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Abstract

Deep neural networks are known to be vulnerable to ad-

versarial examples which are carefully crafted instances to

cause the models to make wrong predictions. While adver-

sarial examples for 2D images and CNNs have been exten-

sively studied, less attention has been paid to 3D data such

as point clouds. Given many safety-critical 3D applications

such as autonomous driving, it is important to study how

adversarial point clouds could affect current deep 3D mod-

els. In this work, we propose several novel algorithms to

craft adversarial point clouds against PointNet, a widely

used deep neural network for point cloud processing. Our

algorithms work in two ways: adversarial point perturba-

tion and adversarial point generation. For point perturba-

tion, we shift existing points negligibly. For point genera-

tion, we generate either a set of independent and scattered

points or a small number (1-3) of point clusters with mean-

ingful shapes such as balls and airplanes which could be

hidden in the human psyche. In addition, we formulate six

perturbation measurement metrics tailored to the attacks in

point clouds and conduct extensive experiments to evaluate

the proposed algorithms on the ModelNet40 3D shape clas-

sification dataset. Overall, our attack algorithms achieve a

success rate higher than 99% for all targeted attacks 1.

1. Introduction

Despite of the great success in various learning tasks,

deep neural networks (DNNs) have been found vulnerable

to adversarial examples. The adversary is able to add im-

perceivable perturbation to the original data and mislead

DNNs with high confidence. Many algorithms have been

proposed to generate adversarial examples for data such as

2D images [25, 9, 17, 15, 3], natural languages [10, 33], and

audios [4, 5]. Several recent works [1, 7] have proposed ad-

versarial examples in the 3D space, but they simply project

1Untargeted attacks are easier to achieve with the proposed methods,

so in this paper we only focus on targeted attacks.

Figure 1: Attack pipeline. Our algorithms create adversar-

ial examples by either adversarial point perturbation (left)

or adversarial point generation (right). The bottle is mis-

classified after our attacks.

3D objects to 2D images as data pre-processing. However,

no existing work has explored the vulnerability of actual 3D

models. In this paper, we study the robustness of 3D mod-

els which directly deal with 3D objects. Specifically, we

choose to represent 3D objects with point clouds, which are

the raw data from most 3D sensors such as depth cameras

and Lidars. Therefore, we attack 3D models by generating

3D adversarial point clouds.

As to the attacking target, we focus on the commonly

used PointNet model [19]. We choose PointNet because the

model and its variants have been widely and successfully

adopted in many applications such as 3D object detection

for autonomous driving [18, 34, 30], semantic segmentation

for indoor scene understanding [12, 19], and AI-assisted

shape design [24]. Furthermore, the model has been shown

to be robust to various input point perturbations and cor-

ruptions [19]. The demonstrated more robustness than 3D

CNNs makes it a challenging and solid benchmark model

for our evaluations. Although we focus on attacking Point-

19136



Net, we expect our attacking algorithms and evaluation met-

rics extensible to more 3D models.

As the input to PointNet, a point cloud is a 3D geometric

data structure that has the advantages of simple represen-

tation and low storage requirement. However, it is chal-

lenging to generate adversarial point clouds given its spe-

cial properties. The point cloud’s irregular format has made

existing attack algorithms designed for 2D images unsuit-

able: 1) In raw point clouds with XY Z, there are no “pixel

values” positioned in a regular structure that can be slightly

modified; 2) The search space for generating new adversar-

ial points is very large, as points can be added to arbitrary

positions; 3) The commonly used Lp norm measurement

in 2D images to bound perturbations does not fit for point

cloud data with irregularity and varying cardinality.

To the best of our knowledge, we are the first to extend

adversarial attack research to the irregular point cloud data,

by addressing aforementioned challenges. We propose sev-

eral novel attack methods for mainly two types of adversar-

ial attacks on point clouds: adversarial point perturbation

and adversarial point generation which are unnoticeable to

human or hidden in the human psyche. The attack pipeline

is illustrated in Figure 1.

For adversarial point perturbation, we propose to shift

existing points negligibly. We optimize the perturbation

vector under the commonly used Lp norm constraint. Our

experiments show that we are able to craft unnoticeable ad-

versarial point clouds with 100% success rate given an ac-

ceptable perturbation budget.

For adversarial point generation, We propose to synthe-

size and place a set of independent points or a limited num-

ber of point clusters close to the original object. In particu-

lar, we search for “vulnerable” regions of objects and opti-

mize the positions of points and the shapes of the clusters.

In total, we have three kinds of generated points, namely

independent points, adversarial clusters (points in generic

shapes such as balls), and adversarial objects (points in ob-

ject shapes such as mini airplanes), shown in the right three

columns in Figure 1. We constrain the generation by their

sizes, their distances to the object surface as well as how

many shapes we place.

Our attacks achieve 100% success rate for scattered ad-

versarial points, 99.3% for adding three adversarial shapes,

98.2% for two, and 78.8% for one.

Furthermore, in Section 6.4 we discuss the transferrabil-

ity of our 3D adversarial point clouds as well as the pos-

sibility to combine PointNet with CNNs to defense attacks

in images. Sample code and data is available at https:

//github.com/xiangchong1/3d-adv-pc to sup-

port further research.

To summarize, the contributions of this paper can be

summarized as follows:

• We are the first to generate 3D adversarial examples

against 3D learning models and provide baseline eval-

uations for future research. Specifically, we choose

representative point cloud data and PointNet model for

our evaluations.

• We demonstrate the unique challenges in dealing with

irregular data structures such as point clouds and pro-

pose novel algorithms for both adversarial point per-

turbation and adversarial point generation.

• We propose six different perturbation metrics tailored

to different attack tasks and perform extensive experi-

ments to show our attack algorithms can achieve a suc-

cess rate higher than 99% for all targeted attacks.

• We provide robustness analysis for 3D point cloud

models and show that analyzing properties of differ-

ent 3D models sheds light on potential defenses for 2D

instances.

2. Related Work

Point Clouds and PointNet. Point clouds are consisted of

unordered points with varying cardinality, which makes it

hard to be consumed by neural networks. Qi et al. [19] ad-

dressed this problem by proposing a new network called

PointNet, which is now widely used for deep point cloud

processing. PointNet and its variants [20, 26] exploit a

single symmetric function, max pooling, to reduce the un-

ordered and varying length input to a fixed-length global

feature vector and thus enables end-to-end learning. [19]

also tried to demonstrate the robustness of the proposed

PointNet and introduced the concept of critical points and

upper bounds. They showed that points sets laying between

critical points and upper bounds yield the same global fea-

tures and thus PointNet is robust to missing points and ran-

dom perturbation. However, they did not study the robust-

ness of PointNet against adversarial manipulations, which

is the main focus of this paper.

Adversarial Examples. Szegedy et al. [25] first pointed

out that machine learning models such as neural networks

were vulnerable to carefully crafted adversarial perturba-

tion. An adversarial example which appears similar to its

original data can easily fool the neural networks with high

confidence. Such vulnerability of machine learning mod-

els has raised great concerns in the community and many

works have been proposed to improve the attack perfor-

mance [9, 17, 15, 3, 16, 29, 28] and search for possible

defense [2, 14, 31, 21, 22, 32]. The state-of-the-art attack

algorithm, optimization based attack [3], defines an objec-

tive loss function which measures both attack effectiveness

and perturbation magnitude, and uses optimization to find a

near-optimal adversarial solution. However, the algorithm

only deals with 2D data. Several recent works [11, 1, 7]

also study the adversarial examples in the physical world.

However, these works only project physical objects to 2D
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images and do not study models which directly deal with

3D objects. To the best of our knowledge, we are the first

to generate adversarial examples for 3D machine learning

models.

3. Problem Formulation

Point Cloud Data. A point cloud is a set of points which

are sampled from object surfaces. A data record x ∈ R
n×3

corresponds to a point set of size n, where each point is

represented by a 3-tuple (x, y, z) coordinate. One most im-

portant characteristic of point cloud data is its irregularity

(a point cloud is not defined on a regular grid structure),

which makes it hard to adapt existing attacking algorithms

from 2D images. Moreover, we are able to add points at

any positions in the 3D space while we cannot add pixels

in 2D images. However, such lack of constrain results in

an extremely large search space for generative adversarial

examples. New attack algorithms should be proposed to ad-

dress the above problems.

Targeted Adversarial Attacks. In this paper, we only fo-

cus on targeted attacks against 3D point cloud classification

models. It is flexible to extend our algorithms to other tasks

like attacking segmentation models.

The goal of targeted attacks is to mislead a 3D deep

model (e.g., PointNet) to classify an adversarial example as

a selected target class. Formally, for a classification model

F : X → Y , which maps an input x ∈ X ⊂ R
n×3 to its

corresponding class label y ∈ Y ⊂ Z, an adversary has a

malicious target class t′ ∈ Y . Based on a perturbation met-

ric D : Rn×3 ×R
n′×3 → R, the goal of the attack is to find

a legitimate input x′ ⊂ R
n′×3 which:

minD(x, x′), s.t. F(x′) = t′ (1)

Note that, for point cloud data, n does not necessarily equal

to n′.

As mentioned in [3], directly solving this problem is dif-

ficult. Therefore, we reformulate the problem as gradient-

based optimization algorithms:

min f(x′) + λ ∗ D(x, x′) (2)

Here f(x′) = (max
i 6=t′

(Z(x′)i) − Z(x′)t′)
+ is the adver-

sarial loss function whose output measures the possibility

of a successful attack, where Z(x)i is the ith element of

the logits (the input of softmax layer) and (r)+ represents

max(r, 0). By optimizing over Equation 2, we aim to search

for adversarial examples with least 3D perturbation.

Attacking Types. In this paper, we consider two differ-

ent types of attacks in point clouds 2: adversarial point per-

2To guarantee the points can still cover the object surface, we do not

allow an adversary to remove points.

turbation and adversarial point generation. In perturbation

attacks, we modify existing points by shifting their XY Z

positions with adversarial jitters such that a point xi ∈ R
3

in the point cloud x becomes x′
i = xi + δi, for i = 1, ..., n

where δi ∈ R
3 is the perturbation to the i-th point. In

generation attacks, we generate a set of adversarial points

z = {zi|i = 1, ..., k} (or z ∈ R
k×3 as an array represen-

tation of it) where each zi ∈ R
3 is a new point in addition

to the existing point cloud x. Then the union of the orig-

inal points and adversarial points are input to the model:

x′ = x ∪ z, or in the array representation x′ ∈ R
(n+k)×3

through array concatenation (thus n′ = n + k). This man-

ner of attacking is very new and vastly different from at-

tacks in images, because we cannot generate new pixels in

a fix-sized image.

4. Adversarial Point Perturbation

In this section, we focus on the first and the simpler type

of point cloud attack: adversarial point perturbation. Since

for perturbation we have correspondences between the orig-

inal points and the perturbed ones, we can simply use Lp

norm to measure the distance between the two clouds.

Lp Norm. The Lp norm is a commonly used metric for ad-

versarial perturbation of fixed-shape data. For the original

point sets S and corresponding adversarial set S ′, the Lp

norm of the perturbation is defined as:

DLp
(S,S ′) = (

∑

i

(si − s′i)
p
)

1

p (3)

where si is the ith point coordinate in set S , and s′i is its

corresponding point in set S ′.

We can directly use Equation 2 to generate the adversar-

ial perturbations {δi}
n
i=1, by optimization with the L2 norm

distance to bound the perturbation.

5. Adversarial Point Generation

Besides perturbing existing points, another general type

of attacking strategy is to generate new adversarial points

to mislead the 3D model. Among the ways to generate new

points, a simple approach is to add arbitrary number of in-

dependent points (Section 5.1), ideally close to the object

surface so that they are unnoticeable 3.

On the other hand, we consider a more challenging at-

tack task where the adversary is only able to add a limited

number (1-3) of adversarial shapes (Section 5.2 and Sec-

tion 5.3), as either generic primitive shapes such as balls or

meaningful shapes such as small airplane models. The task

is challenging since points can only be added within small

regions of the 3D space and the points of original object

remain unchanged. The goal of this attack is to generate

3How to realize this attack in real world is still a question though.
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adversarial point clusters that are plausible so they cloud be

hidden in the human psyche.

In the following subsections, we will introduce metrics

and our attacking algorithms to generate adversarial indi-

vidual points, as well as two kinds of adversarial shapes:

adversarial clusters and adversarial objects.

5.1. Generating Adversarial Independent Points

In this section, we focus on the attack of generating (un-

noticeable) independent points. Note that when adding new

points to the original point clouds, we have to deal with

data dimensionality changes. We first introduce metrics that

measure the deviation of adversarial points to the original

one and then desrcribe our attack algorithm.

5.1.1 Perturbation Metrics

Hausdorff Distance. Hausdorff distance is often used to

measure how far two subsets of a metric space are from

each other. Formally, for an original point set S and its

adversarial counterpart S ′, we define Hausdorff distance as:

DH(S,S
′) = max

y∈S′

min
x∈S

‖x− y‖
2
2 (4)

Intuitively, Hausdorff distance finds the nearest original

point for each adversarial point and outputs the maximum

square distance among all such nearest point pairs. We do

not include the term max
x∈S

min
y∈S′

‖x− y‖
2
2 since we do not

modify the original object S .

Chamfer Measurement.4 Chamfer measurement [8] is a

similar perturbation metric as Hausdorff distance. The dif-

ference is Chamfer Measurement takes the average, rather

than the maximum, of the distances of all nearest point

pairs. The formal definition is as follows:

DC(S,S
′) =

1

‖S ′‖0

∑

y∈S′

min
x∈S

‖x− y‖
2
2 (5)

Number of Points Added. We also want to measure the

number of points added in our attack, by counting points

whose distances from the object surface is above a certain

threshold. Formally, for an original point set S , the gener-

ated point set S ′, and a threshold value Tthre, the number of

points added is defined as:

Count(S,S ′) =
∑

y∈S′

✶[min
x∈S

‖x− y‖2 > Tthre] (6)

where ✶[·] is the indicator function whose value is 1 when

the statement is true and 0 otherwise. Note that the number

of points added is not optimized as the perturbation metric

4We name it as “Chamfer measurement” since this perturbation metric

does not satisfy triangle inequality, which means it does not satisfy the

definition of distance.

D in Equation 2 due to its incompatibility with gradient-

based optimization algorithms, but is reported as an addi-

tional performance metric.

5.1.2 Attacking Algorithm

Directly adding points to the unconstrained 3D space is in-

feasible due to the large search space. Therefore we propose

an initialize-and-shift method to find appropriate position

for each added point:

1. Initialize a number of points to the same coordinates

of existing points as initial points.

2. Shift initial points via optimizing Equation 2 and out-

put their final positions.

During the optimization process, some initial points are

shifted from their initial positions and “added” to the origi-

nal objects as adversarial points. The others that are barely

shifted do not change the shape of the object, and thus can

be discarded as points-not-added.

To make the optimization more efficient, we propose to

initialize points to the positions of “critical points” of the

target. Critical points are like key points or salient points

in a 3D point cloud. In PointNet specifically, they can be

computed by taking the points that remain active after the

max pooling [19], which means they are at important posi-

tions that determine the object category. Adversarial points

around these critical positions are more likely to change the

final prediction.

We use Hausdorff and Chamfer measurements as the per-

turbation metrics D for this attack because they are more ca-

pable of measuring how unnoticeable the adversarial point

clouds of different dimensionality are.

5.2. Generating Adversarial Clusters

For adversarial clusters, we aim to minimize the radius

of the generated cluster so that they look like a ball attached

to the original object and will not arouse suspicion. In addi-

tion, we also encourage the cluster to be close to the object

surface. To satisfy these two requirements, we introduce the

perturbation metrics used as follows.

5.2.1 Perturbation Metrics

Farthest Distance. If the farthest pair-wise point distance

in a point set is controlled within a certain threshold, the

points in this set are able to form a shaped cluster. Formally,

we define farthest distance of a point set S as:

Dfar(S) = max
x,y∈S

‖x− y‖2 (7)

Chamfer Measurement. Besides encouraging point clus-

ter to form within a small radius, we may also want to push
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the added clusters towards the surface of the object. There-

fore, we also include the Chamfer Measurement (defined

in Equation 5) as our perturbation metric and optimization

objective.

Number of Clusters Added. Similar to the number of

points added in the unnoticeable adversarial point cloud

generation, the number of clusters added also serves as

an additional metric for attack performance, which is hard

bounded to 1-3 in our experiments.

5.2.2 Attacking Algorithm

Before going into the details of generation algorithms, we

need to reformulate Equation 2 as follow:

min f(x′) + λ · (
∑

i

Dfar(Si) + µ · DC(S0,Si)) (8)

where i ∈ {1, 2, . . . ,m}, S0 is the original object, Si is

the ith adversarial point cluster, m is number of adversarial

clusters, and µ is the weight used to balance the importance

between Farthest Distance loss and Chamfer Measurement

loss. Here we abuse the notation a little to use D to denote

both mappings Rn×3 × R
n′×3 → R and R

n×3 → R.

Generating adversarial clusters is a special case of

adding adversarial point clouds, so we can adopt the

initialize-and-shift method used. However, unlike indepen-

dent point generation, we have to constrain the added points

clustered to be within small regions. As points are likely to

get stuck in their initialized vicinity due to the ubiquity of

local-minima, we need a more efficient initialization meth-

ods for adversarial clusters generation.

We try to leverage the idea of “vulnerable regions” for

initialization. For formatted data like 2D images, it is com-

mon to impose a L1 constraint to encourage the sparsity

of the perturbation vector. The region with large perturba-

tion under a proper L1 constraint is believed to be impor-

tant for model decisions and thus vulnerable to adversarial

attacks. However, the L1 constraint is not well defined on

point clouds thus inapplicable here. Instead, we take advan-

tage of “critical points” again to effectively find potentially

vulnerable regions for initialization. Critical points, as a

subset of the original set, collectively determine the global

features of the object shape but could also be vulnerable re-

gions to attacks.

Given a victim object and a target class t′, the attack pro-

cess is as follows:

1. Obtain the critical points of the objects in target class.

2. Use the clustering algorithm DBSCAN [6] to cluster

the selected critical points.

3. Choose points in the k largest clusters as the initial

points, where k is a self-chosen parameter as well as

a metric for attack performance evaluation.

4. Optimize over Equation 8 using gradient-based algo-

rithms and find optimal cluster positions and shapes.

Note that DBSCAN groups points that are closely packed

(or points with local density passing a threshold), while

marking the other points lying in low-density regions as out-

liers [6]. Thus, we are able to filter out outlier points and get

compact clusters via it.

Besides tuning DBSCAN, it is essential to determine the

number of objects in target class we use, as well as the

number of critical points selected from each target object.

Choosing only one target object restricts the space distribu-

tions of the critical points. However, using too many target

objects result in density scattered critical points unhelpful

to identify a sparse set of vulnerable regions. The reasons

for tuning the number of critical points selected are simi-

lar, we want a moderate number of them. However, such

parameter tuning does not need to too fine grained as the

attack pipeline is still dominated by the optimization over

Equation 8.

5.3. Generating Adversarial Objects

For this attack, we start from some meaningful objects

like small airplanes, slightly modify them, and place them

in the appropriate adversarial positions. People may not

become suspicious because the adversarial objects are like

other benign objects nearby.

5.3.1 Perturbation Metrics

Lp Norm. Since we want to only slightly modify the mean-

ingful objects and make the generated shapes similar to the

real-world ones, we adopt the Lp, specifically L2, as our

first metric.

Chamfer Measurement. Similar to the adversarial clus-

ters, we want to encourage the generate shape to be close

the original object.

Number of Clusters Added. Number of clusters added,

bounded to 1-3, is also used to evaluate the attack perfor-

mance.

5.3.2 Attacking Algorithm

We also need to rewrite the objective function to fit the at-

tack setting:

min f(x′) + λ · (
∑

i

DL2
(Si0,Si) + µ · DC(S0,Si)) (9)

where i ∈ {1, 2, . . . ,m}, S0 is the original object, Si is the

ith adversarial point cluster, Si0 is the ith real-world clus-

ters, m is number of adversarial clusters, and µ is the weight

used to balance the importance between L2 loss and Haus-

dorff Distance loss. To mount this attack, we need to find

the vulnerable regions first and then to initialize the perturb
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the added real-world point clusters. The attack pipeline is

as follows:

1. Obtain the critical points of the objects in target class.

2. Use the clustering algorithm DBSCAN [6] to cluster

the selected critical points.

3. Identify the k largest clusters and calculate the position

of cluster centers, where k is a self-chosen parameter

as well as a metric for attack performance evaluation.

4. Choose meaningful objects and initialize them to make

their centers overlap with the calculated positions in

the previous step.

5. Optimize over Equation 9 using gradient-based algo-

rithms and find optimal cluster positions and shapes.

Note that we also have the freedom to choose the ori-

entation of the modified clusters. Since adversarial clusters

with different orientations would not arouse suspicion, we

do not impose an constraint on the magnitude of rotation.

6. Experiment Results

In this section, we implement the proposed algorithms

for different attack tasks and conduct extensively evaluation

on attack performance based on various metrics.

6.1. Dataset and 3D Models

We use the aligned benchmark ModelNet40 [27, 23]

dataset for our experiments. The ModelNet40 dataset con-

tains 12,311 CAD models from 40 most common object cat-

egories in the world. 9,843 objects are used for training and

the other 2,468 for testing. As done by Qi et al. [19], we uni-

formly sample 1,024 points from the surface of each object,

and re-scale them into a unit ball. We use the same PointNet

structure as proposed in [19] and train the model with all

ModelNet40 training data to obtain our victim model. The

ModelNet40 dataset is very imbalanced. For our attacks,

we randomly select 25 test examples from each 10 largest

classes, namely airplane, bed, bookshelf, bottle, chair, mon-

itor, sofa, table, toilet and vase, to generated adversarial

point clouds for. For each victim data record, we generate

adversarial examples targeted on the rest 9 classes. There-

fore, we have 2,250 (victim,target) attach pairs for our ex-

periments.

6.2. Adversarial Point Perturbation Evaluation

We evaluate the attack performance for adversarial point

perturbation in this subsection. We use L2 distance as the

perturbation constraint D in Equation 2 and minimize the

objective loss to find the optimal perturbation. To obtain

good attack performance, it is essential to choose an appro-

priate value for the weight λ, which controls the balance

between minimizing adversarial loss and perturbation mag-

nitude. If the λ is too small, the perturbation constraint is

Figure 2: Visualization for adversarial point perturbation.

not strong enough and the perturbation would become too

obvious. On the other hand, a λ that is too large would re-

sult in minimizing perturbation magnitude only and fail to

attack. For all of our attacks, we perform 10-step binary

search for the near-optimal λ. During the search, we record

the smallest perturbation D(x, x′) and its corresponding ad-

versarial example x′, and finally output the most unnotice-

able adversarial example.

we report the experiment results for three cases: best

case for the most easily attacked (victim,target) class pair,

average case for all attacking class pairs, and worst case for

the most difficult pair. The success rate and mean perturba-

tion loss for point shifting attacks are reported in the first

two columns of Table 1. We can see we successfully attack

all victims examples into all target classes. The perturbation

loss for this attack is relatively small, considering the per-

turbation vector contains 1,024 elements. We also provide

visualization in the first row of Figure 2. We choose class

“bottle” as our visualization victim because adversarial per-

turbation would become more obvious for a simple shape

like a bottle. More visualization for other objects can be

found in the supplementary. From the visualization, we can

see the perturbation (the adversarial point cloud) is nearly

indistinguishable.

6.3. Adversarial Point Generation Evaluation

In this subsection, we evaluate the attack performance

of three different ways of adversarial point generation: in-

dependent points, adversarial clusters, and adversarial ob-

jects.

Adversarial Independent Points. For generating adver-

sarial independent points, we take Hausdorff and Chamfer

measurements as perturbation metrics D and optimize over

Equation 2. We use two different distances separately and

compare performance of these two constraints. To calcu-

late the number of points added, we get the critical points

of the newly generated adversarial point clouds, set Tthre
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Case
Shifting Points (L2 Norm) Adding Points (DH) Adding Points (DC)

mean loss success rate mean loss #points added success rate mean loss #points added success rate

Best 0.0874 100% 0.0003 93 100% 3.1× 10−5 58 100%

Average 0.3032 100% 0.0105 88 100% 2.7× 10−4 51 100%

Worst 0.4674 100% 0.0210 99 100% 7.2× 10−4 49 100%

Table 1: Attack performance evaluation for adversarial point perturbation and adversarial independent point generation

Attack
#Shape 1 #Shape 2 #Shape 3

Dfar / DL2
DC success rate Dfar / DL2

DC success rate Dfar / DL2
DC success rate

adversarial clusters 0.5401 0.1374 78.8% 0.3118 0.1839 98.2% 0.1818 0.1744 99.3%

adversarial objects 0.5539 0.1776 54.6% 0.0838 0.1332 93.8% 0.0212 0.0855 97.3%

Table 2: Attack performance evaluation for adversarial clusters and adversarial objects (average case).

Figure 3: Visualization for adding 3 adversarial clusters/objects.

to 0.01, and count over points moved further than it. The

experiment results are shown in Table 1. First, both Haus-

dorff and Chamfer constraints result in attack success rate of

100%, proving the effectiveness of proposed initialize-and-

shift algorithm. Secondly, we can see great difference be-

tween the mean distance losses and number of points added.

Since Hausdorff distance only controls the largest distance

of all nearest point pairs while Chamfer measurement cal-

culates the average distance, the loss value of Hausdorff is

much larger than that of Chamfer and so does the number of

points added. A more detailed analysis on the different at-

tack performance of Hausdorff and Chamfer measurement

is included in the supplementary.

The visualization of the adversarial bottle by adding

points is shown in the second and third rows of Figure 2.

From the figure, we can easily observe the different char-

acteristics of different constraints (Hausdorff constraint re-

sults in more added points while Chamfer constraint leads

to more obvious outliers). Considering the different prop-

erties of the two constraints, one can combine these two

constraints and adjust the weights for the two perturbation

metrics according to the specific attack goals.

Adversarial Clusters. To get initial clusters, we randomly

select 8 different objects from the target class test set, and

obtain 32 most important critical points for each selected

object based on the number of global feature channels it

contributes to. We then use DBSCAN algorithm to cluster

these 32 × 8 critical points. After that, we retain k clusters

of largest size and discard other small clusters and outliers.

For each cluster, we conduct subsampling or padding to ob-

tain 32 initial points. We vary k from 1 to 3 to see how

the number of adversarial clusters affects the attack perfor-

mance (success rate and distance loss). In Equation 8, the

parameter λ is chosen via 5-step binary search while µ is

prefixed according to the adversary’s preference on smaller

or closer clusters. In our experiment, we set µ to 0.1. Due

to the lack of space, we only report the quantitative results

for average case in Table 2. The comprehensive results for

three cases are included in the supplementary.

The table shows that, as the number of adversarial clus-

ters increases, the attack success rate is significantly im-

proved and we are able to attack 99.3% examples when

adding 3 adversarial clusters. Moreover, a larger number

of added clusters also helps reduce the perturbation loss for

each cluster. When we only add one cluster, the farthest

distance of the cluster for average case is 0.5401, which is
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Shift Add (DH) Add (DC) 3 Clusters 3 Objects

PointNet++ [20] 3.9% 8.9% 3.6% 8.9% 9.6%

DGCNN [26] 1.9% 6.8% 7.4% 16.9% 16.5%

Augmented PointNet 3.0% 4.0% 5.7% 46.5% 34.5%

Different initialization 5.5% 7.4% 7.8% 48.3% 39.2%

Table 3: Attack success rates of untargeted transfer at-

tacks against PointNet++, DGCNN, augmented PointNet,

and PointNet with a different weight initialization.

ǫ 0 0.1 0.2 0.3 0.4 0.5

LeNet (original) 99.2% 70.7% 35.5% 18.7% 12.0% 9.0%

LeNet (binarized) 98.9% 97.2% 93.3% 86.2% 75.4% 28.0%

PointNet 99.0% 98.6% 98.1% 96.8% 94.1% 63.8%

Table 4: Test accuracy of adversarial examples on MNIST.

quite large considering the whole object fits in a unit ball.

However, the farthest distance drops dramatically to 0.1818

when we are adding 3 clusters. Thus, it is reasonable to ex-

pect better attack performance if the adversary is able to add

more than 3 clusters. Visualization for adding 3 adversarial

clusters can be found in the first row of Figure 3. Several

small clusters are clearly shown for most attack pairs.

Adversarial Objects. For this attack, we use the same set-

ting as the adversarial cluster to identify the vulnerable re-

gions. We randomly select an object from the “airplane”

class and initialize it to the centers of different vulnerable

regions. The airplane is re-scaled to three-tenths of its orig-

inal size, and 64 points are uniformly sampled from the sur-

face. 5 After the initialization, we optimize according to

Equation 9 to perform the attack. Similarly, the parameter

λ is determined by binary search while the µ is pre-set to

0.2 in our experiment.

The results for different perturbation metrics are pro-

vided in the second row of Table 2. We can this attack is

more challenging than that of adversarial clusters since the

shapes of the objects are almost predefined. However, the

shapes similar to real-world objects made this attack less

suspicious. Moreover, we still achieve a reasonably high

success rate of 97.3% when adding three adversarial clus-

ters, and we can achieve better performance if more adver-

sarial objects are allowed to be added. We also provide vi-

sualization in the second row of Figure 3. We can see the

several small airplanes near the bottle are already capable

to fool the PointNet model. Comparison between two rows

of visualization in Figure 3 shows that when the clusters

are close to the object, adversarial clusters have better vi-

sualization performance while adversarial objects are less

suspicious when the clusters are far from the surface. This

further justifies our attempt to introduce two kinds of mean-

ingful shapes.

5We choose an airplane to simulate the scenario where the adversary

could manipulate several micro-UAVs to suspend around the victim object.

6.4. More Analysis on 3D Model Robustness

In this subsection, we provide robustness analyses for

PointNet-like models.

Transferablity of Adversarial Point Clouds. We feed

our crafted adversarial point clouds to PointNet++ [20],

DGCNN [26], a PointNet trained with data augmentation,

and a PointNet trained with a different weight initialization

and find that theses 3D adversarial examples actually hardly

transfer as targeted attacks. Furthermore, we calculate the

success rate for untargeted attack and the results are shown

Table 3. We can see the transferability for untargeted at-

tack is also limited compared with 2D adversarial examples.

Since our proposed attack methods are general and can be

applied to attack other 3D models, the low transferability

may be related with special properties of 3D models them-

selves. This intrinsic property makes it possible to design

black-box defense against such adversarial instances.

Defense on MNIST [13] with PointNet. Motivated by

aforementioned robustness analysis, we take a step forward

to use PointNet structure for defense on MNIST dataset. We

binarize the grey-scale images and sample 256 points from

each MNIST digit. We craft adversarial examples by attack-

ing LeNet [13] with FGSM [9]. The test accuracy of bina-

rized images (LeNet) and sampled point clouds (PointNet)

with different values of attack parameter ǫ are reported in

Table 4. We can see the PointNet model achieve relatively

high test accuracy and show promising defense properties

against adversarial examples.

In summary, our analysis shows that PointNet structure

is more robust than traditional CNNs. We believe part of the

robustness comes from the learning of global features via

max pooling. Though the intriguing properties is not fully

understood yet, we believe a further study on this would mo-

tivate a defense direction to include PointNet-like structure

to improve the robustness of traditional nerual networks.

7. Conclusion

Arguable as the first to study the vulnerability of 3D

learning models, in this paper, we have proposed several

attacking algorithms to generate adversarial point clouds to

fool the widely used PointNet model, including adversar-

ial point perturbation and adversarial point generation. We

also propose six different perturbation metrics and exten-

sively evaluate the performance of the proposed attack al-

gorithms. Our extensive experiment results show that the

proposed algorithms are able to find 3D adversarial point

clouds with an attack success rate higher than 99% given an

acceptable perturbation budget. We hope this work is able

to provide a baseline as well as a guideline for future 3D

adversarial example research.
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