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Abstract

Modern machine learning suffers from catastrophic for-

getting when learning new classes incrementally. The per-

formance dramatically degrades due to the missing data of

old classes. Incremental learning methods have been pro-

posed to retain the knowledge acquired from the old classes,

by using knowledge distilling and keeping a few exemplars

from the old classes. However, these methods struggle to

scale up to a large number of classes. We believe this is

because of the combination of two factors: (a) the data im-

balance between the old and new classes, and (b) the in-

creasing number of visually similar classes. Distinguishing

between an increasing number of visually similar classes is

particularly challenging, when the training data is unbal-

anced. We propose a simple and effective method to address

this data imbalance issue. We found that the last fully con-

nected layer has a strong bias towards the new classes, and

this bias can be corrected by a linear model. With two bias

parameters, our method performs remarkably well on two

large datasets: ImageNet (1000 classes) and MS-Celeb-

1M (10000 classes), outperforming the state-of-the-art al-

gorithms by 11.1% and 13.2% respectively.

1. Introduction

Natural learning systems are inherently incremental

where new knowledge is continuously learned over time

while existing knowledge is maintained [19, 13]. Many

computer vision applications in the real world require in-

cremental learning capabilities. For example, a face recog-

nition system should be able to add new persons with-

out forgetting the faces already learned. However, most

deep learning approaches suffer from catastrophic forget-

ting [15] - a significant performance degradation, when the

past data are not available.

The missing data for old classes introduce two chal-

lenges - (a) maintaining the classification performance on

old classes, and (b) balancing between old classes and new
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Figure 1. Performance degradation of incremental learning algo-

rithms on ImageNet-100 (100 classes) and ImageNet-1000 (1000

classes). Each dataset has 10 incremental steps. The degradation is

the gap between the accuracy of the final incremental step and the

accuracy of a non-incremental classifier, which is trained using all

data. When the scale goes up (from ImageNet-100 to ImageNet-

1000), the degradation for the state-of-the-art algorithms (iCaRL

[19] and EEIL [2]) increases. The degradation for our BiC method

is small for both scales. Although iCaRL has similar relative de-

gratation with our method (increase by 50% from ImageNet-100

to ImageNet-1000), it performs poorly across the scales.

classes. Distillation [13, 19, 2] has been used to effectively

address the former challenge. Recent studies [19, 2] also

show that selecting a few exemplars from the old classes can

alleviate the imbalance problem. These methods perform

well on small datasets. However, they suffer from a signif-

icant performance degradation when the number of classes

becomes large (e.g. thousands of classes). Fig. 1 demon-

strates the performance degradation of these state-of-the-art

algorithms, using a non-incremental classifier as the refer-

ence. When the number of classes increases from 100 to

1000, both iCaRL [19] and EEIL[2] have more degradation.

Why is it more challenging to handle a large number of

classes for incremental learning? We believe this is due to

the coupling of two factors. First, the training data are un-

balanced. Secondly, as the number of classes increases, it

is more likely to have visually similar classes (e.g. multi-

ple dog classes in ImageNet) across different incremental

steps. Under the incremental constraint with data imbal-
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Figure 2. Overview of our BiC method. The exemplars from the

old classes and the samples of the new classes are split into training

and validation sets. The training set is used to train the convolution

layers and FC layer (in stage 1). The validation set is used for bias

correction (in stage 2).

ance, the increasing number of visually similar classes is

particularly challenging since the small margin around the

boundary between classes is too sensitive to the data imbal-

ance. The boundary is pushed to favor classes with more

samples.

In this work, we present a method to address the data im-

balance problem in large scale incremental learning. Firstly,

we found a strong bias towards the new classes in the clas-

sifier layer (i.e. the last fully connected layer) of the con-

volution neural network (CNN). Based upon this finding,

we propose a simple and effective method, called BiC (bias

correction), to correct the bias. We add a bias correction

layer after the last fully connected (FC) layer (shown in

Fig. 2), which is a simple linear model with two param-

eters. The bias correction layer is learned at the second

stage, after learning the convolution layers and FC layer at

the first stage. The data, including exemplars from the old

classes and samples from the new classes, are split into a

training set for the first stage and a validation set for the

second stage. The validation set is helpful to approximate

the real distribution of both old and new classes in the fea-

ture space, allowing us to estimate the bias in FC layer. We

found that the bias can be effectively corrected with a small

validation set.

Our BiC method achieves remarkably good perfor-

mance, especially on large scale datasets. The experimental

results show that our method outperforms state-of-the-art

algorithms (iCaRL[19] and EEIL [2]) on two large datasets

(ImageNet ILSVRC 2012 and MS-Celeb-1M) by a large

margin. Our BiC method gains 11.1% on ImageNet and

13.2% on MS-Celeb-1M, respectively.

2. Related Work

Incremental learning has been a long standing problem

in machine learning [3, 17, 16, 12]. Before the deep learn-

ing took off, people had been developing incremental learn-

ing techniques by leveraging linear classifiers, ensemble of

weak classifiers, nearest neighbor classifiers, etc. Recently,

thanks to the exciting progress in deep learning, there has

been a lot of research on incremental learning with deep

neural network models. The work can be roughly divided

into three categories depending on whether they require real

data or synthetic data or nothing from the old classes.

Without using old data: Methods in the first category

do not require any old data. [9] presented a method for

domain transfer learning. They try to maintain the perfor-

mance on old tasks by freezing the final layer and discour-

aging the change of shared weights in feature extraction lay-

ers. [10] proposed a technique to remember old tasks by

constraining the important weights when optimizing a new

task. One limitation of this approach is that the old and new

tasks may conflict on these important weights. [13] pre-

sented a method that applies knowledge distillation [8] to

maintain the performance on old tasks. [13] separated the

old and new tasks in multi-task learning, which is different

from learning classifier incrementally. [23] applied knowl-

edge distillation for learning object detectors incrementally.

[18] utilized autoencoder to retain the knowledge from old

tasks. [25, 26] updated knowledge dictionary for new tasks

and kept dictionary coefficients for old tasks.

Using synthetic data: Both [22] and [27] employed

GAN [4] to replay synthetic data for old tasks. [22] applied

cross entropy loss on synthesis data with the old solver’s

response as the target. [27] utilized a root mean-squared er-

ror for learning the response of old tasks on synthetic data.

[22, 27] highly depends on the capability of generative mod-

els and struggles with complex objects and scenes.

Using exemplars from old data: Methods in the third

category require part of the old data. [19] proposed a

method to select a small number of exemplars from each

old class. [2] keeps classifiers for all incremental steps

and used them as distillation. It introduces balanced fine-

tuning and temporary distillation to alleviate the imbalance

between the old and new classes. [14] proposed a continu-

ous learning framework where the training samples for dif-

ferent tasks are used one by one during training. It con-

strains the cross entropy loss on softmax outputs of old tasks

when the new task comes. [28] proposed a training method

that grows a network hierarchically as new training data are

added. Similarly, [21] increases the number of layers in the

network to handle new coming data.

Our BiC method belongs to the third category, we keep

exemplars from the old classes in the similar manner to [19,

2]. However, we handle the data imbalance differently. We

first locate a strong bias in the classifier layer (the last fully

connected layer), and then apply a linear model to correct

the bias using a small validation set. The validation set is a

small subset of exemplars which is excluded from training

and used for bias correction alone. Compared with the state

of the art ([19, 2]), our BiC method is more effective on

large datasets with 1000+ classes.
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Figure 3. Diagram of the baseline solution using distillation. It

contains two losses: the distilling loss on old classes and the soft-

max cross-entropy loss on all old and new classes.

3. Baseline: Incremental Learning using

Knowledge Distillation

In this section, we introduce a baseline solution for in-

cremental learning using knowledge distillation [13]. This

is corresponding to the first stage in Fig. 2. For an incre-

mental step with n old class and m new classes, we learn

a new model to perform classification on n + m classes,

by using the knowledge distillation from an old model that

classifies the old n classes (illustrated in Fig. 3). The new

model is learned by using a distilling loss and a classifica-

tion loss.

Let us denote the samples of the new classes as Xm =
{(xi, yi), 1 ≤ i ≤ M,yi ∈ [n+ 1, .., n+m]}, where M is

the number of new samples, xi and yi are the image and the

label, respectively. The selected exemplars from the old n
classes are denoted as X̂n = {(x̂j , ŷj), 1 ≤ j ≤ Ns, ŷj ∈
[1, .., n]}, where Ns is the number of selected old images

(Ns/n ≪ M/m). Let us also denote the output logits of

the old and new classifiers as ô
n(x) = [ô1(x), ..., ôn(x)]

and o
n+m(x) = [o1(x), ..., on(x), on+1(x), ..., on+m(x)]

respectively. The distilling loss is formulated as follows:

Ld =
∑

x∈X̂n∪Xm

n
∑

k=1

−π̂k(x) log[πk(x)], (1)

π̂k(x) =
eôk(x)/T

∑n
j=1 e

ôj(x)/T
, πk(x) =

eok(x)/T
∑n

j=1 e
oj(x)/T

,

where T is the temperature scalar. The distilling loss is

computed for all samples from the new classes and exem-

plars from the old classes (i.e. X̂n ∪Xm).

We use the softmax cross entropy as the classification

loss, which is computed as follows:

Lc =
∑

(x,y)∈X̂n∪Xm

n+m
∑

k=1

−δy=k log[pk(x)], (2)

where δy=k is the indicator function and pk(x) is the output

probability (i.e. softmax of logits) of the k-th class in n+m
old and new classes.

(a) (b)

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

1

Predict classes

T
ru

e
 c

la
s
s
e
s

0 20 40 60 80 100
Number of classes

0

20

40

60

80

100

A
c
c
u

ra
c
y
(%

)

Classifier without bias removal
Our method: remove bias in the last FC layer
Retrain the last FC layer using all data
Train all layers using all data

Figure 4. Experimental results on CIFAR-100 with split of 20

classes to validate the bias in the last FC layer. (a) classification

accuracy curves for baseline, our bias correction (BiC), retraining

FC layer using all data, and training the whole network using all

data (from bottom to top). (b) confusion matrix of the incremen-

tal classifier from 80 classes to 100 classes without bias removal.

(Best viewed in color)

The overall loss combines the distilling loss and the clas-

sification loss as follows:

L = λLd + (1− λ)Lc, (3)

where the scalar λ is used to balance between the two terms.

The scalar λ is set to n
n+m , where n and m are the number

of old and new classes. λ is 0 for the first batch since all

classes are new. For the extreme case where n ≫ m, λ
is nearly 1, indicating the importance to maintain the old

classes.

4. Diagnosis: FC Layer is Biased

The baseline model has a bias towards the new classes,

due to the imbalance between the number of samples from

the new classes and the number of exemplars from the old

classes. We have a hypothesis that the last fully connected

layer is biased as the weights are not shared across classes.

To validate this hypothesis, we design an experiment on

CIFAR-100 dataset with five incremental batches (each has

20 classes).

First, we train a set of incremental classifiers using the

baseline method. The classification accuracy quickly drops

as more incremental steps arrive (shown as the bottom curve

in Fig. 4-(a)). For the last incremental step (class 81-100),

we observe a strong bias towards the newest 20 classes in

the confusion matrix (Fig. 4-(b)). Compared to the upper

bound, i.e. the classifiers learned using all training data (the

top curve in Fig. 4-(a)), the baseline model has a perfor-

mance degradation.

Then, we conduct another experiment to evaluate if the

fully connected layer is heavily biased. This experiment

has two steps for each incremental batch: (a) applying the

baseline model to learn both the feature and fully connected

layers, (b) freezing the feature layers and retrain the fully

connected layer alone using all training samples from both

old and new classes. Compared to the baseline, the accu-

racy improves (the second top curve in Fig. 4-(a)). The
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Figure 5. Diagram of bias correction. Since the number of ex-

emplars from old classes is small, they have narrow distributions

on the feature space. This causes the learned classifier to prefer

new classes. Validation samples, not involved in training feature

representation, may better reflect the unbiased distribution of both

old and new classes in the feature space. Thus, we can use the

validation samples to correct the bias. (Best viewed in color)

accuracy on the final classifier on 100 classes improves by

20%. These results validate our hypothesis that the fully

connected layer is heavily biased. We also observe the gap

between this result and the upper bound, which reflects the

bias within the feature layers. In this paper, we focus on

correcting the bias in the fully connected layer.

5. Bias Correction (BiC) Method

Based upon our finding that the fully connected layer is

heavily biased, we propose a simple and effective bias cor-

rection method (BiC). Our method includes two stages in

training (shown in Fig. 2). Firstly, we train the convolution

layers and the fully connected layer by following the base-

line method. At the second stage, we freeze both the con-

volution and the fully connected layers, and estimate two

bias parameters by using a small validation set. In this sec-

tion, we discuss how the validation set is generated and the

details of the bias correction layer.

5.1. Validation Set

We estimate the bias by using a small validation set. The

basic idea is to exclude the validation set from training the

feature representation, allowing them to reflect the unbiased

distribution of both old and new classes on the feature space

(shown in Fig. 5). Therefore, we split the exemplars from

the old classes and the samples from the new classes into

a training set and a validation set. The training set is used

to learn the convolution and fully connected layers (see Fig.

2), while the validation set is used for the bias correction.

Fig. 2 illustrates the generation of the validation set. The

stored exemplars from the old classes are split into a train-

ing subset (referred to trainold) and a validation subset (re-

ferred to valold). The samples for the new classes are also

split into a training subset (referred to trainnew) and a val-

idation subset (referred to valnew). trainold and trainnew

are used to learn the convolution and FC layers (see Fig.

2). valold and valnew are used to estimate the parameters

in the bias correction layer. Note that valold and valnew are

balanced.

5.2. Bias Correction Layer

The bias correction layer should be simple with a small

number of parameters, since valold and valnew have small

size. Thus, we use a linear model (with two parameters) to

correct the bias. This is achieved by adding a bias correction

layer in the network (shown in Fig. 2). We keep the output

logits for the old classes (1, . . . , n) and apply a linear model

to correct the bias on the output logits for the new classes

(n+ 1, . . . , n+m) as follows:

qk =

{

ok 1 ≤ k ≤ n

αok + β n+ 1 ≤ k ≤ n+m
, (4)

where α and β are the bias parameters on the new classes

and ok (defined in Section 3) is the output logits for the k-th

class. Note that the bias parameters (α, β) are shared by all

new classes, allowing us to estimate them with a small val-

idation set. When optimizing the bias parameters, the con-

volution and fully connected layers are frozen. The classifi-

cation loss (softmax with cross entropy) is used to optimize

the bias parameters as follows:

Lb =−

n+m
∑

k=1

δy=k log[softmax(qk)]. (5)

We found that this simple linear model is effective to correct

the bias introduced in the fully connected layer.

6. Experiments

We compare our BiC method to the state-of-the-art meth-

ods on two large datasets (ImageNet ILSVRC 2012 [20]

and MS-Celeb-1M [6]), and one small dataset (CIFAR-100

[11]). We also perform ablation experiments to analyze dif-

ferent components of our approach.

6.1. Datasets

We use all data in CIFAR-100 and ImageNet ILSVRC

2012 (referred to ImageNet-1000), and randomly choose

10000 classes in MS-Celeb-1M (referred to Celeb-10000).

We follow iCaRL benchmark protocol [19] to select exem-

plars. The total number of exemplars for the old classes are

fixed. The details of these three datasets are as follows:

CIFAR-100: contains 60k 32× 32 RGB images of 100 ob-

ject classes. Each class has 500 training images and 100

testing images. 100 classes are split into 5, 10, 20 and 50

incremental batches. 2,000 samples are stored as exemplars.

ImageNet-1000: includes 1,281,167 images for training

and 50,000 images for validation. 1000 classes are split into

10 incremental batches. 20,000 samples are stored as exem-

plars.
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Celeb-10000: a random subset of 10,000 classes are se-

lected from MS-Celeb-1M-base [5] face dataset which has

20,000 classes. MS-Celeb-1M-base is a smaller yet nearly

noise-free version of MS-Celeb-1M [6], which has near

100,000 classes with a total of 1.2 million aligned face im-

ages. For the randomly selected 10,000 classes, there are

293,052 images for training and 141,984 images for vali-

dation. 10000 classes are split into 10 incremental batches

(1000 classes per batch). 50,000 samples are stored as ex-

emplars.

For our BiC method, the ratio of train/validation split on

the exemplars is 9:1 for CIFAR-100 and ImageNet-1000.

This ratio is obtained from the ablation study (see Section

6.6). We change the split ratio to 4:1 on Celeb-10000, al-

lowing at least one validation image kept per person.

6.2. Implementation Details

Our implementation uses TensorFlow [1]. We use an 18-

layer ResNet [7] for ImageNet-1000 and Celeb-10000 and

use a 32-layer ResNet for CIFAR-100. The ResNet imple-

mentation is from TensorFlow official models1. The train-

ing details for each dataset are listed as follows:

ImageNet-1000 and Celeb-10000: Each incremental train-

ing has 100 epochs. The learning rate is set to 0.1 and re-

duces to 1/10 of the previous learning rate after 30, 60, 80

and 90 epochs. The weight decay is set to 0.0001 and the

batch size is 256. Image pre-processing follows the VGG

pre-processing steps [24], including random cropping, hor-

izontal flip and aspect preserving resizing and mean sub-

traction.

CIFAR-100: Each incremental training has 250 epochs.

The learning rate starts from 0.1 initially and reduces to

0.01, 0.001 and 0.0001 after 100, 150 and 200 epochs, re-

spectively. The weight decay is set to 0.0002 and the batch

size is 128. Random cropping and horizontal flip is adapted

for data augmentation following the original ResNet imple-

mentation [7].

For a fair comparison with iCaRL [19] and EEIL [2],

we use the same networks, keep the same number of ex-

emplars and follow the same protocols of splitting classes

into incremental batches. We use the identical class or-

der generated from iCaRL implementation2 for CIFAR-100

and ImageNet-1000. On Celeb-10000, the class order is

randomly generated and identical for all comparisons. The

temperature scalar T in Eq. 1 is set to 2 by following [13, 2].

6.3. Comparison on Large Datasets

In this section, we compare our BiC method with the

state-of-the-art methods on two large datasets (ImageNet-

1000 and Celeb-10000). The state-of-the-art methods in-

clude LwF [13], iCaRL[19] and EEIL [2]. All of them

1https://github.com/tensorflow/models/tree/

master/official/resnet
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Figure 6. Incremental learning results (accuracy %) on (a)

ImageNet-1000 and (b) Celeb-10000. Both datasets have ten in-

cremental batches. The Upper Bound result, shown in the last

step, is obtained by training a non-incremental model using all

training samples from all classes. (Best viewed in color)

utilize knowledge distillation to prevent catastrophic forget-

ting. iCaRL and EEIL keep exemplars for old classes, while

LwF does not use any old data.

The incremental learning results on ImageNet-1000 are

shown in Table 1 and Figure 6-(a). Our BiC method out-

performs both EEIL [2] and iCaRL [19] by a large mar-

gin. BiC has a small gain for the first couple of incremental

batches compared with iCaRL and is worse than EEIL in the

first two increments. However, the gain of BiC increases as

more incremental batches arrive. Regarding the final incre-

mental classifier on all classes, our BiC method outperforms

EEIL [2] and iCaRL [19] by 18.5% and 26.5% respectively.

On average over 10 incremental batches, BiC outperforms

EEIL [2] and iCaRL [19] by 11.1% and 19.7% respectively.

Note that the data imbalance increases as more incre-

mental steps arrive. The reason is that the number of ex-

emplars per old class decreases as the incremental step in-

creases, since the total number of exemplars is fixed (by

following the fix memory protocol in EEIL [2] and iCaRL

[19]). The gap between our BiC method and other meth-

ods becomes wider as the incremental step increases with

more data imbalance. This demonstrates the advantage of

our BiC method.

We also observe that EEIL performs better for the sec-

ond batch (even higher than the first batch) on ImageNet-

1000. This is mostly due to the enhanced data augmentation

(EDA) in EEIL that is more effective for the first couple of

incremental batches when data imbalance is mild. EDA in-

cludes random brightness shift, contrast normalization, ran-

dom cropping and horizontal flipping. In contrast, BiC only

applies random cropping and horizontal flipping. EEIL [2]

shows that EDA is effective for early incremental batches

when data imbalance is not severe. Even without the en-

hanced data augmentation, our BiC still outperforms EEIL

by a large margin on ImageNet-1000 starting from the third

batch.

The incremental learning results on Celeb-10000 are

shown in Table 2 and Figure 6-(b). To the best of our knowl-
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100 200 300 400 500 600 700 800 900 1000

LwF [13] 90.0 77.0 68.0 59.5 52.5 49.5 46.5 43.0 40.5 39.0

iCaRL [19] 90.0 83.0 77.5 70.5 63.0 57.5 53.5 50.0 48.0 44.0

EEIL [2] 95.0 95.5 86.0 77.5 71.0 68.0 62.0 59.8 55.0 52.0

BiC(Ours) 94.1 92.5 89.6 89.1 85.7 83.2 80.2 77.5 75.0 73.2

Table 1. Incremental learning results (accuracy %) on ImageNet-1000 dataset with an increment of 100 classes. LwF [13] does not use any

exemplars from the old classes. iCaRL [19], EEIL [2] and our BiC method use the same amount of exemplars from the old classes. Note

that the numbers for LwF, iCaRL and EEIL on ImageNet-1000 are estimated from the figures in the original papers. The best results are

marked in bold.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iCaRL [19] 94.31 94.26 91.09 86.88 81.06 77.45 75.29 71.34 68.78 65.56

BiC(Ours) 95.90 96.65 96.68 96.16 95.43 94.45 93.35 91.90 90.18 87.98

Table 2. Incremental learning results (accuracy %) on Celeb-10000 dataset with an increment of 1000 classes. iCaRL [19] and our BiC

method use the same amount of exemplars from the old classes. The best results are marked in bold.

edge, we have not seen any incremental learning method

reporting results on 10,000 or more classes. The results for

iCaRL is generated by applying its github implementation2

on Celeb-10000 dataset. For the first couple of incremental

steps, our BiC method is slightly better than (< 3%) iCaRL.

But since the third incremental step, the gap becomes wider.

At the last incremental step, BiC outperforms iCaRL by

22.4%. The average gain over 10 incremental batches is

13.2%.

These results demonstrate our BiC method is more effec-

tive and robust to deal with a large number of classes. As

the number of classes increases, it is more frequent to have

visually similar classes across different increment batches

with unbalanced data. This introduces a strong bias towards

new classes and misclassifies the old classes that are visu-

ally similar. Our BiC method is able to effectively reduce

this bias and improve the classification accuracy.

6.4. Comparison between Different Scales

In this section, we compare our BiC method with the

state-of-the-art on two different scales on ImageNet. The

small scale deals with random selected 100 classes (referred

to ImageNet-100), while the large scale involves all 1000

classes (referred to ImageNet-1000). Both scales have 10

incremental batches. This follows the same protocol with

EEIL [2] and iCaRL [19]. The results for ImageNet-1000 is

the same as in the previous section.

The incremental learning results on Imagenet-100 and

ImageNet-1000 are shown in Fig. 7. Our BiC method

outperforms the state-of-the-art for both scales in terms of

the final incremental accuracy and the average incremen-

tal accuracy. But the gain for the large scale is bigger.

We also compare the final incremental accuracy (the last

step) to the upper bound, which is obtained by training

a non-incremental model using all classes and their train-

2https://github.com/srebuffi/iCaRL
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Figure 7. Incremental learning results (accuracy %) on ImageNet-

100 and ImageNet-1000. Both have ten incremental batches. The

Upper Bound result, shown in the last step, is obtained by train-

ing a non-incremental model using all training samples from all

classes. (Best viewed in color)

ing data (shown at the last step in Fig. 7). Compared

to the upper bound, our BiC method degrades 10.5% and

16.0% on ImageNet-100 and ImageNet-1000 respectively.

However, EEIL [2] degrades 15.1% and 37.2% and iCaRL

[19] degrades 31.1% and 45.2%. Compared with EEIL [2]

and iCaRL [19], which have more performance degradation

from the small scale to large scale, our BiC method is much

more consistent. This demonstrates that BiC has better ca-

pability to handle the large scale.

We are aware that BiC is behind EEIL [2] for the first

three incremental batches on ImageNet-100. As explained

in Section 6.3, this is mostly due to enhanced data argumen-

tation (EDA) in EEIL [2].

6.5. Comparison on a Small Dataset

We also compare our BiC method with the state-of-the-

art algorithms on a small dataset - CIFAR-100 [11]. The in-

cremental learning results with four different splits of 5, 10,

20 and 50 classes are shown in Fig. 8. Our BiC method has

similar performance with iCaRL [19] and EEIL [2]. BiC is

better on the split of 50 and 20 classes, but is slightly behind

EEIL on the split of 10 and 5 classes. The margins are small
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Figure 8. Incremental learning results on CIFAR-100 with split of (a) 5 classes, (b) 10 classes, (c) 20 classes and (d) 50 classes. The Upper

Bound result, shown in the last step, is obtained by training a non-incremental model using all training samples for all classes. (Best

viewed in color)

for all splits.

Although our method focuses on the large scale incre-

mental learning, it is also compelling on the small scale.

Note that EEIL has more data augmentation such as bright-

ness augmentation and contrast normalization, which are

not utilized in LwF, iCaRL or BiC.

6.6. Ablation Study

We now analyze the components of our BiC method

and demonstrate their impact. The ablation study is per-

formed on CIFAR-100 [11], as incremental learning on

large dataset is time consuming. The ablation study is per-

formed on CIFAR-100 with an incremental of 20 classes.

The size of the stored exemplars from old classes is 2,000.

In the following ablation study, we analyze (a) the impact

of bias correction, (b) the split of validation set, and (c) the

sensitivity of exemplar selection.

The Impact of Bias Correction We compare our BiC

method with two variations of baselines and the upper

bound, to analyze the impact of bias correction. The

baselines and the upper bound are explained as follows:

baseline-1: the model is trained using the classification

loss alone (Eq. 2).

baseline-2: the model is trained using both the distilling

loss and the classification loss (Eq. 3). Compared to the

baseline-1, the distilling loss is added.

BiC: the model is trained using both the distilling loss and

the classification loss, with the bias correction.

upper bound: the model is firstly trained using both the

distilling loss and classification loss. Then, the feature

layers are frozen and the classifier layer (i.e. the fully

connected layer) is retrained using all training data (includ-

ing the samples from the old classes that are not stored).

Although it is infeasible to have all training samples from

the old classes, it shows the upper bound for the bias

correction in the fully connected layer.

The incremental learning results are shown in Table 3.

With the help of the knowledge distillation, baseline-2 is

slightly better than baseline-1 since it retains the classifica-

tion capability on the old classes. However, both baseline-1

and baseline-2 have low accuracy on the final step to clas-

sify all 100 classes (about 40%). This is mainly because of

the data imbalance between the old and new classes. When

using the bias correction, BiC improves the accuracy on all

incremental steps. The classification accuracy on the final

step (100 classes) is boosted from 40.34% to 56.69%. This

demonstrates that the bias is a big issue and our method is

effective to address it. Furthermore, our method is close to

the upper bound. The small gap (4.24%) from our approach

56.69% to the upper bound 60.93% shows the superiority

of our method.

The confusion matrices of these four variations are

shown in Fig. 9. Clearly, baseline-1 and baseline-2 suffer

from the bias towards the new classes (strong confusions on

the last 20 classes). BiC reduces the bias and has similar

confusion matrix to the upper bound.

These results validate our hypothesis that there exists a

strong bias towards the new classes in the last fully con-

nected layer. In addition, the results demonstrate that the

proposed bias correction using a linear model on a small

validation set is capable to correct the bias.

The Split of Validation Set We study the impact of dif-

ferent splits of the validation set (see Section 5.1). As illus-

trated in Fig. 2, our BiC splits the stored exemplars from

the old classes into a training set (trainold) and a valida-

tion set (valold). The samples from the new classes also

have a train/val split (trainnew and valnew). trainold and

trainnew are used to learn the convolution layers and the

fully connected layer, while valold and valnew are used to

learn the bias correction layer. Note that valold and valnew
are balanced, having the same number of samples per class.

Since only a few exemplars (i.e. trainold

⋃

valold) are

stored for the old classes, it is critical to find a good split

that deals with the trade-off between training the feature

representation and correcting the bias in the fully connected

layer.

Table 4 shows the incremental learning results for four

different splits of trainold : valold. The split of 9:1 has the

best classification accuracy for all four incremental steps.
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Variations cls loss distilling loss bias removal FC retrain 20 40 60 80 100

baseline-1 X 84.40 68.30 55.10 48.52 39.83

baseline-2 X X 85.05 72.22 59.41 50.43 40.34

BiC(Ours) X X X 84.00 74.69 67.93 61.25 56.69

upper bound X X X 84.39 76.15 69.51 64.03 60.93

Table 3. Incremental learning results on CIFAR-100 with a batch of 20 classes. baseline-1 uses the classification loss alone. baseline-2

uses both the distilling loss and the classification loss. BiC corrects the bias in FC layer of baseline-2. Upper bound retrains the last FC

layer using all samples from both old and new classes after learning the model of baseline-2. The best results are marked in bold.
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Figure 9. Confusion matrices of four different variations: (a) baseline-1 (b) baseline-2, (c) BiC, (d) upper bound. Both baseline-1 and

baseline-2 have strong bias towards new classes. BiC is capable to remove most of the bias and have similar confusion matrix with the

upper bound. (Best viewed in color)

trainold:valold 20 40 60 80 100

9:1 84.00 74.69 67.93 61.25 56.69

8:2 84.50 73.19 65.01 58.68 54.31

7:3 84.70 71.60 63.68 58.12 53.74

6:4 83.33 68.84 62.21 56.00 51.17

Table 4. Incremental learning results on CIFAR-100 with a batch

of 20 classes for different training/validation split on exemplars

from old classes. The training set is used to learn the feature and

classifier layers, and the validation set is used to learn the bias

correction layer. The best results are marked in bold.

The column 20 refers to learning a classifier for the first 20

classes, without incremental learning. As the portion for the

validation set increases, the performance drops consistently

due to the lack of exemplars (from the old classes) to train

the feature layers. A small validation set ( 1
10 of exemplars)

is good enough to estimate the bias parameters (α and β
in Eq. 4). In this paper, we use split 9:1 for all other ex-

periments except Celeb-10000. The split 4:1 is adopted in

Celeb-10000, as each old class only has 5 exemplars for the

last incremental step.

The Sensitivity of Exemplar Selection We also study

the impact of different exemplar management strategies.

We compare two strategies: (a) random selection, and

(b) the exemplar management strategy proposed by iCaRL

[19]. iCaRL maintains the samples that closed to the class

center in the feature space. Both strategies store 2,000 ex-

emplars from old classes. The incremental learning results

are shown in Table 5. iCaRL exemplar management strat-

egy performs slightly better than the random selection. The

20 40 60 80 100

random 85.20 74.59 66.76 60.14 55.55

iCaRL [19] 84.00 74.69 67.93 61.25 56.69

Table 5. Incremental learning results on CIFAR-100 with a batch

of 20 classes for different exemplar management strategies. The

best results are marked in bold.

gap is about 1%. This demonstrates that our method is not

sensitive to the exemplar selection.

7. Conclusions

In this paper, we proposed a new method to address the

imbalance issue in incremental learning, which is critical

when the number of classes becomes large. Firstly, we

validated our hypothesis that the classifier layer (the last

fully connected layer) has a strong bias towards the new

classes, which has substantially more training data than the

old classes. Secondly, we found that this bias can be ef-

fectively corrected by applying a linear model with a small

validation set. Our method has excellent results on two

large datasets with 1,000+ classes (ImageNet ILSVRC 2012

and MS-Celeb-1M), outperforming the state-of-the-art by

a large margin (11.1% on ImageNet ILSVRC 2012 and

13.2% on MS-Celeb-1M).
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