5 Market-1501 [66] 32,668 1,501 6 outdoor

spectively. Once a teacher model was trained, source data

and extra training were not needed. Basic information of the

datasets is in Table 1. Note that, when forming the teacher

model pool, teacher model of the target dataset was exclud-

ed. For Market-1501, the teacher model pool with M =
4 teachers was {T1, T2, T3, T4} (MSMT17, CUHK03,

ViPER, DukeMTMC); while for DukeMTMC, the teach-

er model pool with M = 4 teachers was {T1, T2, T3, T5}
(MSMT17, CUHK03, ViPER, Market-1501).

The standard splits of training and testing IDs of Market-

1501 and DukeMTMC were adopted as in [66] and [70].

Our experiments were conducted under two settings:

(1) Unsupervised setting: all data in training set was unla-

belled. (2) Semi-supervised setting: Concerning labelling

cost, Cv = 10 identities in training set were randomly se-

lected to be labelled, and the remaining data was unlabelled.

Performance Metrics. In testing, similarities between

query and gallery samples were determined by the student

model. The performance metrics cumulative matching char-

acteristic (CMC) and mean Average Precision (mAP) were

applied following the standard evaluation protocol in [66]

and [70]. Note that, scalability is also important in our e-

valuations, including training time, model size indicated by

parameter number (#Para) and testing computation cost of

the model indicated by floating-point operations (FLOPs).

Implementation Details. For teacher models of source

scenes, an advanced Re-ID model PCB [47] was adopted.

For student model of the target scene, a lightweight mod-

el MobileNetV2 [46] was adopted and a convolution layer

was applied to reduce the last feature map channel number

to 256. It was initialized by ImageNet pretraining, without

training on any Re-ID dataset. The input images were re-

sized to 384× 128 and feature maps of the last convolution

layer were extracted as feature vectors. In each batch, for

computing validation empirical risk, we sampled two im-

ages for each identity from labelled data to guarantee posi-

tive pairs. More details are provided in the supplementary.

5.1. Comparison under Unsupervised Setting

Compared Methods. For unsupervised setting, we did not

use labelled data for our method and set fixed equal teacher

weights αi as 1/M in the Adaptive Aggregated Distillation

Loss LTA in Eq. (7) without using the Adaptive Knowl-

edge Aggregator. We compared with unsupervised Re-

ID methods including unsupervised features LOMO [31],

BOW [66] and unsupervised learning models UMDL [42],

PTGAN [53], PUL [14], CAMEL [62], SPGAN [13], TJ-

AIDL [51] and HHL [71]. Among them, the advanced deep

Table 2. Performance under unsupervised setting. “Ours (unsuper-

vised)” denotes the unsupervised version of our method. “Back-

bones” denotes model architecture. “#Para” denotes the number

of parameters. “FLOPs” denotes floating-point operations (testing

computation cost). “Train” denotes training time. “R-1” denotes

rank-1 accuracy (%). “mAP” denotes mean average precision (%).

Methods Backbones
#Para FLOPs Market-1501 DukeMTMC

(M) (G) R-1 mAP Train R-1 mAP Train

LOMO [31] - - - 27.2 8.0 - 12.3 4.8 -

BOW [66] - - - 35.8 14.8 - 17.1 8.3 -

UMDL [42] - - - 34.5 12.4 - 18.5 7.3 -

PTGAN [53] GoogleNet 6.8 1.5 38.6 - - 27.4 - -

PUL [14] ResNet-50 25.6 4.1 45.5 20.5 - 30.0 16.4 -

CAMEL [62] ResNet-56 0.9 6.2 54.5 26.3 13.7h 42.2 21.0 13.7h

SPGAN [13] ResNet-50 25.6 4.1 57.7 26.7 - 46.4 26.2 -

TJ-AIDL [51] MobileNet 4.2 0.6 58.2 26.5 - 44.3 23.0 -

HHL [71] ResNet-50 25.6 4.1 62.2 31.4 21.0h 46.9 27.2 21.0h

Fukuda [16] MobileNetV2 3.4 0.3 45.1 23.0 1.1h 27.6 18.9 1.4h

Ours (unsupervised) MobileNetV2 3.4 0.3 61.5 33.5 1.1h 48.4 29.4 1.4h

models require source data for transfer learning or pretrain-

ing, while our method only requires teacher models. More-

over, we compared with a multi-teacher knowledge distilla-

tion method Fukuda et al. [16]. For evaluating scalability,

training time was tested on a TITAN X GPU. In practice,

since the model for target domain is a new user-specified

model without learning from Re-ID data, the time of pre-

training on source data was included in training time. The

results as well as the parameter number (#Para) and testing

computation costs (FLOPs) are reported in Table 2.

Results and Analysis. Our method outperformed the com-

pared unsupervised Re-ID and multi-teacher distillation

methods, except that the rank-1 accuracy on Market-1501

is slightly lower than HHL [71]. Although our method

does not require source data, the Log-Euclidean Similari-

ty Distillation Loss can effectively transfer knowledge of

source domains to the student model. The complementarity

of knowledge of multiple teacher models can increase the

generalization ability of the student model. The distillation

method Fukuda et al. [16] also exploited multiple teacher-

s, but it is based on soft labels for closed-set classification,

which is not effective for the open-set Re-ID problem.

Scalability of the methods is compared as below. Train-

ing data required by our method contains only target data

and is smaller than the other methods that require source

data for pretraining or joint training. The computation cost

indicated by FLOPs of our backbone model MobileNetV2

is much lower than the others. With smaller training set and

lighter backbone model, the training time is much short-

er than the methods with comparable performance such as

CAMEL [62] and HHL [71]. Thus, our framework is more

scalable than the compared methods.

5.2. Comparison under Semi­supervised Setting

Compared Methods. For semi-supervised setting, 10 la-

belled IDs were available, thus the full version of our

method (“Ours (semi)”) can be applied. For comparison, we

chose two competitive recent advanced unsupervised Re-ID

methods CAMEL [62] and HHL [71] to extend to semi-

1192



Table 3. Performance (%) under semi-supervised setting with 10

labelled identities. Semi-supervised and small sample learning

methods for Re-ID were compared (same notations as Table 2).

Methods Backbones
#Para FLOPs Market-1501 DukeMTMC

(M) (G) R-1 mAP Train R-1 mAP Train

DNS [63] ResNet-50 25.6 4.1 11.8 5.3 3.2h 10.0 4.6 3.2h

CAMEL (semi) ResNet-56 0.9 6.2 54.4 26.2 13.7h 42.1 21.1 13.7h

HHL (semi) ResNet-50 25.6 4.1 63.9 34.4 21.0h 46.7 26.5 21.0h

CAMEL (semi) MobileNetV2 3.4 0.3 13.2 5.0 1.4h 13.6 5.6 1.4h

HHL (semi) MobileNetV2 3.4 0.3 56.7 27.7 21.0h 42.9 23.9 21.0h

Ours (semi) MobileNetV2 3.4 0.3 63.7 35.4 1.3h 57.4 36.7 1.7h

supervised version (“CAMEL (semi)” and “HHL (semi)”)

by using the positive and negative sample pairs obtained

from these labelled samples. We also tested using Mo-

bileNetV2 trained on MSMT17 (source dataset of the best

teacher model) for CAMEL (semi) and using MobileNetV2

as backbone for HHL (semi). A small sample learning Re-

ID method DNS [63] was also compared, for which we used

a PCB [47] model trained on MSMT17 as the best teacher

model T1. Training time was tested as the unsupervised

setting in Section 5.1. The results are reported in Table 3.

Results and Analysis. Among the compared methods, the

performance of our method is the best, except that rank-

1 accuracy is slightly lower than HHL (semi) on Market-

1501. Compared with the unsupervised results in Table 2,

CAMEL (semi) and HHL (semi) benefited little from the 10

extra labelled identities. The small sample learning method

DNS failed due to overfitting. Compared to our unsuper-

vised version in Table 2, our method benefited more from

the labelled identities especially on DukeMTMC (explained

in Section 5.3). Although 10 labelled identities can pro-

vide little information for directly learning a model, they

are sufficient for our method to compute the validation em-

pirical risk to select better teacher models. Moreover, our

method can learn MobileNetV2 more effectively than HHL

and CAMEL. Scalability analysis is similar to Section 5.1.

5.3. Further Evaluations

In this section, we further evaluate and analyze the com-

ponents and capabilities of our method.

Evaluation of Knowledge Distillation. Knowledge distil-

lation is the key technique in our Multi-teacher Adaptive

Similarity Distillation Framework. To fairly compare our

Log-Euclidean Similarity Distillation Loss LT in Eq. (6)

with existing knowledge distillation losses, we evaluated

learning from a single teacher model T1 (MSMT17). To

evaluate the effectiveness of the Log-Euclidean metric in

LT , we also tested using Euclidean metic, which is denot-

ed by “LT w/o log”. We compared with a representative

soft-label-based distillation method Hinton et al. [21] and

a recent advanced probability-distribution-based distillation

method PKT [40]. The results are reported in Table 4.

The performance of our loss LT is the best and very close

to the teacher model, the upper bound for distillation meth-

ods. The performance of Hinton et al. [21] is lower than

other methods, because it is designed for closed-set classi-

Table 4. Performance (%) of distilling a single teacher model T1.

Our loss LT without logarithm “LT w/o log” and other knowledge

distillation methods were compared. Please see text for details.

Methods
Market-1501 DukeMTMC

R-1 mAP R-1 mAP

Teacher T1 (MSMT17) 51.5 24.9 47.6 30.6

Hinton et al. [21] 41.2 20.0 32.5 20.8

PKT [40] 46.1 22.3 44.7 28.6

LT w/o log 47.7 23.0 45.0 29.8

LT (Eq. (6)) 49.7 24.6 47.6 31.1

fication by using soft labels, which is not suitable for the

open-set Re-ID problem. PKT [40] used probability distri-

bution for knowledge distillation, which is not so effective

as using similarity in our method for Re-ID. Comparisons

between “LT ” and “LT w/o log” show the effectiveness of

the Log-Euclidean metric, which considers the symmetric

positive definite (SPD) property of similarity matrices.

Effect of the Learned Teacher Weights αi. Another key

component in our method is the Adaptive Knowledge Ag-

gregator for learning teacher weights αi to adjust the dis-

tillation loss LTA in Eq. (7). We conducted some exper-

iments as follows: (1) Evaluating the performance of al-

l teachers individually. (2) Ensembles of all teachers by

distance fusion with weights learned by RankSVM [43] on

the validation set and with equal weights. Joint training a

PCB model [47] with all source data. (3) Using multi-task

weighting methods Uncertainty [23] and GradNorm [10] to

learn teacher weights in our framework. (4) Training our

framework without learning teacher weights αi (“Ours (un-

supervised)”) and training our framework with subsets of

teachers of top-k αi. The backbone of our method was Mo-

bileNetV2 and the others were ResNet-50. The results and

the teacher weights αi after training are reported in Table 5.

- Individual Teacher. For Market-1501, teachers T1
(MSMT17), T2 (CUHK03) and T4 (DukeMTMC) are ef-

fective and comparable. For DukeMTMC, only teacher T1
(MSMT17) is effective, since DukeMTMC is more chal-

lenging with more camera views than Market-1501. For

both datasets, T3 (ViPER) is the worst because its training

set is small. T3 provides weak knowledge as interference to

test the robustness of the system. Our method outperformed

the best teacher by about 10% and is more lightweight.

- w/ and w/o Learning αi. Teacher weights αi learned by

Adaptive Knowledge Aggregator can indicate the effective-

ness of the teachers. The weights for the worst teacher T3
are nearly zero. When comparing “Ours (semi)” with “Ours

(unsupervised)”, for Market-1501, the selection by teacher

weights brings limited improvement; whilst for DukeMTM-

C, the improvement is much more significant, because dis-

tance fusion with equal weights is already better than in-

dividual teachers for Market-1501 but it is not effective for

DukeMTMC. Ensemble by distance fusion increases testing

computation costs and is not as scalable as our method.

Furthermore, we ranked αi in descending order to select

a subset of teachers for training. The teachers with large αi
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Table 5. Performance (%) of evaluating the Adaptive Knowledge

Aggregator for selecting teachers. “αi” is the teacher weight

learned by the Adaptive Knowledge Aggregator. Ensembles of

teachers, joint training and task weighting were compared.
Market-1501 (teacher model pool {T1, T2, T3, T4})

Models #Para FLOPs αi R-1 mAP Train

Teacher T1 (MSMT17) 25.6 4.1 0.398 51.5 24.9 3.4h

Teacher T2 (CUHK03) 25.6 4.1 0.145 51.7 26.2 1.4h

Teacher T3 (ViPER) 25.6 4.1 0.000 28.5 12.0 0.1h

Teacher T4 (DukeMTMC) 25.6 4.1 0.458 49.4 24.2 1.7h

RankSVM weighted fusion (all teachers) 102.4 16.4 - 57.6 31.6 -

Distance fusion (all teachers) 102.4 16.4 - 56.5 30.7 -

Joint training (all source data) 25.6 4.1 - 62.8 35.6 6.6h

Uncertainty [23] 3.4 0.3 - 61.3 33.3 1.1h

GradNorm [10] 3.4 0.3 - 60.5 32.8 1.1h

Ours (unsupervised) 3.4 0.3 - 61.5 33.5 1.1h

Ours (Ti of top 1 αi {T4}) 3.4 0.3 - 48.1 23.8 1.1h

Ours (Ti of top 2 αi {T4, T1}) 3.4 0.3 - 63.0 34.6 1.3h

Ours (Ti of top 3 αi {T4, T1, T2}) 3.4 0.3 - 63.5 35.5 1.3h

Ours (semi) 3.4 0.3 - 63.7 35.4 1.3h

DukeMTMC (teacher model pool {T1, T2, T3, T5})

Models #Para FLOPs αi R-1 mAP Train

Teacher T1 (MSMT17) 25.6 4.1 0.581 47.6 30.6 3.4h

Teacher T2 (CUHK03) 25.6 4.1 0.071 25.3 14.8 1.4h

Teacher T3 (ViPER) 25.6 4.1 0.029 19.7 10.7 0.1h

Teacher T5 (Market-1501) 25.6 4.1 0.320 30.8 18.6 1.3h

RankSVM weighted fusion (all teachers) 102.4 16.4 - 41.8 28.3 -

Distance fusion (all teachers) 102.4 16.4 - 39.7 26.8 -

Joint training (all source data) 25.6 4.1 - 53.6 36.1 6.2h

Uncertainty [23] 3.4 0.3 - 51.0 30.6 1.4h

GradNorm [10] 3.4 0.3 - 44.8 26.5 1.4h

Ours (unsupervised) 3.4 0.3 - 48.4 29.4 1.4h

Ours (Ti of top 1 αi {T1}) 3.4 0.3 - 47.6 31.1 1.4h

Ours (Ti of top 2 αi {T1, T5}) 3.4 0.3 - 57.9 36.7 1.7h

Ours (Ti of top 3 αi {T1, T5, T2}) 3.4 0.3 - 57.5 36.7 1.7h

Ours (semi) 3.4 0.3 - 57.4 36.7 1.7h

(> 1/4) can bring significant improvement while those with

small αi (< 1/4) cannot bring improvement because they

are weak or cannot provide complementary knowledge.

- Comparison with Ensemble and Task Weighting. Our

method outperformed ensemble, joint training and task

weighting [23, 10]. Moreover, our testing computation cost

was much lower than ensemble and our training time was

shorter than joint training. These show the advantages of

our similarity knowledge distillation and Adaptive Knowl-

edge Aggregator for aggregating knowledge of teachers.

The Number of Validation IDs. We tested using different

numbers of validation identities from 0 to 50. As shown in

Table 6, our method can achieve comparable performance

with 5 to 50 identities. Since the validation identities are

only for learning teacher weights αi and not for training

the student model parameters, there is no overfitting prob-

lem even with only 1 labelled identity. Comparing using 1

ID with using 0 ID, the performance dropped significantly

especially on DukeMTMC, which indicates the importance

of validation empirical risk. Thus, our Adaptive Knowledge

Aggregator is robust with only a few labelled identities.

Different Student Model Architectures. To show the flex-

ibility of our method, we used MobileNetV2 [46], ResNet-

18 and ResNet-50 [20] as backbones for the student model,

which are with different architectures and capacities. The

results in Table 7 show that, our method achieved compara-

ble performance for all three models. Thus, knowledge can

be effectively distilled to models of different architectures.

Finetuning with Our Method as Initialization. When

more labelled data is given, the MobileNetV2 [46] studen-

t model learned by our method can be used as initializa-

tion for finetuning. We finetuned it on 20% labelled identi-

Table 6. Performance (%) of using different numbers of labelled

identities in validation set.
Validation set IDs 0 1 5 10 20 50

Market
R-1 61.5 62.6 63.2 63.7 63.9 64.2

mAP 33.5 34.2 34.6 35.4 35.4 35.8

DukeMTMC
R-1 48.4 55.9 57.6 57.4 57.5 57.9

mAP 29.4 35.0 36.6 36.7 36.8 37.1

Table 7. Performance (%) of different backbones of student model.

Backbones
Market-1501 DukeMTMC

R-1 mAP R-1 mAP

ResNet-50 63.5 35.2 56.1 35.4

ResNet-18 63.1 34.9 56.7 36.4

MobileNetV2 63.7 35.4 57.4 36.7

Table 8. Performance (%) of finetuning MobileNetV2 [46] with

our method as initialization on a small subset of 20% IDs.

Initialization Labelled IDs
Market-1501 DukeMTMC

R-1 mAP R-1 mAP

ImageNet 100% 78.3 55.5 64.7 45.4

ImageNet 20% 60.1 35.6 49.9 29.7

Ours 20% 77.1 57.7 66.7 46.0

ties and compared with the models finetuned with 20% and

100% labelled identities initialized by ImageNet pretrain-

ing. The results are shown in Table 8. The model initialized

by our method finetuned on 20% IDs can achieve compa-

rable performance with the model initialized by ImageNet

pretraining finetuned on 100% IDs, while the performance

of finetuning on 20% IDs with ImageNet pretraining was

much lower. With prior knowledge of Re-ID, our method

can generalize better with fewer target labelled samples.

6. Conclusion
In this paper, we aim to address the scalability of per-

son re-identification from three aspects, including labelling

cost, extension cost and testing computation cost. We

propose a Multi-teacher Adaptive Similarity Distillation

Framework, which can flexibly train a new user-specified

lightweight model, with only a few labelled identities and

without source data. The framework stores knowledge of

Re-ID in a teacher model pool. When extending to a new

scene, knowledge can be adaptively aggregated and distilled

to a lightweight student model. For knowledge distillation

for Re-ID, an open-set identification problem, we propose

the Log-Euclidean Similarity Distillation Loss to imitate

the sample pairwise similarity matrix of the teacher mod-

el. To effectively learn from multiple teachers, we propose

the Adaptive Knowledge Aggregator to adjust the contri-

bution of each teacher model by minimizing the validation

empirical risk computed on a few labelled identities. Ex-

tensive evaluations show that our method is more scalable

and can achieve performance comparable to state-of-the-art

unsupervised and semi-supervised Re-ID methods.
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