
Monocular Total Capture: Posing Face, Body, and Hands in the Wild ∗

Donglai Xiang Hanbyul Joo Yaser Sheikh

Carnegie Mellon University

{donglaix,hanbyulj,yaser}@cs.cmu.edu

Figure 1: We present the first method to simultaneously capture the 3D total body motion of a target person from a monocular

view input. For each example, (left) input image and (right) 3D total body motion capture results overlaid on the input.

Abstract

We present the first method to capture the 3D total mo-

tion of a target person from a monocular view input. Given

an image or a monocular video, our method reconstructs

the motion from body, face, and fingers represented by a

3D deformable mesh model. We use an efficient represen-

tation called 3D Part Orientation Fields (POFs), to encode

the 3D orientations of all body parts in the common 2D im-

age space. POFs are predicted by a Fully Convolutional

Network, along with the joint confidence maps. To train our

network, we collect a new 3D human motion dataset captur-

ing diverse total body motion of 40 subjects in a multiview

system. We leverage a 3D deformable human model to re-

construct total body pose from the CNN outputs with the aid

of the pose and shape prior in the model. We also present

a texture-based tracking method to obtain temporally co-

herent motion capture output. We perform thorough quan-

titative evaluations including comparison with the existing

body-specific and hand-specific methods, and performance

analysis on camera viewpoint and human pose changes. Fi-

nally, we demonstrate the results of our total body motion

capture on various challenging in-the-wild videos.

∗Website: http://domedb.perception.cs.cmu.edu/mtc

1. Introduction

Human motion capture is essential for many applications

including visual effects, robotics, sports analytics, medi-

cal applications, and human social behavior understanding.

However, capturing 3D human motion is often costly, re-

quiring a special motion capture system with multiple cam-

eras. For example, the most widely used system [2] needs

multiple calibrated cameras with reflective markers care-

fully attached to the subjects’ body. The actively-studied

markerless approaches are also based on multi-view sys-

tems [21, 29, 19, 25, 26] or depth cameras [50, 7]. For this

reason, the amount of available 3D motion data is extremely

limited. Capturing 3D human motion from single images or

videos can provide a huge breakthrough for many applica-

tions by increasing the accessibility of 3D human motion

data, especially by converting all human-activity videos on

the Internet into a large-scale 3D human motion corpus.

Reconstructing 3D human pose or motion from a monoc-

ular image or video, however, is extremely challenging due

to the fundamental depth ambiguity. Interestingly, humans

are able to almost effortlessly reason about the 3D human

body motion from a single view, presumably by leverag-

ing strong prior knowledge about feasible 3D human mo-

tions. Inspired by this, several learning-based approaches

have been proposed over the last few years to predict 3D

human body motion (pose) from a monocular video (im-
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age) [58, 44, 4, 60, 9, 35, 33, 73, 27, 36, 69] using available

2D and 3D human pose datasets [5, 28, 1, 22, 25]. Recently,

similar approaches have been introduced to predict 3D hand

poses from a monocular view [74, 37, 12]. However, fun-

damental difficulty still remains due to the lack of available

in-the-wild 3D body or hand datasets that provide paired

images and 3D pose data; thus most of the previous meth-

ods only demonstrate results in controlled lab environments.

Importantly, there exists no method that can reconstruct mo-

tion from all body parts including body, hands, and face al-

together from a single view, although this is important for

fully understanding human behavior.

In this paper, we aim to reconstruct the 3D total mo-

tions [26] of a human using a monocular imagery captured

in the wild. This ambitious goal requires solving challeng-

ing 3D pose estimation problems for different body parts

altogether, which are often considered as separate research

domains. Notably, we apply our method to in-the-wild sit-

uations (e.g., videos from YouTube), which has rarely been

demonstrated in previous work. We use a 3D representation

named Part Orientation Fields (POFs) to efficiently encode

the 3D orientation of a body part in the 2D space. A POF is

defined for each body part that connects adjacent joints in

torso, limbs, and fingers, and represents relative 3D orien-

tation of the rigid part regardless of the origin of 3D Carte-

sian coordinates. POFs are efficiently predicted by a Fully

Convolutional Network (FCN), along with 2D joint confi-

dence maps [63, 68, 15]. To train our networks, we collect

a new 3D human motion dataset containing diverse body,

hands, and face motions from 40 subjects. Separate CNNs

are adopted for body, hand and face, and their outputs are

consolidated together in a unified optimization framework.

We leverage a 3D deformable model that is built for total

capture [25] in order to exploit the shape and motion prior

embedded in the model. In our optimization framework, we

fit the model to the CNN measurements at each frame to

simultaneously estimate the 3D motion of body, face, fin-

gers, and feet. Our mesh output also enables us to addi-

tionally refine our motion capture results for better temporal

coherency by optimizing the photometric consistency in the

texture space.

This paper presents the first approach to monocular total

motion capture in various challenging in-the-wild scenar-

ios (e.g., Fig. 1). We demonstrate that our single frame-

work achieves comparable results to existing state-of-the-

art 3D body-only or hand-only pose estimation methods on

public benchmarks. Notably, our method is applied to vari-

ous in-the-wild videos, which has rarely been demonstrated

in either 3D body or hand estimation area. We also con-

duct thorough experiments on our newly collected dataset

to quantitatively evaluate the performance of our method

with respect to viewpoint and body pose changes. The ma-

jor contributions of our paper are summarized as follows:

• We present the first method to produce 3D total mo-

tion capture results from a monocular image or video

in various challenging in-the-wild scenarios.

• We introduce an optimization framework to fit a de-

formable human model on 3D POFs and 2D keypoint

measurements for total body pose estimation, showing

comparable results to the state-of-the-art methods on

both 3D body and 3D hand estimation benchmarks.

• We present a method to enforce photometric consis-

tency across time to reduce motion jitters.

• We capture a new 3D human motion dataset with 40

subjects as training and evaluation data for monocular

total motion capture.

2. Related Work

Single Image 2D Human Pose Estimation: Over the

last few years, great progress has been made in detecting

2D human body keypoints from a single image [64, 63,

11, 68, 38, 15] by leveraging large-scale manually anno-

tated datasets [28, 5] with deep Convolutional Neural Net-

work (CNN) framework. In particular, the major break-

through is boosted by using the fully convolutional archi-

tectures to produce confidence scores for each joint with a

heatmap representation [63, 68, 38, 15], which is known to

be more efficient than directly regressing the joint locations

with fully connected layers [64]. A recent work [15] learns

the connectivity between pairs of adjacent joints, called the

Part Affinity Fields (PAFs) in the form of 2D heatmaps,

to assemble 2D keypoints for different individuals in the

multi-person 2D pose estimation problem.

Single Image 3D Human Pose Estimation: Early

work [44, 4] models the 3D human pose space as an

over-complete dictionary learned from a 3D human motion

database [1]. More recent approaches rely on deep neural

networks, which are roughly divided into two-stage meth-

ods and direct estimation methods. The two-stage meth-

ods take 2D keypoint estimation as input and focus on lift-

ing 2D human poses to 3D without considering input im-

age [9, 17, 33, 36, 39, 20]. These methods ignore rich in-

formation in images that encodes 3D information, such as

shading and appearance, and also suffer from sensitivity to

2D localization error. Direct estimation methods predict 3D

human pose directly from images, in the form of direct co-

ordinate regression [46, 55, 56], voxel [42, 32, 66] or depth

map [73]. Similar to ours, a recent work uses 3D orienta-

tion fields [31] as an intermediate representation for the 3D

body pose. However, these models are usually trained on

MoCap datasets, with limited ability to generalize to in-the-

wild scenarios.

Due to the above limitations, some methods have been

proposed to integrate prior knowledge about human pose

10966



CNN 
(Sec. 4)

Model Fitting 
(Sec.5)

Deformable Human Model

Mesh Tracking 
(Sec. 6)

Input Image Ii

Joint Confidence Maps S

Part Orientation Fields L

Input Image Ii−1

Model Parameters Ψi Model Parameters Ψ+
i

Model ParametersΨ+
i−1

Figure 2: An overview of our method. Our method is composed of CNN part, mesh fitting part, and mesh tracking part.

for better in-the-wild performance. Some work [41, 48, 67]

proposes to use ordinal depth as additional supervision for

CNN training. Additional loss functions are introduced in

[73, 18] to enforce constraints on predicted bone length and

joint angles. Some work [27, 70] uses Generative Adver-

sarial Networks (GAN) to exploit human pose prior in a

data-driven manner.

Monocular Hand Pose Estimation: Hand pose estima-

tion is often considered as an independent research domain

from body pose estimation. Most of previous work is based

on depth image as input [40, 54, 49, 52, 65, 71]. RGB-based

methods have been introduced recently, for 2D keypoint es-

timation [51] and 3D pose estimation [74, 12, 23].

3D Deformable Human Models: 3D deformable mod-

els are commonly used for markerless body [6, 30, 43] and

face motion capture [8, 13] to restrict the reconstruction out-

put to the shape and motion spaces defined by the models.

Although the outputs are limited by the expressive power

of models (e.g., some body models cannot express cloth-

ing and some face models cannot express wrinkles), they

greatly simplify the 3D motion capture problem. We can fit

the models based on available measurements by optimizing

cost functions with respect to the model parameters. Re-

cently, a generative 3D model that can express body and

hands is introduced by Romero et al. [47]; the Adam model

is introduced by Joo et al. [26] to enable the total body mo-

tion capture (face, body and hands), which we adopt for

monocular total capture.

Photometric Consistency for Human Tracking: Pho-

tometric consistency of texture has been used in various pre-

vious work to improve the robustness of body tracking [45]

and face tracking [61, 62]. Some work [16, 10] also uses op-

tical flow to align rendered 3D human models. In this work,

we improve temporal coherency of our output by a photo-

consistency term which significantly reduces jitters. This is

the first time that such technique is applied to monocular

body motion tracking to the best of our knowledge.

3. Method Overview

Our method takes as input a sequence of images cap-

turing the motion of a single person from a monocular RGB

camera, and outputs the 3D total body motion (including the

motion from body, face, hands, and feet) of the target per-

son in the form of a deformable 3D human model [30, 26]

for each frame. Given an N -frame video sequence, our

method produces the parameters of the 3D human body

model, including body motion parameters {θi}
N
i=1, facial

expression parameters {σi}
N
i=1, and global translation pa-

rameters {ti}
N
i=1. The body motion parameters θ includes

hands and foot motions, together with the global rotation of

the body. Our method also estimates shape coefficients φ

shared among all frames in the sequence, while θ, σ, and t

are estimated for each frame respectively. Here, the output

parameters are defined by the 3D deformable human model

Adam [26]. However, our method can be also applied to

capture only a subset of total motions (e.g., body motion

only with the SMPL model [30] or hand motion only by

separate hand model of Frankenstein in [26]). We denote a

set of all parameters (φ,θ,σ, t) by Ψ, and denote the result

for the i-th frame by Ψi.

Our method is divided into 3 stages, as shown in Fig. 2.

In the first stage, each image is fed into a Convolutional

Neural Network (CNN) obtain the joint confidence maps

and the 3D orientation information of body parts, which we

call the 3D Part Orientation Fields (POFs). In the second

stage, we estimate total body pose by fitting a deformable

human mesh model [26] on the image measurements pro-

duced by the CNN. We utilize the prior information embed-

ded in the human body model for better robustness against

the noise in CNN outputs. This stage produces the 3D pose

for each frame independently, represented by parameters of

the deformable model {Ψi}
N
i=1. In the third stage, we ad-

ditionally enforce temporal consistency across frames to re-

duce motion jitters. We define a cost function to ensure pho-

tometric consistency in the texture domain of mesh model,

based on the fitting outputs of the second stage. This stage

produces refined model parameters {Ψ+
i }

N
i=1. This stage is

crucial for obtaining realistic body motion capture output.

4. Predicting 3D Part Orientation Fields

The 3D Part Orientation Field (POF) encodes the 3D

orientation of a body part of an articulated structure (e.g.,

limbs, torso, and fingers) in 2D image space. The same rep-

resentation is used in a very recent literature [31], and we

describe the details and notations used in our framework.

We pre-define a human skeleton hierarchy S in the form of

a set of ‘(parent, child)’ pairs1. A rigid body part connect-

1See the appendix for our body and hand skeleton definition.
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Figure 3: An illustration of a Part Orientation Field. The

orientation P̂(m,n) for body part P(m,n) is a unit vector

from Jm to Jn. All pixels belong to this part in the POF

are assigned the value of this vector in x, y, z channels.

ing a 3D parent joint Jm ∈ R
3 and a child joint Jn ∈ R

3

is denoted by P(m,n), with Jm,Jn defined in the camera

coordinate, if (m,n) ∈ S. Its 3D orientation P̂(m,n) is rep-

resented by a unit vector from Jm to Jn in R
3 :

P̂(m,n) =
Jn − Jm

||Jn − Jm||
. (1)

For a specific body part P(m,n), its Part Orientation Field

L(m,n) ∈ R
3×h×w encodes its 3D orientation P̂(m,n) as a

3-channel heatmap (in x, y, z directions respectively) in the

image space, where h and w are the size of image. The

value of the POF L(m,n) at a pixel x is defined as,

L(m,n)(x) =

{

P̂(m,n) if x ∈ P(m,n),

0 otherwise.
(2)

Note that the POF values are non-zero only for the pixels

belonging to the current target part P(m,n) and we follow

[15] to define the pixels belonging to the part as a rectangle.

An example POF is shown in Fig. 3.

Implementation Details: We train a CNN to predict joint

confidence maps S and Part Orientation Fields L. The input

image is cropped around the target person to 368 × 368.

The bounding box is given by OpenPose2 [15, 51, 14] for

testing. We follow [15] for CNN architecture with minimal

change. 3 channels are used to estimate POF instead of 2

channels in [15] for every body part in S. L2 loss is applied

to network prediction on S and L. We also train our network

on images with 2D pose annotations (e.g. COCO). In this

situation we only supervise the network with loss on S. Two

networks are trained for body and hands separately.

5. Model-Based 3D Pose Estimation

Ideally the joint confidence maps S and POFs L pro-

duced by CNN provide sufficient information to reconstruct

2https://github.com/CMU-Perceptual-Computing-Lab/

openpose

a 3D skeletal structure up to scale [31]. In practice, S and

L can be noisy, so we exploit a 3D deformable mesh model

to more robustly estimate 3D human pose with the shape

and pose priors embedded in the model. In this section, we

first describe our mesh fitting process for body, and then

extend it to hand pose and facial expression for total body

motion capture. We use superscripts B,LH,RH, T and

F to denote functions and parameters for body, left hand,

right hand, toes, and face respectively. We use Adam [26]

which encompasses the expressive power for body, hands

and facial expression in a single model. Other human mod-

els (e.g., SMPL [30]) can be also used if the goal is to re-

construct only part of the total body motion.

5.1. Deformable Mesh Model Fitting with POFs

Given 2D joint confidence maps SB predicted by our

CNN for body, we obtain 2D keypoint locations {jBm}Jm=1

by taking channel-wise argmax on SB . Given {jBm}Jm=1 and

the other CNN output POFs LB , we compute the 3D orien-

tation of each bone P̂B
(m,n) by averaging the values of LB

along the segment from jBm to jBn as in [15]. We obtain a set

of mesh parameters θ, φ, and t that agree with these image

measurements by minimizing the following objective:

FB(θ,φ, t) = FB
2D(θ,φ, t) + FB

POF
(θ,φ) + FB

p (θ), (3)

where FB
2D, FB

POF
, and FB

p are different constraints as de-

fined below. The 2D keypoint constraint FB
2D penalizes the

discrepancy between network-predicted 2D keypoints and

the projections of the joints in the human body model:

FB
2D(θ,φ, t) =

∑

m

‖jBm −Π(J̃B
m(θ,φ, t))‖2, (4)

where J̃B
m(θ,φ, t) is m-th joint of the human model and

Π(·) is projection function from 3D space to image, where

we assume a weak perspective camera model. The POF

constraint FB
POF

penalizes the difference between POF pre-

diction and the orientation of body part in mesh model:

FB
POF(θ,φ) = wB

POF

∑

(m,n)∈S

1− P̂B
(m,n) · P̃

B
(m,n)(θ,φ),

(5)

where P̃B
(m,n) is the unit directional vector for the bone

PB
(m,n) in the human mesh model, wB

POF
is a balancing

weight for this term, and · is the inner product between vec-

tors. The prior term FB
p is used to restrict our output to

a feasible human pose distribution (especially for rotation

around bones), defined as:

FB
p (θ) = wB

p ‖AB
θ (θ − µB

θ )‖
2, (6)

where AB
θ and µB

θ are pose prior learned from CMU Mo-

cap dataset [1], and wB
p is a balancing weight. We use

Levenberg-Marquardt algorithm [3] to optimize Eq. 3. The

mesh fitting process is illustrated in Fig. 4.
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Figure 4: Human model fitting on estimated POFs and joint

confidence maps. We extract 2D joint locations from joint

confidence maps (left) and then body part orientation from

POFs (middle). Then we optimize a cost function (Eq. 3)

that minimizes the distance between Π(J̃B
m) and jBm and

angle between P̃B
(m,n) and P̂B

(m,n).

5.2. Total Body Capture with Hands, Feet and Face

Given the output of the hand network SLH ,LLH and

SRH ,LRH , we can additionally fit the Adam model to esti-

mate the hand pose using similar optimization objectives:

FLH(θ,φ, t) = FLH
2D (θ,φ, t) + FLH

POF
(θ,φ) + FLH

p (θ).
(7)

FLH is the objective function for left hand and each term is

defined similarly to Eq. 4, 5, 6. Similar to previous work on

hand tracking [59, 57], we use a hand pose prior constraint

FLH
p , learned from the MANO dataset [47]. The objective

function for the right hand FRH is similarly defined.

Once we fit the body and hand parts of the deformable

model to the CNN outputs, the projection of the model on

the image is already well aligned to the target person. Then

we can reconstruct other body parts by simply adding more

2D joint constraints using additional 2D keypoint measure-

ments. In particular, we include 2D face and foot keypoints

from the OpenPose detector. The additional cost function

for toes is defined as:

FT (θ,φ, t) =
∑

m

‖jTm −Π(J̃T
m(θ,φ, t))‖2, (8)

where {jTm} are 2D tiptoe keypoints on both feet from

OpenPose, and {J̃T
m} are the 3D joint location of the mesh

model in use. Similarly for face we define:

FF (θ,φ, t,σ) =
∑

m

‖jFm −Π(J̃F
m(θ,φ, t,σ))‖2. (9)

Note that the facial keypoints J̃F
m are determined by all the

mesh parameters θ,φ, t,σ together. In addition, we also

apply regularization for shape parameters and facial expres-

sion parameters:

Rφ(φ) = ‖φ‖2, Rσ(σ) = ‖σ‖2. (10)

Putting them together, the total optimization objective is

F(θ,φ, t,σ) = FB + FLH + FRH+

FT + FF +Rφ +Rσ,
(11)

where the balancing weights for all the terms are omitted

for simplicity. We optimize this total objective function in

multiple stages to avoid local minima. We first fit the torso,

then add limbs, and finally optimize the full objective func-

tion including all constraints. This stage produces 3D total

body motion capture results for each frame independently

in the form of Adam model parameters {Ψi}
N
i=1.

6. Enforcing Photo-Consistency in Textures

In the previous stages, we perform per-frame process-

ing, which is vulnerable to motion jitters. Inspired by pre-

vious work on body and face tracking [45, 61], we propose

to reduce the jitters using the pixel-level image cues given

the initial model fitting results. The core idea is to enforce

photometric consistency in the model textures, extracted by

projecting the fitted mesh models on the input images. Ide-

ally, the textures should be consistent across frames, but in

practice there exist discrepancies due to motion jitters. In

order to efficiently implement this constraint in our opti-

mization framework, we compute optical flows from pro-

jected texture to the target input image. The destination of

each flow indicates the expected location of vertex projec-

tion. To describe our method, we define a function T which

extracts a texture given an image and a mesh structure:

T i = T (Ii,M(Ψi)) , (12)

where Ii is the input image of the i-th frame M(Ψi) is the

human model determined by parameters Ψi. The function

T extracts a texture map T i by projecting the mesh struc-

ture on the image for the visible parts. We ideally expect

the texture for (i+1)-th frame T i+1 to be the same as T i.

Instead of directly using this constraint for optimization, we

use optical flow to compute the discrepancy between these

textures for easier optimization. More specifically, we pre-

compute the optical flow between the image Ii+1 and the

rendering of the mesh model at (i+1)-th frame with the i-th

frame’s texture map T i, which we call ‘synthetic image’:

fi+1 = f(R(Mi+1,T i), Ii+1), (13)

where Mi+1 = M(Ψi+1) is the mesh for the (i+1)-th

frame, and R is a rendering function that renders a mesh

with a texture to an image. The function f computes optical

flows from the synthetic image to the input image Ii+1. The

output flow fi+1 : x −→ x′ maps a 2D location x to a new

location x′ following the optical flow result. Intuitively, the

computed flow mapping fi+1 drives the projection of 3D

mesh vertices toward the directions for better photometric
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consistency in textures across frames. Based on this flow

mapping, we define the texture consistency term:

Ftex(Ψ
+
i+1) =

∑

n

‖v+
n (i+ 1)− v′

n(i+ 1)‖2, (14)

where v+
n (i+1) is the projection of the n-th mesh vertex as

a function of model parameters Ψ+
i+1 under optimization.

v′

n(i+ 1) = fi+1(vn(i+ 1)) is the destination of each op-

tical flow, where vn(i + 1) is the projection of n-th mesh

vertex of mesh Mi+1. Note that v′

n(i+ 1) is pre-computed

and constant during the optimization. This constraint is de-

fined in image space, and thus it mainly reduces the jitters

in x, y directions. Since there is no image clue to reduce

the jitters along z direction, we just enforce a smoothness

constraint for z-components of 3D joint locations:

F∆z(θ
+
i+1,φ

+
i+1, t

+
i+1) =

∑

m

(J+z
m (i+ 1)− Jz

m(i))2,

(15)

where J+z
m (i + 1) is z-coordinate of the m-th joint of the

mesh model as a function of parameters under optimization,

and Jz
m(i) is the corresponding value in previous frame as a

fixed constant. Finally, we define a new objective function:

F+(Ψ+
i+1) = Ftex + F∆z + FPOF + FF , (16)

where the balancing weights are omitted. We minimize this

function to obtain the parameter of the (i+1)-th frame Ψ+
i+1,

initialized from output of last stage Ψi+1. Compared to the

original full objective Eq. 11, this new objective function is

simpler since it starts from a good initialization. Most of the

2D joint constraints are replaced by Ftex, while we found

that the POF term and face keypoint term are still needed to

avoid error accumulation. Note that this optimization is per-

formed recursively—we use the updated parameters of the

i-th frame Ψ+
i to extract the texture T i in Eq. 12, and up-

date the model parameters at the (i+1)-th frame from Ψi+1

to Ψ+
i+1 with this optimization. Also note that the shape

parameters {φ+
i } should be the same across the sequence,

so we take φ+
i+1 = φ+

i and fix it during optimization. We

also fix the facial expression parameters in this stage.

7. Results

In this section, we present thorough quantitative and

qualitative evaluation of our method.

7.1. Dataset

Body Pose Dataset: Human3.6M [22] is an indoor marker-

based human MoCap dataset, and currently the most com-

monly used benchmark for 3D body pose estimation. We

quantitatively evaluate the body part of our algorithm on it.

We follow the standard training-testing protocol as in [42].

Hand Pose Dataset: Stereo Hand Pose Tracking Bench-

mark (STB) [72] is a 3D hand pose dataset consisting of

Synthetic Image

 Input Image Ii

 Texture Extraction T  Rendering R

 Mesh Mi

 Texture T i

 MeshMi+1

 Optical Flow f

 Input Image Ii+1

 Updated Mesh ParamsΨ
+
i+1

 OptimizationFtex

Figure 5: Illustration of our temporal refinement algorithm.

The top row shows meshes projected on input images at pre-

vious frame, current target frame, and after refinement. In

zoom-in views, a particular vertex is shown in blue, which

is more consistent after applying our tracking method.

30K images for training and 6K images for testing. Dex-

ter+Object (D+O) [53] is a hand pose dataset captured by

an RGB-D camera, providing about 3K testing images in 6

sequences. Only the locations of finger tips are annotated.

Newly Captured Total Motion Dataset: We use the

Panoptic Studio [24, 25] to capture a new dataset for 3D

body and hand pose in a markerless way [26]. 40 subjects

are captured when makeing a wide range of motion in body

and hand under the guidance of a video for 2.5 minutes. Af-

ter filtering we obtain about 834K body images and 111K

hand images with corresponding 3D pose data. We split

this dataset into training and testing set such that no subject

appears in both. This dataset is publicly available online.

7.2. Quantitative Comparison with Previous Work

7.2.1 3D Body Pose Estimation.

Comparison on Human3.6M. We compare the perfor-

mance of our single-frame body pose estimation method

with previous state-of-the-arts. Our network is initialized

from the 2D body pose estimation network of OpenPose.

We train the network using COCO dataset [28], our new

3D body pose dataset, and Human3.6M for 165k iterations

with a batch size of 4. During testing time, we fit Adam

model [26] onto the network output. Since Human3.6M

has a different joint definition from Adam model, we build

a linear regressor to map Adam mesh vertices to 17 joints in

Human3.6M definition using the training set, as in [27]. For

evaluation, we follow [42] to rescale our output to match the

size of an average skeleton computed from the training set.

The Mean Per Joint Position Error (MPJPE) after aligning

the root joint is reported as in [42].

The experimental results are shown in Table 1. Our

method achieves competitive performance; in particular, we

show the lowest pose estimation error among all methods

that demonstrate their results on in-the-wild videos (marked

with ‘*’ in the table). We believe it important to show re-

sults on in-the-wild videos to ensure the generalization be-

yond this particular dataset. As an example, our result with
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Method Pavlakos

[42]

Zhou

[73]

Luo

[31]

Martinez

[33]

Fang

[20]

Yang

[70]

Pavlakos

[41]

Dabral

[18]

Sun

[56]

*Kanazawa

[27]

*Mehta

[35]

*Mehta

[34]

*Ours *Ours+

MPJPE 71.9 64.9 63.7 62.9 60.4 58.6 56.2 55.5 49.6 88.0 80.5 69.9 58.3 64.5

Table 1: Quantitative comparison with previous work on Human3.6M dataset. The ‘*’ signs indicate methods that show

results on in-the-wild videos. The evaluation metric is Mean Per Joint Position Error (MPJPE) in millimeter. The numbers

are taken from original papers. ‘Ours’ and ‘Ours+’ refer to our results without and with prior respectively.

Training data MPJPE

(1) Human3.6M 65.6

(2) Human3.6M + Ours 60.9

(3) Human3.6M + Ours + COCO 58.3

Table 2: Ablation studies on Human3.6M. The evaluation

metric is Mean Per Joint Position Error in millimeter.

pose prior shows higher error compared to our result with-

out prior, although we find that pose prior helps to maintain

good mesh surface and joint angles in the wild.

Ablation Studies. We investigate the importance of each

dataset through ablation studies on Human3.6M. We com-

pare the result by training networks with: (1) Human3.6M;

(2) Human3.6M and our captured dataset; and (3) Hu-

man3.6M, our captured dataset, and COCO. Note that set-

ting (3) is the one we use for the previous comparison. We

follow the same evaluation protocol and metric as in Table

1, with result shown in Table 2. First, it is worth noting that

with only Human3.6M as training data, we already achieve

the best performance among results marked with ‘*’ in Ta-

ble 1. Second, comparing (2) with (1), our new dataset

provides an improvement despite the difference in back-

ground, human appearance and pose distribution between

our dataset and Human3.6M. This verifies the value of our

new dataset. Third, we see a drop in error when we add

COCO to the training data, which suggests that our frame-

work can take advantage of this dataset with only 2D human

pose annotation for 3D pose estimation.

7.2.2 3D Hand Pose Estimation.

We evaluate our method on the Stereo Hand Pose Tracking

Benchmark (STB) and Dexter+Object (D+O), and compare

our result with previous methods. For this experiment we

use the separate hand model of Frankenstein in [26].

STB. Since the STB dataset has a palm joint rather than the

wrist joint used in our method, we convert the palm joint to

wrist joint as in [74] to train our CNN. We also learn a linear

regressor using the training set of STB dataset. During test-

ing, we regress back the palm joint from our model fitting

output for comparison. For evaluation, we follow the previ-

ous work [74] and compute the error after aligning the posi-

tion of root joint and global scale with the ground truth, and

report the Area Under Curve (AUC) of the Percentage of
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Iqbal et al. (0.71)
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*Mueller et al. (0.70)

*Ours (0.84)

Figure 6: Comparison with previous work on 3D hand

pose estimation. We plot PCK curve and show AUC in

bracket for each method in legend. Left: results on the

STB dataset [72] in 20mm-50mm; right: results on Dex-

ter+Object dataset [53] in 0-100mm. Results with depth

alignment are marked with ‘*’; the RGB-D based method is

marked with ‘+’.

Correct Keypoints (PCK) curve in the 20mm-50mm range.

The results are shown in the left of Fig. 6. Our performance

is on par with the state-of-the-art methods that are designed

particularly for hand pose estimation. We also point out

that the performance on this dataset has almost saturated,

because the percentage is already above 90% even at the

lowest threshold.

D+O. Following [37] and [23], we report our results using

a PCK curve and the corresponding AUC in the right of

Fig. 6. Since previous methods are evaluated by estimating

the absolute 3D depth of 3D hand joints, we follow them

by finding an approximate hand scale using a single frame

in the dataset, and fix the scale during the evaluation. In

this case, our performance (AUC=0.70) is comparable with

the previous state-of-the-art [23] (AUC=0.71). However,

since there is fundamental depth-scale ambiguity for single-

view pose estimation, we argue that aligning the root with

the ground truth depth is a more reasonable evaluation set-

ting. In this setting, our method (AUC=0.84) outperforms

the previous state-of-the-art method [37] (AUC=0.70) in the

same setting, and even achieves better performance than an

RGB-D based method [53] (AUC=0.81).

7.3. Quantitative Study for View and Pose Changes

Our new 3D pose data contain multi-view images with

the diverse body postures. This allows us to quantitatively

study the performance of our method in view changes and
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Figure 7: Evaluation result in Panoptic Studio. Top: accu-

racy vs. view point; bottom: accuracy vs. pose. The metric

is MPJPE in cm. The average MPJPE for all testing samples

is 6.30 cm.

body pose changes. We compare our single view 3D body

reconstruction result with the ground truth. Due to the

scale-depth ambiguity of monocular pose estimation, we

align the depth of root joint to the ground truth by scaling

our result along the ray directions from the camera center,

and compute the Mean Per Joint Position Error (MPJPE) in

centimeter. The average MPJPE for all testing samples is

6.30 cm. We compute the average errors per each camera

viewpoint, as shown in the top of Fig. 7. Each camera view-

point is represented by azimuth and elevation with respect

to the subjects’ initial body location. We reach two interest-

ing findings: first, the performance worsens in the camera

views with higher elevation due to the severe self-occlusion

and foreshortening; second, the error is larger in back views

compared to the frontal views because limbs are occluded

by torso in many poses. At the bottom of Fig. 7, we show

the performance for varying body poses. We run k-means

algorithm on the ground truth data to find body pose groups

(the center poses are shown in the figure), and compute the

error for each cluster. Body poses with more severe self-

occlusion or foreshortening tend to have higher errors.

7.4. The Effect of Mesh Tracking

To demonstrate the effect of our temporal refinement

method, we compare the result of our method before and

after this refinement stage using Panoptic Studio data. We

plot the reconstructed left shoulder joint in Fig. 8. We find

that the result after tracking (in blue) tends to be more tem-

porally stable than that before tracking (in green), and is

often closer to the ground truth (in red).

7.5. Qualitative Evaluation

We demonstrate our total motion capture results in var-

ious videos captured by us or obtained from YouTube in

the supplementary videos. For videos where only the upper

body of the target person is visible, we assume that the ori-

entation of torso and legs is pointing vertically downward

in Equation 5.
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Figure 8: The comparison of joint location across time be-

fore and after tracking with ground truth. The horizon-

tal axes show frame numbers (30fps) and the vertical axes

show joint locations in camera coordinate. The target joint

here is the left shoulder of the subject.

8. Discussion

In this paper, we present a method to reconstruct 3D total

motion of a single person from an image or a monocular

video. We thoroughly evaluate the robustness of our method

on various benchmarks and demonstrate monocular 3D total

motion capture results on in-the-wild videos.

There are some limitations with our method. First, we

observe failure cases when a significant part of the target

person is invisible (out of image boundary or occluded by

other objects) due to erroneous network prediction. Second,

our hand pose detector fails in the case of insufficient res-

olution, severe motion blur or occlusion by objects being

manipulated. Third, we use a simple approach to estimat-

ing foot and facial expression that utilizes only 2D keypoint

information. More advanced techniques and more image

measurements can be incorporated into our method. Finally,

our CNN requires bounding boxes for body and hands as

input, and cannot handle multiple bodies or hands simulta-

neously. Solving these problems points to interesting future

directions.

Acknowledgements. This research was supported by

the Intelligence Advanced Research Projects Activity

(IARPA) via Department of Interior/Interior Business Cen-

ter (DOI/IBC) contract number D17PC00340. We thank

Tianyi Zhao for his help with motion retargeting in Unity.

References

[1] Cmu motion capture database. http://mocap.cs.

cmu.edu/resources.php.

[2] Vicon motion systems. www.vicon.com.

[3] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org.

10972



[4] Ijaz Akhter and Michael J Black. Pose-conditioned joint an-

gle limits for 3d human pose reconstruction. In CVPR, 2015.

[5] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In CVPR, 2014.

[6] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-

bastian Thrun, Jim Rodgers, and James Davis. Scape: shape

completion and animation of people. TOG, 2005.

[7] Andreas Baak, Meinard M, Gaurav Bharaj, Hans-peter Sei-

del, and Christian Theobalt. A data-driven approach for real-

time full body pose reconstruction from a depth camera. In

ICCV, 2011.

[8] Volker Blanz and Thomas Vetter. A morphable model for

the synthesis of 3d faces. In Proceedings of the 26th an-

nual conference on Computer graphics and interactive tech-

niques, 1999.

[9] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gehler, Javier Romero, and Michael J. Black. Keep it smpl:

Automatic estimation of 3d human pose and shape from a

single image. In ECCV, 2016.

[10] Federica Bogo, Javier Romero, Gerard Pons-Moll, and

Michael J Black. Dynamic faust: Registering human bod-

ies in motion. In CVPR, 2017.

[11] Adrian Bulat and Georgios Tzimiropoulos. Human pose esti-

mation via convolutional part heatmap regression. In ECCV,

2016.

[12] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.

Weakly-supervised 3d hand pose estimation from monocu-

lar rgb images. In ECCV, 2018.

[13] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun

Zhou. Facewarehouse: A 3d facial expression database for

visual computing. TVCG, 2014.

[14] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and

Yaser Sheikh. OpenPose: realtime multi-person 3D pose

estimation using Part Affinity Fields. In arXiv preprint

arXiv:1812.08008, 2018.

[15] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity

fields. In CVPR, 2017.

[16] Dan Casas, Marco Volino, John Collomosse, and Adrian

Hilton. 4d video textures for interactive character appear-

ance. In Computer Graphics Forum, 2014.

[17] Ching-Hang Chen and Deva Ramanan. 3d human pose esti-

mation = 2d pose estimation + matching. In CVPR, 2017.

[18] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer

Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d hu-

man pose from structure and motion. In ECCV, 2018.

[19] A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin,

M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. Ef-

ficient convnet-based marker-less motion capture in general

scenes with a low number of cameras. In CVPR, 2015.

[20] Haoshu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu, and

Song-Chun Zhu. Learning pose grammar to encode human

body configuration for 3d pose estimation. In AAAI, 2018.

[21] Juergen Gall, Carsten Stoll, Edilson De Aguiar, Christian

Theobalt, Bodo Rosenhahn, and Hans-Peter Seidel. Motion

capture using joint skeleton tracking and surface estimation.

In CVPR, 2009.

[22] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

TPAMI, 2014.

[23] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall,

and Jan Kautz. Hand pose estimation via latent 2.5d heatmap

regression. In ECCV, 2018.

[24] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,

Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser

Sheikh. Panoptic studio: A massively multiview system for

social motion capture. In CVPR, 2015.

[25] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan,

Lin Gui, Sean Banerjee, Timothy Godisart, Bart Nabbe, Iain

Matthews, et al. Panoptic studio: A massively multiview

system for social interaction capture. TPAMI, 2017.

[26] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total cap-

ture: A 3d deformation model for tracking faces, hands, and

bodies. In CVPR, 2018.

[27] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In CVPR, 2018.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014.

[29] Yebin Liu, J. Gall, C. Stoll, Qionghai Dai, H.-P. Seidel, and

C. Theobalt. Markerless motion capture of multiple charac-

ters using multiview image segmentation. TPAMI, 2013.

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. TOG, 2015.

[31] Chenxu Luo, Xiao Chu, and Alan Yuille. Orinet: A fully

convolutional network for 3d human pose estimation. In

BMVC, 2018.

[32] Diogo C Luvizon, David Picard, and Hedi Tabia. 2d/3d pose

estimation and action recognition using multitask deep learn-

ing. In CVPR, 2018.

[33] Julieta Martinez, Rayat Hossain, Javier Romero, and James J

Little. A simple yet effective baseline for 3d human pose

estimation. In ICCV, 2017.

[34] Dushyant Mehta, Oleksandr Sotnychenko, Franziska

Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll,

and Christian Theobalt. Single-shot multi-person 3d pose

estimation from monocular rgb. In 3DV, 2018.

[35] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko,

Helge Rhodin, Mohammad Shafiei, Hans-Peter Seidel,

Weipeng Xu, Dan Casas, and Christian Theobalt. Vnect:

Real-time 3d human pose estimation with a single rgb cam-

era. TOG, 2017.

[36] Francesc Moreno-noguer. 3d human pose estimation from a

single image via distance matrix regression. In CVPR, 2017.

[37] Franziska Mueller, Florian Bernard, Oleksandr Sotny-

chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and

Christian Theobalt. Ganerated hands for real-time 3d hand

tracking from monocular rgb. In CVPR, 2018.

[38] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In ECCV, 2016.

10973



[39] Bruce Xiaohan Nie, Ping Wei, and Song-Chun Zhu. Monoc-

ular 3d human pose estimation by predicting depth on joints.

In ICCV, 2017.

[40] Iasonas Oikonomidis, Nikolaos Kyriazis, and Antonis A Ar-

gyros. Tracking the articulated motion of two strongly inter-

acting hands. In CVPR, 2012.

[41] Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis.

Ordinal depth supervision for 3D human pose estimation. In

CVPR, 2018.

[42] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-

nis, and Kostas Daniilidis. Coarse-to-fine volumetric predic-

tion for single-image 3d human pose. In CVPR, 2017.

[43] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and

Michael J Black. Dyna: A model of dynamic human shape

in motion. TOG, 2015.

[44] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Re-

constructing 3d human pose from 2d image landmarks. In

CVPR, 2012.

[45] Nadia Robertini, Dan Casas, Helge Rhodin, Hans-Peter Sei-

del, and Christian Theobalt. Model-based outdoor perfor-

mance capture. In 3DV, 2016.

[46] Grégory Rogez and Cordelia Schmid. Mocap-guided data

augmentation for 3d pose estimation in the wild. In NIPS,

2016.

[47] Javier Romero, Dimitrios Tzionas, and Michael J Black. Em-

bodied hands: Modeling and capturing hands and bodies to-

gether. TOG, 2017.

[48] Matteo Ruggero Ronchi, Oisin Mac Aodha, Robert Eng, and

Pietro Perona. It’s all relative: Monocular 3d human pose

estimation from weakly supervised data. In BMVC, 2018.

[49] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Tay-

lor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Le-

ichter, Alon Vinnikov, Yichen Wei, et al. Accurate, robust,

and flexible real-time hand tracking. In CHI, 2015.

[50] Jamie Shotton, A. Fitzgibbon, M. Cook, and Toby Sharp.

Real-time human pose recognition in parts from single depth

images. In CVPR, 2011.

[51] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser

Sheikh. Hand keypoint detection in single images using mul-

tiview bootstrapping. In CVPR, 2017.

[52] Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, and

Christian Theobalt. Fast and robust hand tracking using

detection-guided optimization. In CVPR, 2015.

[53] Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan
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