
P3SGD: Patient Privacy Preserving SGD

for Regularizing Deep CNNs in Pathological Image Classification

Bingzhe Wu1∗ Shiwan Zhao2 Guangyu Sun1 Xiaolu Zhang3

Zhong Su2 Caihong Zeng4 Zhihong Liu4

1Peking University 2IBM Research 3Ant Financial Service Group

{wubingzhe,gsun}@pku.edu.cn, {zhaosw,suzhong}@cn.ibm.com, yueyin.zxl@antfin.com

4National Clinical Research Center of Kidney Diseases, Jinling Hospital

zengch nj@hotmail.com, liuzhihong@nju.edu.cn

Abstract

Recently, deep convolutional neural networks (CNNs)

have achieved great success in pathological image classi-

fication. However, due to the limited number of labeled

pathological images, there are still two challenges to be ad-

dressed: (1) overfitting: the performance of a CNN model

is undermined by the overfitting due to its huge amounts of

parameters and the insufficiency of labeled training data.

(2) privacy leakage: the model trained using a conventional

method may involuntarily reveal the private information of

the patients in the training dataset. The smaller the dataset,

the worse the privacy leakage.

To tackle the above two challenges, we introduce a

novel stochastic gradient descent (SGD) scheme, named pa-

tient privacy preserving SGD (P3SGD), which performs the

model update of the SGD in the patient level via a large-step

update built upon each patient’s data. Specifically, to pro-

tect privacy and regularize the CNN model, we propose to

inject the well-designed noise into the updates. Moreover,

we equip our P3SGD with an elaborated strategy to adap-

tively control the scale of the injected noise. To validate

the effectiveness of P3SGD, we perform extensive experi-

ments on a real-world clinical dataset and quantitatively

demonstrate the superior ability of P3SGD in reducing the

risk of overfitting. We also provide a rigorous analysis of

the privacy cost under differential privacy. Additionally, we

find that the models trained with P3SGD are resistant to the

model-inversion attack compared with those trained using

non-private SGD.

1. Introduction

In recent years, deep CNNs have emerged as powerful

tools for various pathological image analysis tasks, such as

∗Work performed while interning at IBM Research - China.

(b) SGD (c) P3SGD(a) Original

Figure 1. Illustration of the model-inversion attack on ResNet-

18. (a) is the original image patch. (b) and (c) are the images

reconstructed from the model trained with non-private SGD and

P3SGD.

tissue classification [30, 10], lesion detection [17, 22], nu-

clei segmentation [38, 50, 26], etc. The superior perfor-

mance of deep CNNs usually relies on large amounts of la-

beled training data [40]. Unfortunately, the lack of labeled

pathological images for some tasks may lead to two notori-

ous issues: (1) overfitting of the CNN models [39, 42, 48]

and (2) privacy leakage [48, 33, 9, 46] of the patients.

Firstly, the performance of a CNN-based model is always

harmed by the overfitting due to its large amounts of pa-

rameters and the insufficiency of training data. Secondly,

pathological datasets usually contain sensitive information,

which can be associated with each individual patient. The

CNN-based models trained using conventional SGD may

involuntarily reveal the private information of patients ac-

cording to recent studies [48, 9]. For example, Zhang et al.

[48] show that the CNN model can easily memorize some

samples in the training dataset. Fredrikson et al. [9] pro-

pose a model-inversion attack to reconstruct images in the

training dataset. In Figure 1 (a) and (b), we demonstrate an

attacking example in our task, reconstructing the outline of

a patch in the training dataset by leveraging a well-trained

CNN model and its intermediate feature representations.

There have been numerous studies to solve either of two

issues individually. On the one hand, to reduce the risk

of overfitting in deep CNNs, previous research suggests

2099

adding appropriate randomness into the training phase [39,

42, 45]. For example, Dropout [39] adds randomness in

activation by randomly discarding the hidden layers’ out-

puts. DropConnect [42] adds randomness in weight param-

eters by randomly setting weights to zero during training.

On the other hand, differential privacy [5, 6] emerges as a

strong standard, which offers rigorous privacy guarantees

for algorithms applied on the sensitive database. Recent

works [1, 31] are introduced to train deep CNN models

within differential privacy. The main idea of these works

is to perturb the gradient estimation at each step of an SGD

algorithm. For example, Abadi et al. [1] use a differentially

private additive-noise mechanism on the gradient estima-

tion in an SGD. In addition, a few recent studies [33, 46]

have shown that these two seemingly unrelated issues are

implicitly relevant based on a natural intuition: “reducing

the overfitting” and “protecting the individual’s privacy”

share the same goal of encouraging a CNN model to learn

the population’s features instead of memorizing the features

of each individual.

In this paper, we propose a practical solution to alleviate

both issues in a task of pathological image classification.

In particular, we introduce a novel SGD algorithm, named

P3SGD, which injects the well-designed noise into the gra-

dient to obtain a degree of differential privacy and reduce

overfitting at the same time. It is worth noting that a patho-

logical database usually consists of a number of patients,

each of whom is further associated with a number of image

patches. We should protect the privacy in the patient level

instead of image level as in most of the previous works. To

achieve this goal, we propose to calculate the model update

upon individual patient’s data and add carefully-calibrated

Gaussian noise to the update for both privacy protection and

model regularization. The most similar work to ours is the

differentially private federated learning [25, 11], which fo-

cuses on protecting the user-level privacy. In contrast to

previous works, which use a globally fixed noise scale to

build the noisy update [1, 25, 11], we propose an elaborated

strategy to adaptively control the magnitude of the noisy up-

date. In the experiment, we show that this strategy plays a

key role in boosting performance of a deep CNN model. At

last, we provide a rigorous privacy cost analysis using the

moments accountant theorem [1].

In summary, the main contributions of our work are as

follows:

• We introduce a practical solution, named P3SGD,

to simultaneously address the overfitting and privacy

leaking issues of deep CNNs in the pathological im-

age classification. To the best of our knowledge, this

is the first work to provide rigorous privacy guarantees

in medical image analysis tasks.

• Technically, we present a strategy to dynamically con-

trol the noisy update at each iterative step, which leads

to a significant performance gain against the state-of-

the-art methods [25, 11].

• We validate P3SGD on a real-world clinical dataset,

which is less explored in previous studies. The re-

sults demonstrate that P3SGD is capable of reducing

the risk of overfitting on various CNN architectures.

Moreover, P3SGD provides a strong guarantee that the

trained model protects the privacy of each patient’s

data, even when the attacker holds enough extra side-

information of the raw training dataset.

• We qualitatively and quantitatively demonstrate that

the CNN model trained using P3SGD is resistant to

the model-inversion attack [9] (shown in Figure 1 (c)).

2. Related Work

Regularization in CNNs In the past years, numerous reg-

ularization techniques have been proposed to improve the

generalization ability of deep CNNs [20, 39, 42, 45, 41, 12].

These works mainly fall into two categories: explicit regu-

larization and implicit (i.e., algorithmic) regularization.

For explicit regularization methods, various penalty

terms are used to constrain weight parameters. For example,

weight decay [20] uses l2-regularization to constrain the pa-

rameters of a CNN model. Another direction is to intro-

duce regularizers to decorrelate convolutional filters in deep

CNNs [44, 32], which improves the representation ability of

the intermediate features extracted by those filters.

For implicit regularization methods, the core idea is

to introduce moderate randomness in the model training

phase. For example, Dropout [39] randomly discards the

outputs of the hidden neurons in the training phase. How-

ever, Dropout is originally designed for fully-connected lay-

ers (FC). It is often less effective for convolutional lay-

ers, which limits its use in CNNs with few FC layers (e.g.,

ResNet). This is possibly caused by the fact that Dropout

discards features without taking its spatial correlation into

account (features from convolutional layers are always spa-

tially correlated) [12]. To address this problem, a few re-

cent works [41, 12] propose to inject structured noise into

the features from convolutional layers. One state-of-the-

art technique, named DropBlock [12], is specially designed

for convolutional layers, which randomly drops the features

in a sub-region. Both of Dropout and DropBlock inject

randomness into activation layers. In contrast, DisturbLa-

bel [45] adds randomness into the loss function by ran-

domly setting a part of labels to be incorrect in a training

mini-batch. Data augmentation is another form of algo-

rithmic regularization, which introduces noise into the in-

put layer by randomly transforming training images [36].

Our method can be categorized as implicit regularization.

In contrast to previous works, our approach (P3SGD) im-

poses regularization at the parameter updating phase.

2100

Privacy-preserving Deep Learning Meanwhile, there is

an increasing concern for privacy leakage in deep learn-

ing models, since the training datasets may contain sen-

sitive information. This privacy issue has attracted many

research interests on the privacy-preserving deep learn-

ing [1, 35, 25, 11, 13, 28]. One promising direction is

to build machine learning models within differential pri-

vacy [1, 25, 28], which has been widely used in sensi-

tive data analysis as a golden standard of privacy. The

early solution is to perturb the model parameters [3, 49] or

the objective function [3, 19, 31]. However, such kind of

simple solutions cause considerable performance decreas-

ing [4, 43], the situation may become worse in the context

of deep learning. Therefore, some recent studies focus on

the gradient perturbation based methods [1, 25, 11, 28, 29].

Abadi et al. [1] propose a differentially private version of

SGD and present the moments accountant framework to

provide tighter privacy bound than previous methods. The

PATE framework [28, 29] protects the privacy via transfer-

ring knowledge to the student model, from an ensemble of

teacher models, which are trained on partitions of the train-

ing data.

Different from these works, which focus on image-level

privacy, we aim to provide patient-level privacy in specific

scenarios of pathological image analysis. The most simi-

lar works to ours are [25, 11], which extend the private

SGD into the federated learning paradigm [24]. However,

applying these approaches to the real-world medical image

data remains less explored. Moreover, these methods al-

ways lead to a performance drop compared with the models

trained using non-private SGD. In this paper, we evaluate

our method on a real-world pathological image dataset and

show that the performance drop can be addressed by care-

fully controlling the noisy update using our strategy.

There are also some studies aiming to explore the rela-

tionship between the overfitting and the privacy leakage is-

sues from the perspective of memorization [33, 46]. In this

paper, we present a practical solution to alleviate these two

related issues simultaneously.

3. Our Approach

In this section, we describe our approach in details and

provide a rigorous privacy cost analysis using the moments

accountant theorem [1].

3.1. Preliminaries

We firstly introduce some basic notations and definitions

of differential privacy corresponding to our specific task.

In our setting, the pathological image dataset can be re-

garded as a database D with Np patients. Generally speak-

ing, each patient Di consists of a number of image patches

of various tissues, i.e., Di = {(xk,yk)}
Ni

k=1, where Ni is

the number of image patches of the i-th patient. With a

slight abuse of notations, we also denote D =
⋃Np

i=1Di as

the whole set of images of all patients. Then, a basic con-

cept of image-level adjacent databases can be defined as:

two databases are adjacent if they differ in a single image-

label pair [1]. This concept is widely used for image-level

privacy protection.

However, such image-level privacy protection is insuf-

ficient for our tasks. Instead, we introduce a concept of

patient-level adjacent databases defined as follows:

Define 1 (Patient-level adjacent databases)D′ andD′′ are

adjacent: if D′ can be obtained by adding all images of

a single patient to D′′ or removing all images of a single

patient from D′′.

This definition is inspired by the prior works [25, 11], in

which the authors focus on user-level privacy. With the def-

inition of adjacent databases, we can formally define the

patient-level differential privacy as:

Define 2 (Differential privacy) A randomized algorithm

A : D → R satisfies (ǫ, δ)-differential privacy if for any

two adjacent databases D′,D
′′

⊆ D and for any subset of

outputs S ⊆ R it holds:

Pr[A(D
′

) ∈ S] ≤ eǫPr[A(D
′′

) ∈ S] + δ (1)

The randomized algorithm A is also known as the mech-

anism in the literature [5]. In our setting, A is the algo-

rithm used to train deep CNNs, e.g., the SGD algorithm. D
denotes the training dataset (i.e., D in our case) and R is

the parameter space of a deep CNN. Intuitively, the Equa-

tion 1 indicates that participation of one individual patient

in a training phase has a negligible effect on the final weight

parameters. Another concept is the sensitivity of a random-

ized algorithm:

Define 3 (Sensitivity) The sensitivity of a randomized algo-

rithm A is the upper-bound of ||A(D
′

) −A(D
′′

)||2, where

D
′

and D
′′

are any adjacent databases (see in Define 1).

To establish a randomized algorithm that satisfies differen-

tial privacy, we need to bound its sensitivity. The most used

strategy is to clip the norm of the parameter update. In next

two subsections, we will introduce the traditional SGD and

P3SGD separately, as two instances of the randomized al-

gorithm A.

3.2. Standard SGD Algorithm

We start with the standard SGD (i.e., non-private SGD)

algorithm for training a deep CNN-based classification

model. The goal of the classification is to train a CNN

model M : ŷ = f(x;θ), where ŷ is the predicted label,

and θ are the model parameters. Training of the model is to

2101

minimize the empirical loss L(D;θ). In practice, we esti-

mate the gradient of the empirical loss on a mini-batch. We

denote the classification loss over a mini-batch as:

L(Bt;θ) =
1

|Bt|

∑

(x,y)∈Bt

l(f(x;θ),y) (2)

Here, l(x,y) is the loss function, e.g., cross-entropy loss.

Bt refers to a mini-batch of images which are randomly and

independently drawn from the whole image setD. Note that

we can add an additional regularization term into Equation

2, such as l2 term. At the t-th step of the SGD algorithm,

we can update the current parameter θt as θt+1 = θt − γt ·
∇θt
L(Bt;θt).

3.3. P3SGD Algorithm

Overall, our framework comprises of three components,

which are update computation, update sanitization, and pri-

vacy accumulation. Our method inherits the computing

paradigm of federated learning [24]. Moreover, to protect

the privacy, we need to inject well-designed Gaussian noise

into each step’s update, which is marked as update sani-

tization. At last, we can use the moments accountant for

privacy accumulation. The pseudo-code is depicted in Al-

gorithm 1. Next, we will describe each of these components

in details.

For update computation, at the beginning of the t-th step

of P3SGD, we randomly sample a patient batch Bt from

the database D with a sampling ratio p. Here, the notation

Bt is different from the one in Equation 2, where the Bt is

sampled from individual images instead of patients.

Then, for each patient i in the sampled batch, we perform

a back propagation to calculate gradients of the parameters

via images of the patient i. After that, we locally update

the model using the computed gradients. After we traverse

all images of this patient, we can obtain the model update

with respect to patient i. This procedure can be interpreted

as performing SGD on the local data from patient i.
In the next step, we average updates of all patients in

Bt to obtain the final update at the t-th step. Note that we

need to control the sensitivity of the total update for fur-

ther update sanitization. In practice, this is implemented by

clipping the l2 norm of the update, with respect to each in-

dividual patient (as shown in line 26 in Algorithm 1). Cu

in Algorithm 1 denotes a predefined upper-bound. Thus,

the sensitivity of the total update can be bounded by 2Cu (a

proof can be found in supplementary materials). The main

idea of update computation is implemented by a function

PatientUpdate, as shown in Algorithm 1.

To protect privacy, update sanitization needs to be per-

formed. Specifically, we use Gaussian mechanism [7] to

inject well-calibrated Gaussian noise into the original up-

date, which leads to a noisy update. The variance of in-

jected Gaussian noise is jointly determined by the upper-

Algorithm 1: P3SGD

1 Inputs:

2 Patient database: D, Empirical Loss: L.

3 Patient sampling ratio: p.

4 Noise scale set Ωz: {zi}
Nz

i=1.

5 Noise budget ǫ′ for selecting update per iteration.

6 Bound of update’s norm: Cu.

7 Bound of objective function’s norm: Co.

8 Initialize θ0 randomly

9 for t ∈ [T] do

10 Take a subset Bt of patients with sampling ration p
11 for each patient i ∈ Bt do

12 ∆i
t ← PatientUpdate(i,θt)

13 end

14 ∆t ←
1

|Bt|
(
∑

i ∆
i
t)

15 Ωσ = {σ = zCu/|Bt| : for z in Ωz}

16 Ω∆ = {∆̃ = ∆t +N (0, (σ2I)) : for σ in Ωσ}

17 ∆̃t ← NoisyUpdateSelect(Ω∆, ǫ
′,Bt,θt,L)

18 θt+1 = θt + ∆̃t

19 end

20 Function PatientUpdate(i, θt):

21 θ ← θt

22 for batch image samples b from Patient i do

23 θ ← θ − γ∇L(b;θ)
24 end

25 ∆i = θ − θt

26 ∆i = ClipNorm(∆i,Cu)
27 return ∆i

Algorithm 2: NoisyUpdateSelect

1 Function NoisyUpdateSelect(Ω, ǫ, B, θ, L):

2 Ωu = { u =−Clip(L(B;θ+∆), Co) : for ∆ in Ω }

3 Select ∆ with probability

exp(
ǫu

2Co
)

∑
u∈Ωu

exp(
ǫu

2Co
)

4 return ∆

bound Cu of the update’s l2 norm and the noise scale z. In

this paper, we use a common strategy to set Cu as a glob-

ally fixed value similar to prior works [1, 25]. Therefore,

the choice of a noise scale factor z is critical to train CNN

model with high performance. Previous works [1, 25] usu-

ally use a fixed noise scale throughout the training phase.

However, the fixed noise scale factor may lead to the de-

parture of the noisy update from the descent direction or

an ignorable regularization effect, because the magnitudes

of the updates may vary at different iterative steps. Thus,

we argue that the strategy that uses a fixed noise scale may

2102

hinder the classification performance.

In this paper, we present an elaborated strategy to adap-

tively select the noise scale. This strategy is originated

from the exponential mechanism [7], which is a commonly

used mechanism to build a differentially private version of

the Argmax function. In this paper, the Argmax function

refers to select the argument which maximizes a specific

objective function. In our task, we use the negative loss

function as the objective function, and the argument is the

noisy update built upon different noise scales from the pre-

defined set Ωz . We implement this strategy as a function

NoisyUpdateSelect depicted in Algorithm 2. The prede-

fined set Ωz contains Nz noise scale factors. Increasing

Nz leads to more subtle control of the noisy update, which

further boosts the performance. However, the increase of

Nz also results in an increase of computational cost. Pre-

cisely, one more noise scale will bring about one more for-

ward computation on all images in Bt. In practice, we find

that setting Nz = 2 suffices for our task. Note that setting

Nz = 1 degenerates to the method used in [25, 11]. In the

experiments, we show this strategy is crucial to boost the

performance.

For privacy accumulation, the composition theorem can

be leveraged to compose the privacy cost at each itera-

tive step. In this paper, we make use of the moments ac-

countant [1], which can obtain tighter bound than previous

strong composition theorem [8]. Specifically, the moments

accountant is to track a bound of the privacy loss random

variable instead of a bound on the original privacy budget.

Given a randomized algorithm A, the privacy loss at output

o is defined as:

c(o;A,aux,D
′

,D
′′

) , log
Pr[A(aux,D

′

) = o]

Pr[A(aux,D′′) = o]
(3)

Then, the privacy loss random variable C(A,aux,D
′

,D
′′

)
is defined by evaluating the privacy loss at the outcome sam-

pled from A(D′) [28]. Here, D
′

and D
′′

are adjacent. aux

denotes the auxiliary information. In our P3SGD algorithm,

auxiliary information at step t is the weight parameters θt−1

at the step t − 1. The algorithm A is also known as the

adaptive mechanism in literature [1]. We can then define

the moments accountant as follows:

Mc(λ) , max
aux,D′,D

′′

Mc(λ;aux,D
′

,D
′′

) (4)

where Mc(λ;aux,D
′

,D
′′

) is the moment generating func-

tion of the privacy loss random variable, which is calculated

as:

Mc(λ;aux,D
′

,D
′′

) , log E[exp(λC(A,aux,D
′

,D
′′

))]
(5)

Then, we introduce the composability and the tail bound

of moments accountant as:

Theorem 1 (Composability) Suppose that a randomized

algorithmA consists of a sequence of adaptive mechanisms

A1, . . . ,Ak where Ai :
∏i−1

j=1Rj × D
′

→ Ri. The mo-

ments accountant of Ai is denoted as M i
c(λ). For any λ:

Mc(λ) ≤
k∑

i=1

M i
c(λ) (6)

Theorem 2 (Tail bound) For any ǫ ≥ 0, the algorithm A
satisfies (ǫ, δ)-differential privacy for

δ = min
λ

exp(Mc(λ)− λǫ) (7)

Theorem 2 indicates that if the moments accountant of a

randomized algorithmA is bounded, thenA satisfies (ǫ, δ)-
differential privacy. The bound of the moments accountant

for our strategy implemented in Algorithm 2 is guaranteed

by the following theorem:

Theorem 3 Given λ, the moments accountant of Algo-

rithm 2 is bounded by q ·
λ(λ+ 1)ǫ2

2
.

The proof can be done using the privacy amplification [18]

and the theorem in the prior literature [2]. More details can

be found in appendix of this work.

Privacy guarantee: In this paper, privacy accumulation is

to accumulate the moments accountant’s bound at each step.

Note that privacy accumulation needs to be performed at

the noisy update selection (line 17 in Algorithm 1) and the

model update via noisy update (line 18 in Algorithm 1). For

the NoisyUpdateSelect in line 17, we can calculate a bound

via Theorem 3. For the model update in line 18, the bound

is obtained based on the property of Gaussian Mechanism

(Lemma 3 in appendix of [1]). Once we bound the mo-

ments accountant at each iterative step, we can compose

these bounds using Theorem 1. At last, the total privacy

cost is obtained based on Theorem 2. It suffices to compute

the Mc(λ) when λ ≤ 32. In practice, we use a finite set

{1, · · · , 32} following prior work [1].

4. Experimental Results

4.1. Experimental Settings

In this section, we verify the effectiveness of P3SGD on

a real-world clinical dataset. This dataset is collected by

the doctors in our team. The dataset consists of 1216 pa-

tients and each patient contains around 50 image patches.

The task we consider in this paper is glomerulus classifica-

tion, which aims to classify whether an image patch con-

tains a glomerulus or not. This task has also been studied

in a recent work [10]. We ask the doctors to manually la-

bel the image patches. For a fair comparison, we set the

2103

Model Type # Params
SGD SGD+Dropout P3SGD

Training Testing Gap Training Testing Gap Training Testing Gap

AlexNet T 60.9 M 99.87 91.58 8.29 98.97 93.13 5.84 96.85 92.74 4.11
VGG-16 T 14.7 M 99.81 92.19 7.81 99.28 94.32 4.96 96.23 93.87 2.36
ResNet-18 M 11.2 M 99.85 92.25 7.60 99.63 92.12 7.51 95.70 95.23 0.47

ResNet-34 M 21.3 M 99.23 93.19 6.04 99.16 93.22 5.94 95.80 95.34 0.46
MobileNet M 3.2 M 98.73 92.01 6.72 98.65 91.61 7.04 94.79 94.13 0.66
MobileNet v2 M 2.3 M 98.52 93.24 5.28 98.37 93.28 5.09 95.32 94.86 0.46

Table 1. Training and testing accuracies (%) of various network architectures trained with different strategies. The gap between training

and testing accuracies is used for measuring the overfitting of the CNN models.The type T/M denotes traditional/modern CNNs.

weight decay to 1e-4 and use data augmentation in all ex-

periments. Specifically, we perform data augmentation by

(1) randomly flipping input images vertically and/or hori-

zontally, and (2) performing random color jittering, includ-

ing changing the brightness and saturation of input images.

All input images are resized into 224×224, and pixel inten-

sity values are normalized into [0, 1]. All 1216 patients in

the dataset are randomly split into a training dataset (1000
patients) and a testing dataset (216 patients).

4.2. Classification Evaluation

To validate the superiority of P3SGD in reducing over-

fitting, we compare it with the standard SGD (without

Dropout). We also provide comparisons with the strategy

that combines the standard SGD with Dropout. As a result,

there are three training strategies: SGD, SGD+Dropout, and

P3SGD.

We first evaluate our method on the ResNet-18 architec-

ture [14]. For the standard SGD with Dropout, we insert

Dropout between convolutional layers and set the drop ra-

tio to 0.3 following [47]. To provide a reasonable weight

initialization, we firstly pre-train the CNN model on a pub-

licly available pathological image dataset1. The pre-training

does not take an extra privacy cost, since we do not inter-

act with the original training dataset in this stage. The pre-

training can also help us to determine the hyper-parameters

in Algorithm 1. For P3SGD, we set the total updating

rounds T to 100 and set the noise scale ǫ2 to 0.1 for se-

lecting noisy update. The sampling ratio p is set to 0.1 and

Ωz is set to be {3.0, 1.0}. The Cu and Co are set to 5.0 and

3.0, respectively. To facilitate the discussion, we denote

SGD and P3SGD as the models trained using SGD (with-

out Dropout) and P3SGD (we use the abbreviations in the

following discussions).

From the results of ResNet-18 (Table 1), we observe that

SGD obviously overfits (it even reaches nearly 100% train-

ing accuracy). In contrast, P3SGD drastically decreases

the gap between training and testing accuracies and im-

proves the testing accuracy. In particular, P3SGD outper-

forms SGD by 2.98% in the testing accuracy (a 38.5% rela-

1http://www.andrewjanowczyk.com/use-case-4-lymphocyte-detection/

1 10 20 30 40 50 60 70 80 90 100

Number of Used Training Patches (105)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
ro

ss
-E

nt
ro

py
 L

os
s

SGD, training
P3SGD, training
SGD, testing
P3SGD, testing

Figure 2. The training and testing loss curves of ResNet-18 with

different training strategies. P3SGD significantly reduces the over-

fitting compared to SGD.

tive drop in classification error), while the gap is decreased

from 7.60% to 0.47%, which shows a 93.8% relative im-

provement. These results indicate that P3SGD significantly

reduces the overfitting in the ResNet-18 model compared

with the standard SGD. We also plot the loss curves of

ResNet-18 in Figure 2, which further demonstrates the regu-

larization effect of P3SGD. Besides, there is no significant

performance improvement when we apply Dropout on

ResNet-18. Dropout even leads to a slight decrease (from

92.25% to 92.12%) in testing accuracy. We will discuss this

phenomenon in details in Section 4.4.

Besides the ResNet-18, we also conduct extensive ex-

periments on other popular CNN architectures. In general,

we mainly test on two types of CNN models, namely, tra-

ditional CNNs and modern CNNs 2 (denoted by T and M

in Table 1). Specifically, six architectures are included:

AlexNet [21], VGG-16 [37], ResNet-18 [14], ResNet-

34 [14], MobileNet [15], and MobileNet v2 [34]. For tra-

ditional CNNs (e.g., AlexNet), we insert Dropout between

fully connected (FC) layers and set the drop ratio to 0.5 fol-

lowing [39]. The results are summarized in Table 1. On the

one hand, our method consistently boosts the testing accu-

racy over the standard SGD (without Dropout) on various

2The modern CNN consists of convolutional layers except the final pre-

diction layer, which comprises of a global average pooling and a fully-

connected layer.

2104

CNN architectures. The ResNet-34 trained with P3SGD

achieves the highest testing accuracy at 95.34% among all

network architectures and training strategies. In particular,

P3SGD outperforms Dropout technique on all modern

CNNs, e.g., the testing accuracy gain is 2.12% in the case

of ResNet-34. On the other hand, the training accuracy is

suppressed when we use P3SGD to train the CNN model,

which further leads to a decrease of the gap between train-

ing and testing accuracy.

Despite the superiority of our method, we observe that

Dropout is usually more effective than P3SGD on the

traditional CNNs, e.g., it obtains a slight accuracy gain of

0.45% in the case of VGG-16 compared to P3SGD. We pro-

vide some interpretations in the discussion part. We also no-

tice that, under the standard SGD (without Dropout) train-

ing strategy, the modern CNNs have less overfitting (mea-

sured as the gap between training and testing accuracies)

than traditional CNNs. This may be caused by the regu-

larization effect brought by the Batch Normalization [16]

which exists in the modern CNNs.

4.3. Privacy Cost Analysis

Another advantage of P3SGD is to provide patient-level

privacy within differential privacy. The differentially pri-

vate degree is measured by (ǫ, δ) (i.e, privacy cost) in Equa-

tion 1. In this part, we calculate the total spend of privacy

cost via the moments accountant theorem. The target δ is

fixed to
1

|Np|1.1
(Np is the number of patients in the train-

ing set), which is suggested by the previous literature [5]. In

our task, the δ is around 5e− 4 (Np = 1000). To verify the

effectiveness of our proposed strategy for dynamically con-

trolling the noisy update, we compare it with the strategy of

fixed noise scale (marked by ✗ in Table 2) which is adopted

by the state-of-the-art works [11, 25]. For simplicity, we

use adaptive and fixed to denote these two strategies.

All the experiments are performed on ResNet-18.

We test on various noise scale sets Ωz to show how

the noise scale affects the performance. We find that

the noise scale greater than 3.0 leads to unstable train-

ing. In practice, we build Ωz using the noise scale from

{1.0, 2.0, 3.0}. Overall, P3SGD with the adaptive strat-

egy (Ωz = {3.0, 1.0}) achieves the best testing accuracy

of 95.23% at a privacy cost of 6.97. For the fixed strat-

egy, a larger noise scale leads to a lower privacy cost, how-

ever, it may cause the noisy update deviating from the de-

cent direction and further hinders the testing accuracy. For

example, setting Ωz to {3.0} leads to the lowest privacy

cost of 4.70 and the worst accuracy of 92.15%, while set-

ting Ωz = {1.0} achieves a better accuracy of 94.38% but

a much higher privacy cost of 8.48. The adaptive strat-

egy provides a reasonable solution for this dilemma of the

fixed strategy.

Adaptive Ωz Testing ǫ
✓ {3.0, 1.0} 95.23 6.97
✓ {2.0, 1.0} 94.31 7.10
✓ {3.0, 2.0} 93.57 4.97
✗ {1.0} 94.38 8.48
✗ {2.0} 93.24 5.13
✗ {3.0} 92.15 4.70

Table 2. Testing accuracy (%) and privacy cost of different settings

on ResNet-18. The Adaptive column indicates if an adaptive noise

scale set (marked by a ✓) or a fixed scale (marked by a ✗) is used.

Setting a fixed noise scale leads to the method in [11, 25]

Strategy Training Testing Gap

SGD+Dropout 99.63 92.12 7.51
SGD+DropBlock 98.85 94.87 3.68

P3SGD 95.70 95.23 0.47
Table 3. Training and testing accuracies (%) on ResNet-18 with

different regularization strategies.

In general, the adaptive strategy leads to a better

trade off between the privacy cost and the testing accu-

racy. Specifically, extending the fixed scale {z1} or {z2}
to {z1, z2} achieves the testing accuracy higher than or ap-

proaching to the best testing accuracy among the corre-

sponding fixed strategies, while with a reasonable privacy

cost. For instance, the adaptive strategy with {3.0, 1.0}
achieves the accuracy of 95.23%, which is higher than the

fixed strategy with either {3.0} or {1.0}. Our strategy

also outperforms a naive solution by setting the noise scale

to the average of 1.0 and 3.0 (i.e., {2.0}). There is even an

accuracy gain of 0.85% by extending {1.0} to {3.0, 1.0}.
We infer this accuracy gain comes from the stronger reg-

ularization effect brought by the larger noise scale. Mean-

while, the adaptive strategy ({3.0, 1.0}) achieves a mod-

erate privacy cost between the costs obtained by the corre-

sponding fixed strategies (setting Ωz to {1.0} or {3.0}).

To conclude, our proposed strategy can be seen as a sim-

plified version of line search in numerical optimization [27],

and provides a more careful way to control the magnitude

of the added noise. The effectiveness of our strategy comes

from the fine-grained way to control the noisy update.

4.4. Discussions

In this subsection, we first analyze the performance of

different types of CNNs. We then compare P3SGD with

the state-of-the-art regularization mechanism. Finally, we

show that the model trained with P3SGD is resistant to a

model-inversion attack.

Network Architecture. As shown in Table 1, Dropout

and our method P3SGD demonstrate totally different effects

on the two types of CNN architectures (traditional CNNs

and modern CNNs). Specifically, our method outperforms

Dropout on modern CNNs, instead, Dropout is more ef-

2105

Training set

SGD P3SGDOriginal

27.75 27.69

27.7527.78

27.8627.88

G

G

G

27.8427.85

27.86 27.82

27.8027.80

SGD P3SGDOriginal

N

N

N

Testing set

27.7727.73

27.80 27.79

27.8027.79

SGD P3SGDOriginal

G

G

N

Figure 3. Visualization of the model-inversion attack. G/N below each original patch denotes if the patch contains a glomerulus or not.

The number below each reconstructed image is the PSNR value. The reconstructed examples of the training dataset are demonstrated in

the left part. For comparison, we also show some examples from the testing dataset in the right part.

fective on the traditional CNN architectures. This may be

caused by following reasons: (1) Dropout is originally de-

signed for the FC layers due to its huge numbers of param-

eters (e.g., around 90% parameters of VGG-16 are from the

FC layers). However, there is only one FC layer with a few

parameters in modern CNN architectures. (2) The cooper-

ation of Dropout and Batch Normalization can be problem-

atic [16]. As we know, batch normalization layer widely

exists in modern CNNs (e.g, ResNet [14]). (3) Dropout dis-

cards features randomly, however, the features extracted by

convolutional layers are always spatially correlated, which

impedes the use of Dropout on convolutional layers. Some

recent works propose to modify Dropout for convolutional

layers. We compare our method with a variant of Dropout

in the next part.

Other Regularization Techniques. From the previous

discussion, some advanced forms of Dropout should be

adopted in the modern CNN. In this part, we compare our

method with a recent technique, named DropBlock [12],

on ResNet-18. For a fair comparison with Dropout, we

insert DropBlock between every two convolutional layers

and set the drop ratio to 0.3 following [12]. The results are

shown in Table 3. DropBlock achieves a testing accuracy

gain of 2.75% against Dropout, while P3SGD outperforms

both Dropout and DropBlock. In contrast to P3SGD, Drop-

Block has no suppression effect on the training accuracy.

We guess that the performance gain of DropBlock comes

from the effect of the implicit model ensemble. We further

combine P3SGD with DropBlock but do not obtain obvious

accuracy boost.

Model-inversion Attack. To demonstrate that P3SGD is

resistant to the model-inversion attack [24, 23], we perform

an inversion attack on CNN models trained with different

strategies. As a case study, we conduct experiments on the

ResNet-18 and use the output features from the 3-th residual

block to reconstruct the input image (see details in the ap-

pendix). Some visualizations are shown in Figure 3. We can

reconstruct the outline of the tissue in the input image using

the features from the SGD. In contrast, we can not obtain

any valuable information from P3SGD (i.e., the model is

oblivious to training samples). It indicates that SGD is more

vulnerable than P3SGD. Quantitatively, we perform attack

on all the training images and report the average PSNR val-

ues as: 27.82 for P3SGD and 27.84 for SGD. We also con-

duct the same study on patches from the testing dataset and

show some examples in the left part in Figure 3. The results

show that it is hard to reconstruct the input image for both

SGD and P3SGD, since the testing examples are not touched

by the model in the training phase. This provides some cues

for the memorization ability of CNNs [48].

5. Conclusion

In this paper, we introduce a novel SGD schema, named

P3SGD, to regularize the training of deep CNNs while pro-

vide rigorous privacy protection within differential privacy.

P3SGD consistently outperforms SGD on various CNN ar-

chitectures. The key technical innovation lies in the strat-

egy that adaptively controls the noisy update. We con-

duct an analysis and show the effectiveness of this strategy.

We also perform a model-inversion attack and show that the

model trained with P3SGD is resistant to such an attack.

This research paves a new way to regularize deep CNNs

on pathological image analysis with an extra advantage of

appealing patient-level privacy protection. Applying this

method to other types of medical image analysis tasks is

promising and implies a wide range of clinical applications.

Acknowledgment. Bingzhe Wu and Guangyu Sun are sup-

ported by National Natural Science Foundation of China

(No.61572045).

2106

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep

learning with differential privacy. In CCS, 2016. 2, 3, 4, 5

[2] Mark Bun and Thomas Steinke. Concentrated differential

privacy: Simplifications, extensions, and lower bounds. In

Theory of Cryptography Conference, 2016. 5

[3] Kamalika Chaudhuri and Claire Monteleoni. Privacy-

preserving logistic regression. In NIPS, 2009. 3

[4] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sar-

wate. Differentially private empirical risk minimization.

JMLR, 12:1069–1109, July 2011. 3

[5] Cynthia Dwork. Differential privacy. In ICALP, 2006. 2, 3,

7

[6] Cynthia Dwork. Differential privacy: A survey of results. In

TAMC, 2008. 2

[7] Cynthia Dwork and Aaron Roth. The algorithmic founda-

tions of differential privacy. Found. Trends Theor. Comput.

Sci., 9:211–407, Aug. 2014. 4, 5

[8] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boost-

ing and differential privacy. In FCOS, 2010. 5

[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model Inversion Attacks that Exploit Confidence Informa-

tion and Basic Countermeasures. In CCS, 2015. 1, 2

[10] J. Gallego, A. Pedraza, S. Lopez, G. Steiner, L. Gonzalez, A.

Laurinavicius, and G. Bueno. Glomerulus classification and

detection based on convolutional neural networks. Journal

of Imaging, 4, 2018. 1, 5

[11] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially

private federated learning: A client level perspective. arXiv

preprint arXiv:1712.07557, 2017. 2, 3, 5, 7

[12] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:

A regularization method for convolutional networks. arXiv

preprint arXiv:1810.12890, 2018. 2, 8

[13] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin

Lauter, Michael Naehrig, and John Wernsing. Cryptonets:

Applying neural networks to encrypted data with high

throughput and accuracy. In ICML, 2016. 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6, 8

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 6

[16] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In arXiv preprint arXiv:1502.03167, 2015. 7,

8

[17] A. Janowczyk and A. Madabhushi. Deep learning for digi-

tal pathology image analysis: A comprehensive tutorial with

selected use cases. JPI, 7(1):29, 2016. 1

[18] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nis-

sim, Sofya Raskhodnikova, and Adam Smith. What can we

learn privately? SIAM Journal on Computing, 40(3):793–

826, 2011. 5

[19] Daniel Kifer, Adam Smith, Abhradeep Thakurta, Shie Man-

nor, Nathan Srebro, and Robert C Williamson. Private con-

vex empirical risk minimization and high-dimensional re-

gression. In COLT, 2012. 3

[20] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Master’s thesis, 2009. 2

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 6

[22] Yun Liu, Krishna Kumar Gadepalli, Mohammad Norouzi,

George Dahl, Timo Kohlberger, Subhashini Venugopalan,

Aleksey S Boyko, Aleksei Timofeev, Philip Q Nelson, Greg

Corrado, Jason Hipp, Lily Peng, and Martin Stumpe. Detect-

ing cancer metastases on gigapixel pathology images. Tech-

nical report, arXiv, 2017. 1

[23] Aravindh Mahendran and Andrea Vedaldi. Understanding

deep image representations by inverting them. In CVPR,

2015. 8

[24] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In AISTATS, 2017. 3, 4, 8

[25] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and

Li Zhang. Learning differentially private recurrent language

models. In ICLR, 2018. 2, 3, 4, 5, 7

[26] P. Naylor, M. La, F. Reyal, and T. Walter. Nuclei segmen-

tation in histopathology images using deep neural networks.

In ISBI, 2017. 1

[27] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-

tion. Springer, New York, NY, USA, 2006. 7

[28] Nicolas Papernot, Martı́n Abadi, Ulfar Erlingsson, Ian Good-

fellow, and Kunal Talwar. Semi-supervised knowledge trans-

fer for deep learning from private training data. In ICLR,

2017. 3, 5

[29] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth

Raghunathan, Kunal Talwar, and Úlfar Erlingsson. Scalable

private learning with pate. In ICLR, 2018. 3

[30] A. Pedraza, J. Gallego, S. Lopez, L. Gonzalez, A. Laurinavi-

cius, and G. Bueno. Glomerulus classification with convolu-

tional neural networks. In MIUA, 2017. 1

[31] NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou. Dif-

ferential privacy preservation for deep auto-encoders: An ap-

plication of human behavior prediction. In AAAI, 2016. 2,

3

[32] Pau Rodrı́guez, Jordi Gonzàlez, Guillem Cucurull, Josep M.

Gonfaus, and F. Xavier Roca. Regularizing cnns with locally

constrained decorrelations. In ICLR, 2017. 2

[33] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid,

and Hervé Jégou. Déja vu: an empirical evaluation of

the memorization properties of convnets. arXiv preprint

arXiv:1809.06396, 2018. 1, 2, 3

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Inverted residuals and lin-

ear bottlenecks: Mobile networks for classification, detec-

tion and segmentation. arXiv preprint arXiv:1801.04381,

2018. 6

[35] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep

learning. In CCS, 2015. 3

2107

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

2

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 6

[38] K. Sirinukunwattana, S. E. A. Raza, Y. Tsang, D. R. J. Snead,

I. A. Cree, and N. M. Rajpoot. Locality sensitive deep learn-

ing for detection and classification of nuclei in routine colon

cancer histology images. IEEE Transactions on Medical

Imaging, 35(5):1196–1206, May 2016. 1

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. JMLR,

15:1929–1958, 2014. 1, 2, 6

[40] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing

of deep neural networks: A tutorial and survey. Proceedings

of the IEEE, 105(12):2295–2329, Dec 2017. 1

[41] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun,

and Christoph Bregler. Efficient object localization using

convolutional networks. In CVPR, 2015. 2

[42] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and

Rob Fergus. Regularization of neural networks using drop-

connect. In ICML, 2013. 1, 2

[43] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private

empirical risk minimization revisited: Faster and more gen-

eral. In NIPS. 2017. 3

[44] Bingzhe Wu, Zhichao Liu, Zhihang Yuan, Guangyu Sun, and

Charles Wu. Reducing overfitting in deep convolutional neu-

ral networks using redundancy regularizer. In ICANN, 2017.

2

[45] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and Qi

Tian. DisturbLabel: Regularizing CNN on the Loss Layer.

In CVPR, 2016. 2

[46] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and

Somesh Jha. Privacy risk in machine learning: Analyzing

the connection to overfitting. In CSF, 2018. 1, 2, 3

[47] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016. 6

[48] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning re-

quires rethinking generalization. In ICLR, 2016. 1, 8

[49] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang.

Efficient private ERM for smooth objectives. In IJCAI, 2017.

3

[50] Y. Zhou, H. Chang, K. E. Barner, and B. Parvin. Nuclei seg-

mentation via sparsity constrained convolutional regression.

In ISBI, 2015. 1

2108

