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Abstract

Learning class-conditional data distributions is cru-

cial for Generative Adversarial Networks (GAN) in semi-

supervised learning. To improve both instance synthesis

and classification in this setting, we propose an enhanced

TripleGAN (EnhancedTGAN) model in this work. We fol-

low the adversarial training scheme of the original Triple-

GAN, but completely re-design the training targets of the

generator and classifier. Specifically, we adopt feature-

semantics matching to enhance the generator in learning

class-conditional distributions from both the aspects of s-

tatistics in the latent space and semantics consistency with

respect to the generator and classifier. Since a limited

amount of labeled data is not sufficient to determine satis-

factory decision boundaries, we include two classifiers, and

incorporate collaborative learning into our model to pro-

vide better guidance for generator training. The synthesized

high-fidelity data can in turn be used for improving classifi-

er training. In the experiments, the superior performance of

our approach on multiple benchmark datasets demonstrates

the effectiveness of the mutual reinforcement between the

generator and classifiers in facilitating semi-supervised in-

stance synthesis and classification.

1. Introduction

Significant advances in deep learning techniques have re-

sulted in its wide adoption in a broad set of applications,

most notably in computer vision [14] [31] [34] and natu-

ral language processing [42]. However, in view of the need

to collect a massive amount of labeled data for most fully-

supervised deep learning models, semi-supervised learning

represents an effective approach to avoid the need for ex-

tensive manual annotations. This is due to the capability of

semi-supervised learning to capture the characteristics of a

dataset through a small number of labeled instances, togeth-

(a) TripleGAN∗ (b) EnhancedTGAN

Figure 1. The embedding of the unlabeled training data and syn-

thesized data on CIFAR-10 with 4000 labels. The features of the

last hidden layer of the classifier network are projected to 3D using

PCA. The unlabeled samples are marked gray, and different colors

denote different classes of synthesized samples. We implement

TripleGAN [17] in our configuration environment as the baseline

which is referred to as TripleGAN∗. One can observe that the pro-

posed EnhancedTGAN performs better than TripleGAN∗ in learn-

ing class-conditional distribution, since the synthesized data can

match the unlabeled data in sub-figure (b).

er with a large set of unlabeled instance. A number of pre-

vious methods have been developed to learn discriminative

representations, explore the underlying manifold structures,

and infer the labels of the unlabeled data, such as [41] [12]

[18] [1] [39]. However, the quality of the unlabeled data

will have a significant effect on the performance of semi-

supervised learning, and incorporation of low-quality data

in the training process could lead to ambiguous or even in-

correct decisions.

Recent applications of generative adversarial network

(GAN) [8] [29] [43] [21] [22] to semi-supervised learn-

ing have shown promise, due to the capability of GAN to

synthesize high-quality samples by learning the probability

distribution of a data set. To perform semi-supervised data

synthesis, Odena [27] modified the discriminator network to

classify the synthesized data to the K + 1-th class, while in

[35] the predicted class probability distribution for the syn-
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Figure 2. Illustration of the structure of the proposed EnhancedTGAN model for semi-supervised conditional instance synthesis and clas-

sification.

thesized data is forced to be uniform. To avoid the case in

which the discriminator also needs to predict the class label

for real data, Li et al. [17] proposed the TripleGAN model,

in which a classifier was incorporated into the adversarial

training process. However, a limited number of labeled in-

stances are not sufficient for learning the class-conditional

probability distribution of the categories. In this case, there

may exist a domain shift in which the divergence between

the real and synthesized data distributions is significant. In

particular, the domain discrepancy may be significant in the

early phase of the training process, and the generator and

classifier may negatively affect each other. As a result, it

is important, for the purpose of facilitating semi-supervised

synthesis and classification, to effectively match the statis-

tics of real and synthesized data, and this work presents a

feature-semantics matching approach to achieve this objec-

tive as shown in Figure 1.

In this work, we propose an enhanced TripleGAN (En-

hancedTGAN) model for improving semi-supervised con-

ditional instance synthesis and classification. We follow the

adversarial training scheme of the TripleGAN model in gen-

eral, but re-design the overall loss functions of the generator

and classifiers. Our feature-semantics matching approach is

able to reduce the risk of mode collapse and improve the

synthesis of the instances of each class. Specifically, we

adopt class-wise mean feature matching to regularize the

generator, such that the class-conditional distribution of the

synthesized data can match with that of the real data for

each class in the latent space learnt by a classifier, instead

of the discriminator. In addition, we further include a se-

mantic matching term to ensure the semantics consistency

of the synthesized data between the generator and the classi-

fier, which is a prerequisite for improving classifier training.

On the other hand, a better classification model can provide

more accurate categorical information on a large number of

unlabeled instances, which leads to better guidance for the

generator. For this purpose, we include two classifiers in

our model which operate in a collaborative learning fash-

ion. The classifiers can learn from each other by penalizing

the divergence between the predicted class probability dis-

tributions, and the consensus predictions on the unlabeled

data are more accurate than individual predictions in most

cases. As a result, the generator and the classifiers can mu-

tually reinforce each other. The structure of our model is

illustrated in Figure 2. Our experiments verify the effec-

tiveness and superiority of the proposed model. The main

contributions of this work are summarized as follows:

• We propose a feature-semantics matching approach

through which the generator can more effectively learn

the class-conditional data distributions.

• In addition to the synthesized high-fidelity instances

for training data augmentation, collaborative learning

between the classifiers can also lead to more accurate

classification on the unlabeled data, which in turn pro-

vides better guidance for the generator.

• The proposed enhanced TripleGAN model improves

the state-of-the-art results in both semi-supervised in-

stance synthesis and classification on multiple widely

used benchmarks.

2. Related Work

Recently, various strategies have been applied to im-

prove semi-supervised deep learning. Unsupervised learn-

ing can be used as an auxiliary task for exploring the struc-

ture of a dataset, and thus the generalization capability of

the classification model can be improved. To formulate the

unsupervised learning loss function for unlabeled samples,

Rasmus et al. [30] proposed the Γ-model, in which a consis-

tency regularization term was adopted to penalize the incon-

sistent predictions of the Ladder network [37] in inputs with
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and without noise. Similar to the Γ-model, Laine and Aila

[15] proposed the Π-model, which regularized the model

outputs of the training samples under different dropout and

augmentation conditions. To provide more stable training

targets for the unsupervised loss, Laine and Aila further pro-

posed the Temporal-Ensembling model. In this model, self-

ensembling of the network was applied to complement su-

pervision. The ensemble of predictions at different epochs

are expected to be more accurate, and can thus be used as

the training targets for unlabeled samples. In contrast to

the exponential moving average of the network predictions

on each sample, Tarvainen and Valpola [36] proposed the

Mean-Teacher model to average the network weights, and

the resulting model can be considered as a teacher to pro-

vide the training targets for the unlabeled samples. Based

on the assumption that similar samples should be located

in the same cluster in the latent space, Luo et al. [19] pro-

posed the Smooth Neighbors on Teacher Graphs (SNTG)

method to build a graph based on the predictions of a teach-

er network for measuring the similarity between unlabeled

data points. To ensure smoothness on the data manifold, the

contrastive loss was used to ensure that neighbors had con-

sistent predictions, while non-neighbors were pushed away

from each other. In addition, it is common to incorporate the

locally-Lipschitz condition through penalizing inconsisten-

t predictions of unlabeled samples with different perturba-

tions. Miyato et al. [24] [23] proposed the Virtual Adversar-

ial Training (VAT) based regularization method to improve

the local smoothness of the predicted class probability dis-

tribution by applying perturbation in the adversarial direc-

tion with respect to the classification model. VAT can be in-

corporated into existing semi-supervised learning networks,

and yields impressive results. On the other hand, Park et al.

[28] developed the Virtual Adversarial Dropout (VAdD) ap-

proach to reconfigure the neural network and minimize the

divergence between the obtained network and the original

network for increasing the sparsity of the overall network.

Deep generative models have been recently applied to

semi-supervised learning. In [10], Kingma et al. adopt-

ed the Variational Auto-Encoder (VAE) model [11] to treat

class label as an additional latent variable in the process

of learning the generative model. In [27], Odena modified

the discriminator network to simultaneously distinguish re-

al samples from synthesized samples and predict the cor-

responding class labels. Springenberg [35] proposed the

Categorical Generative Adversarial Network (CatGAN) to

make the discriminator assign high-confidence class labels

for the real samples, while forcing the predicted class prob-

ability distributions on the synthesized samples to be uni-

form. Salimans et al. [32] proposed a variety of training

techniques to improve the GAN training procedure, which

lead to improvement in semi-supervised learning and sam-

ple synthesis. Furthermore, Wei et al. [38] improved the

Wasserstein GAN [2] by including a consistency term with

respect to the discriminator responses for enforcing Lips-

chitz continuity. To prevent the discriminator from playing

two roles of identifying synthesized samples and predict-

ing class labels for real samples in a minimax game, Li et

al. [17] incorporated a classifier as an additional player into

the game, and proposed the Triple Generative Adversarial

Net (TripleGAN). Dumoulin et al. [5] proposed the Adver-

sarially Learned Inference (ALI) model, in which a genera-

tion network learnt the mapping from the latent space to the

data space, while an inference network learnt the inverse

mapping. These two networks were jointly optimized with

a discriminative network in an adversarial process. To learn

the joint distribution between samples and labels, Gan et al.

[7] proposed the Triangle Generative Adversarial Network

(TriangleGAN), in which two generators were adopted to

learn the conditional distributions between samples and la-

bels, and two discriminators were used to identify the types

of fake pairs between real (fake) samples and fake (real) la-

bels. Instead of matching the real and fake data distribution-

s, Dai et al. [4] proposed a complementary generator which

was trained by minimizing the KL divergence between the

distributions, such that the generated samples were located

in the low-density region in the latent space, and the diver-

sity of the training data was increased.

TripleGAN is the most related work to our proposed

approach. However there are significant differences be-

tween them. Although we follow the adversarial train-

ing scheme of TripleGAN in general, we completely re-

design the overall loss function of the generator by includ-

ing feature-semantics matching for effective and efficient

learning of the class-conditional data distributions. In addi-

tion, we include two classifiers which collaboratively learn

from each other to provide more accurate categorical in-

formation for the generator. As a result, the generator and

classifier mutually reinforce each other to facilitate semi-

supervised instance synthesis and classification.

3. Method

Inspired by the method in [6], the maximum mean dis-

crepancy measure was used for training GANs. Feature

matching has shown effectiveness in addressing the insta-

bility problem in GAN. The objective function defined be-

low can be applied to force the generator G to synthesize

data that matches the statistics of the real data [32] [3]:

∥

∥Ex∼pdata
fD(x)− Ez∼pz

fD(G(z))
∥

∥, (1)

where pdata denotes the distribution of real data x, pz de-

notes the distribution of random vector z, e.g., U [0, 1], G(z)
denotes a synthesized sample from z, and fD(·) denotes the

features associated with the hidden layer of the discrimina-

tor D. The center of synthesized data points is forced to
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match that of real data points in the latent space learnt by

the discriminator. However, there are two main issues when

applying the above formulation to our task. On one hand,

the categories of the instances are not taken into account

during the process of matching the marginal distributions.

On the other hand, in addition to class-conditional instance

synthesis, another objective is to perform accurate classifi-

cation on the unlabeled data, while feature matching in the

space learnt by the discriminator cannot directly improve

classification. In this section, we introduce the EnhancedT-

GAN model to improve both semi-supervised conditional

instance synthesis and classification.

3.1. Feature­Semantics Matching

In our setting, only a small portion of the training sam-

ples are labeled. Let x ∼ pu denote unlabeled samples,

and (x, y) ∼ pl denote the labeled data pair, where y de-

notes the label of sample x. Our EnhancedTGAN consists

of the following four modules: the generator G, discrim-

inator D, and classifiers C1 and C2. We slightly modify

the adversarial training scheme of the TripleGAN model.

Specifically, the generator G synthesizes new instances by

sampling pairs of random vector and class label (z, ỹ) from

a pre-specified distribution pg . The two classifiers C1 and

C2 collaboratively learn from each other, and produce the

consensus prediction ȳ of the input data.

To improve class-conditional instance synthesis, we opti-

mize the generator by including the class-wise mean feature

matching term defined as follows:

ℓfeaMat(θG) =
∑

k

∥

∥

∥
E(x,y)∼pl

[

1(y, k)fC1
(x)

]

− E(z,ỹ)∼pg

[

1(ỹ, k)fC1
(G(z, ỹ))

]

∥

∥

∥
,

(2)

where k denotes the class index, fC1
(·) denotes the features

on the hidden layer of the classifier C1, and the function

1(·, ·) returns 1 if the inputs are equal and 0 otherwise. S-

ince the number of labeled instances is small, we can use

moving historical averages to obtain more stable means for

them. The main advantage of ℓfeaMat is to avoid the mod-

e collapse problem where the generator always outputs the

same point. Another advantage is to increase the separabili-

ty of different classes of synthesized data. In order to utilize

the synthesized samples for training the classifiers, their se-

mantics from the perspectives of the classifier and generator

should be consistent. To enforce this consistency, we adop-

t a semantics matching term to regularize the generator as

follows:

ℓsemMat(θG) = E(z,ỹ)∼pg

[

− ỹ log p̄C(G(z, ỹ))
]

, (3)

where

p̄C(x) = avg-pool
(

pC1
(x), pC2

(x)
)

, (4)

and pC1
(·) (pC2

(·)) denotes the predicted class probability

distribution by classifier C1 (C2). The average pooling of

the classifier predictions can be expected to be more accu-

rate in most cases. After including the adversarial training

term with the discriminator, the optimization of the genera-

tor can be formulated as follows:

min
G

1

2
E(z,ỹ)∼pg

[

log(1−D(G(z, ỹ), ỹ))
]

+ ηℓfeaMat + νℓsemMat,

(5)

where the weighting factors η and ν are used for controlling

the relative importance of the corresponding terms.

3.2. Collaborative Learning of Classifiers

Different from the TripleGAN model, we include two

classifiers in our model, due to the reason that they can

provide the training targets of the unlabeled instances for

each other via collaborative learning. Existing works have

demonstrated that collaborative learning is capable of facil-

itating semi-supervised classification.

Similar to the given labeled instances, the synthesized

instances can also be utilized because of the known labels.

The classifier can be enhanced by including the instances

from the generator. The loss measure for supervised learn-

ing is the cross entropy between the given labels and the pre-

dicted distribution. Furthermore, the model can also learn

from the unlabeled samples by minimizing the conditional

entropy with respect to the posterior probability distribu-

tion. Therefore, we define the term for classification evalu-

ation as follows:

ℓclassify(θC1
) =E(x,y)∼pl

[

− y log pC1
(x)

]

+ E(z,ỹ)∼pg

[

− ỹ log pC1
(G(z, ỹ))

]

+ Ex∼pu

[

− pC1
(x) log pC1

(x)
]

.

(6)

The classifiers tend to be confident on the unlabeled sam-

ples. To stabilize the estimation of the conditional entropy,

a smoothness regularization term ℓsmoReg is defined as fol-

lows:

ℓsmoReg(θC1
) = Ex∼pu

[

max
‖γ‖≤ξ

KL
(

pC1
(x)‖pC1

(x+ γ)
)

]

,

(7)

where the constant ξ is used to control the intensity of

the adversarial perturbation γ, and KL(·‖·) denotes the

Kullback-Leibler (KL) divergence. Similar to [24], the per-

turbation is generated in the direction most sensitive to the

classifier prediction, and the KL divergence is used to mea-

sure the prediction difference with respect to the classifier

for cases with and without perturbation. As a result, the

output of the classifier will become smooth in the neighbor-

hood of unlabeled samples.
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Algorithm 1 The proposed EnhancedTGAN model for semi-supervised conditional instance synthesis and classification.

1: Input: Labeled data Xl and unlabeled data Xu.

2: Initialize: Generator G, discriminator D, classifiers C1 and C2, learning rate ζG, ζD and ζC , and batch size bl, bu and bg for labeled,

unlabeled and synthesized samples, respectively.

3: for n = 1 to N do

4: Sample labeled instances {(x, y)} of size bl from Xl, unlabeled instances {x} of size bu from Xu, and random vectors {(z, ỹ)} of

size bg from the uniform distribution.

5: for each mini-batch B do

6: Evaluate classifier predictions pθC1
and pθC2

for x, x and G(z, ỹ).
7: Compute the consensus results p̄C and the corresponding one-hot label ȳ for x.

8: Update the discriminator D by using Adam [9]

θD ← Adam

(

∇θD

(

∑

(x,y)

logD(x, y) +
1

2

∑

(z,ỹ)

log(1−D(G(z, ỹ), ỹ)) +
1

2

∑

(x,ȳ)

log(1−D(x, ȳ))

)

, θD, ζD

)

.

9: Update the classifiers C1 and C2 by using Adam

θC1
← Adam

(

∇θC1

(

1

2

∑

(x,ȳ)

p̄C(x) log(1−D(x, ȳ)) + ℓclassify + λℓsmoReg + µℓconReg

)

, θC1
, ζC

)

,

θC2
← Adam

(

∇θC2

(

1

2

∑

(x,ȳ)

p̄C(x) log(1−D(x, ȳ)) + ℓclassify + λℓsmoReg + µℓconReg

)

, θC2
, ζC

)

.

10: Update the generator G by using Adam

θG ← Adam

(

∇θG

(

1

2

∑

(z,ỹ)

log(1−D(G(z, ỹ), ỹ)) + ηℓfeaMat + νℓsemMat

)

, θG, ζG

)

.

11: end for

12: end for

13: Return θG, θD , θC1
and θC2

.

To encourage the classifiers to learn from each other,

we further define a consistency regularization term ℓconReg

by adopting the Jensen-Shannon (JS) divergence [33] DJS

to measure the similarity between the posterior probability

distributions of the two classifiers as follows:

ℓconReg(θC1
, θC2

) = Ex∼pu

[

DJS

(

pC1
(x), pC2

(x)
)]

+ E(z,ỹ)∼pg

[

DJS

(

pC1
(G(z, ỹ)), pC2

(G(z, ỹ))
)]

.
(8)

As a symmetrized and smoothed version of the KL diver-

gence, DJS is defined by

DJS

(

pC1
(x), pC2

(x)
)

=
1

2
KL

(

pC1
(x)‖p̄C(x)

)

+
1

2
KL

(

pC2
(x)‖p̄C(x)

)

,

(9)

In addition, DJS(pC1
(G(z, ỹ)), pC2

(G(z, ỹ))) has a similar

definition. Based on the definitions in Eq.(4) and Eqs.(8-9),

minimizing ℓconReg leads to the classifiers producing pre-

dictions consistent with the consensus result p̄C .

The classifiers attempt to produce the predicted data pair

(x, ȳ) for fooling the discriminator, where ȳ denotes the

one-hot label determined by p̄C(x). We need an adversari-

al training term for optimizing the classifiers, and the final

formulation can be expressed as follows:

min
C1,C2

1

2
Ex∼pu

[

p̄C(x) log(1−D(x, ȳ))
]

+ ℓclassify(θC1
) + λℓsmoReg(θC1

)

+ ℓclassify(θC2
) + λℓsmoReg(θC2

)

+ µℓconReg(θC1
, θC2

),

(10)

where λ and µ are the weighting factors for achieving a bal-

ance among the terms.

3.3. Adversarial Training

Since we follow the adversarial training scheme of the

TripleGAN model in general, the discriminator D learns

to distinguish the labeled data pair (x, y) from the synthe-

sized data pair (G(z), ỹ) and predicted data pair (x, ȳ). The

corresponding optimization formulation is presented as fol-

lows:

max
D

E(x,y)∼pl

[

logD(x, y)
]

+
1

2
E(z,ỹ)∼pg

[

log(1−D(G(z, ỹ), ỹ))
]

+
1

2
Ex∼pu

[

log(1−D(x, ȳ))
]

.

(11)

The discriminator competes with the generator and classi-

fiers in the minimax game. The generator attempts to syn-
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(a) TripleGAN∗ (b) EnhancedTGAN

Figure 3. Results on a toy examples for the baseline model and the

proposed model. Different colors denote different types of data

points: dark (labeled), cyan (unlabeled), and red/green (synthe-

sized). The solid lines denote the resulting decision boundaries.

thesize high-fidelity instances, and the classifiers try to pro-

duce more accurate predictions on the unlabeled instances.

When training the four modules jointly, collaborative learn-

ing between classifiers is able to provide more accurate

categorical information of unlabeled data, which is crucial

for the generator to learn the class-conditional distribution

of the real data. More synthesized instances with high-

fidelity can in turn be leveraged to improve classifier train-

ing, which lead to better decision boundaries and more ac-

curate guidance to the generator. Therefore, the proposed

EnhancedTGAN model is able to improve both instance

synthesis and classification in the semi-supervised setting.

The details of the corresponding optimization process are

summarized in Algorithm 1.

4. Experiments

In this section, we verify the effectiveness of the pro-

posed EnhancedTGAN model in semi-supervised instance

synthesis and classification on both synthetic and real ob-

ject recognition datasets. For a fair comparison with our

baseline model TripleGAN [17], we implement this model

in our configuration environment using the same setting as

our EnhancedTGAN, and the resulting model is referred to

as TripleGAN∗. We also compare EnhancedTGAN with the

state-of-the-art semi-supervised learning methods on multi-

ple widely used benchmarks, including MNIST [16], SVH-

N [25] and CIFAR-10 [13]. Furthermore, we test the pro-

posed model on FaceScrub [26] to investigate the quality

of the synthesized human face images. In all the experi-

ments, we perform labeled instance sampling 10 times, and

report the mean and standard deviation of the test error rates

for the classification task. In the class-conditional instance

synthesis task, we present the synthesized images in a way

that each group contains one image for each class and all of

them share the same random vector.

4.1. Synthetic dataset

To show the effectiveness of our proposed feature-

semantics matching approach, we compare TripleGAN∗

and EnhancedTGAN in terms of their capability to learn

the class-conditional data distributions of a toy example.

We adopt the ‘two moons’ synthetic dataset as shown in

Figure 3, in which there are two classes, and each of them

consists of 10 labeled data points and 1000 unlabeled da-

ta points. The generator, discriminator and classifiers are

multi-layer perceptrons with 2-3 hidden layers. The two

competing models share the same settings, but the proposed

model has one more classifier than TripleGAN∗. We train

each model until it converges. The synthesized data points

of TripleGAN∗ and EnhancedTGAN are shown in Figure

3(a) and (b), respectively. We use different colors (red and

green) to denote the two classes of the synthesized data

points. We can observe that the data points synthesized by

TripleGAN∗ only lie in a portion of the real data distribu-

tion, and our EnhancedTGAN correctly learns the real data

distributions. In addition, the decision boundary of the pro-

posed model aligns better than that of the baseline.

4.2. Benchmark datasets

We further compare EnhancedTGAN with state-or-the-

art semi-supervised deep learning models on the MNIST,

SVHN and CIFAR-10 benchmarks, which are widely used

for evaluation of classification and synthesis. According to

the common setting, we perform experiments for the cases

in which there are 100, 1000 and 4000 randomly selected

labeled instances for MNIST, SVHN and CIFAR-10, re-

spectively. The network architecture of the classifiers in

EnhancedTGAN is the same as that in the main competing

methods, such as TripleGAN and CT-GAN. The classifica-

tion results are presented in Table 1. The error rates of the

competing methods are taken from the existing literature,

except TripleGAN∗. TripleGAN∗ is a strong baseline, and

outperforms the original TripleGAN. In all the cases, the

proposed EnhancedTGAN achieves more accurate classifi-

cation results than TripleGAN∗. For CIFAR-10 with 4000

labels, EnhancedTGAN surpasses TripleGAN∗ by a large

margin, and significantly reduces the test error rate from

14.65% to 9.42%. Compared with other competing meth-

ods, the proposed EnhancedTGAN produces more accu-

rate or comparable classification results in all cases. Figure

4 shows the synthesized samples by our EnhancedTGAN

model for the three datasets. We also visualize the t-SNE

embedding [20] of the features associated with the last hid-

den layer of the classifier network in TripleGAN∗ and our

EnhancedTGAN model on CIFAR-10 with 4000 labels. As

shown in Figure 5, EnhancedTGAN performs better than

TripleGAN∗ in learning the class-conditional data distribu-

tions, since we can observe that the samples are strongly

clustered, and the distribution of the synthesized data can

match the distribution of the unlabeled data very well.
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Table 1. Comparison between our model and the competing methods on semi-supervised classification on the benchmark datasets.

Test error rate (%) with # labels

MNIST SVHN CIFAR-10

Method 100 labels All labels 1000 labels All labels 4000 labels All labels

LadderNetwork[30] 1.06±0.37 0.57±0.02 - - 20.40±0.47 -

SPCTN[40] 1.00±0.11 - 7.37±0.30 - 14.17±0.27 -

Π-model[15] 0.89±0.15 - 4.82±0.17 2.50±0.07 12.36±0.31 6.06±0.11

Temporal-Ensembling[15] - - 4.42±0.16 2.74±0.06 12.16±0.24 5.60±0.10

Mean-Teacher[36] - - 3.95±0.19 2.50±0.05 12.31±0.28 5.94±0.15

VAT[24] - - 3.74±0.09 2.69±0.04 11.96±0.10 5.65±0.17

VAdD[28] - - 4.16±0.08 2.31±0.01 11.68±0.19 5.27±0.10

VAdD+VAT[28] - - 3.55±0.05 2.23±0.03 10.07±0.11 4.40±0.12

SNTG+Π-model[19] 0.66±0.07 - 3.82±0.25 2.42±0.05 11.00±0.13 5.19±0.14

SNTG+VAT[19] - - 3.83±0.22 - 9.89±0.34 -

CatGAN[35] 1.39±0.28 - - - 19.58±0.58 -

Improved GAN[32] 0.93±0.07 - 8.11±1.30 - 18.63±2.32 -

ALI[5] - - 7.42±0.65 - 17.99±1.62 -

TripleGAN[17] 0.91±0.58 - 5.77±0.17 - 16.99±0.36 -

GoodBadGAN[4] 0.80±0.10 - 4.25±0.03 - 14.41±0.03 -

CT-GAN[38] 0.89±0.13 - - - 9.98±0.21 -

TripleGAN∗ 0.81±0.08 0.31±0.04 4.53±0.22 2.94±0.15 14.65±0.38 6.64±0.13

EnhancedTGAN 0.42±0.03 0.27±0.03 2.97±0.09 2.23±0.01 9.42±0.22 4.80±0.07

(a) MNIST (b) SVHN (c) CIFAR-10

Figure 4. Synthesized instances produced by the proposed EnhancedTGAN model for semi-supervised class-conditional object image

synthesis on MNIST with 100 labels, SVHN with 1000 labels and CIFAR-10 with 4000 labels. Each row has the same class label, and

each column is synthesized from the same random vector.

Table 2. Ablation study of the proposed model on CIFAR-10 with 4000

labels for investigating the influence of synthesized data, and consistency

and smoothness regularization in semi-supervised classification.

Test error rate (%) with # labels

Method 4000 labels

w/o GAN 11.92±0.19

w/o ℓconReg 11.47±0.13

w/o ℓsmoReg 12.03±0.29

EnhancedTGAN 9.42±0.22

4.3. Ablation study

We remove the feature-semantics matching terms from

the overall loss function of the generator on CIFAR-10 with

4000 labels, and show the classification accuracy on the

synthesized data during training in Figure 6. We can ob-

serve that the class-wise mean feature matching term is able

to boost the classification accuracy, which indicates that the

synthesized data can better match the statistics of the real

data. The semantics matching term can further improve the

training of the generator.

To investigate the effectiveness of our proposed improve-

ment strategies in semi-supervised classification, we per-

form an ablation study to compare the resulting models

when removing the corresponding modules on CIFAR-10

with 4000 labels as shown in Table 2. We first remove the

generator and the discriminator to evaluate the classifiers

with collaborative learning, and the test error rate rises to

11.92%, which indicates that the synthesized instances are

useful for improving classifier training. In addition, we re-

move the consistency and smoothness regularization terms

from the overall loss function of the classifiers to investigate

the influence of collaborative learning and the local Lips-

chitz condition, and a significant performance drop can be

observed in both cases. We consider that both synthesized

data and regularization are important for improving semi-
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(a) TripleGAN∗ (b) EnhancedTGAN

Figure 5. The t-SNE embedding of unlabeled training data and

synthesized data on CIFAR-10 with 4000 labels. The unlabeled

samples are marked gray, and different classes of synthesized sam-

ples are marked different colors.

Figure 6. Classification accuracy on synthesized data when remov-

ing the feature-semantics matching terms from the overall loss

function of the generator on CIFAR-10 with 4000 labels.

supervised classification.

4.4. Face synthesis

To further investigate the capability of the proposed

EnhancedTGAN model in performing difficult semi-

supervised instance synthesis, we conduct an experiment on

the FaceScrub dataset. Since the classes in this dataset con-

tain different numbers of human face images, we select the

100 largest classes in our experiment, and only 20 images

sampled randomly in each class are labeled. All the im-

ages are resized to 64 × 64, and thus we slightly modify

the network architectures used previously for this experi-

ment without significantly increasing the number of model

parameters. The synthesized human face images are shown

in Figure 7. For TripleGAN∗, we observe that the variation

within a class is relatively small, and the structures of the

human faces are lost in some images. On the other hand,

the synthesized images of our EnhancedTGAN look realis-

tic and preserve human identities. The corresponding clas-

sification results of TripleGAN∗ and EnhancedTGAN are

shown in Table 3.

(a) TripleGAN∗ (b) EnhancedTGAN

Figure 7. Synthesized instances produced by the TripleGAN∗ and

EnhancedTGAN models for semi-supervised class-conditional hu-

man face image synthesis on FaceScrub with 2000 labels. Each

row has the same class label, and each column is synthesized from

the same random vector.

Table 3. Comparison between the baseline model and the proposed model

on semi-supervised classification on FaceScrub-100.

Test error rate (%) with # labels

Method 2000 labels All labels

TripleGAN∗ 18.23±0.56 5.43±0.41

EnhancedTGAN 16.08±0.24 4.29±0.20

5. Conclusion

In this paper, we propose an enhanced TripleGAN mod-

el for improving both semi-supervised conditional instance

synthesis and classification. Toward this end, we adop-

t feature-semantics matching to force the generator to ef-

fectively learn the class-conditional data distributions, such

that the synthesized instances with high-fidelity can be used

for training better classifiers. On the other hand, we col-

laboratively train two classifiers, which can provide more

accurate guidance for the generator. The experiment results

demonstrate that the proposed model outperforms the origi-

nal TripleGAN and achieves new state-of-the-art results on

multiple benchmark datasets.
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