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Abstract

Highly expressive models such as deep neural networks

(DNNs) have been widely applied to various applications.

However, recent studies show that DNNs are vulnerable to

adversarial examples, which are carefully crafted inputs

aiming to mislead the predictions. Currently, the major-

ity of these studies have focused on perturbation added to

image pixels, while such manipulation is not physically re-

alistic. Some works have tried to overcome this limitation

by attaching printable 2D patches or painting patterns onto

surfaces, but can be potentially defended because 3D shape

features are intact. In this paper, we propose meshAdv to

generate “adversarial 3D meshes” from objects that have

rich shape features but minimal textural variation. To ma-

nipulate the shape or texture of the objects, we make use of a

differentiable renderer to compute accurate shading on the

shape and propagate the gradient. Extensive experiments

show that the generated 3D meshes are effective in attack-

ing both classifiers and object detectors. We evaluate the

attack under different viewpoints. In addition, we design

a pipeline to perform black-box attack on a photorealistic

renderer with unknown rendering parameters.

1. Introduction

Despite the increasing successes in various domains [10,

13, 19, 44], deep neural networks (DNNs) are found vul-

nerable to adversarial examples: a deliberate perturbation

of small magnitude on the input can make a network output

incorrect predictions. Such adversarial examples have been

widely studied in 2D domain [5, 17, 35, 38, 47, 53–55],

but the attack generated by directly manipulating pixels can

be defended by securing the camera, so that the generated

images are not realizable in practice. To overcome this is-

sue, there has been significant prior progress on generating

physically possible adversarial examples [1, 4, 14, 27] by

altering the texture of a 3D surface, i.e. applying adversar-

∗Alphabetical ordering; The first two authors contributed equally.

3D Mesh
Rendering Engine 2D Rendering Machine Learning Models

“car”

..
.

..
.

“boat”

“Adversarial Mesh”

2D Rendering (Adversarial)

Adversarial

shape/texture

g

g

Figure 1: The pipeline of “adversarial mesh” generation by

meshAdv.

ial printable 2D patches or painting patterns. Such attacks,

however, are less suitable for textureless objects, because

adding texture to an otherwise textureless surface may in-

crease the chance of being detected and defended.

In this work, we explore a new avenue of attack where

we generate physically possible adversarial examples by al-

tering 3D shape. We explore 3D objects that have rich shape

features but minimal texture variation, and show that we can

still fulfill the adversarial goal by perturbing the shape of

those 3D objects, while the same method can still be ap-

plied to textures. Specifically, we propose meshAdv to gen-

erate adversarial meshes with negligible perturbations. We

leverage a physically based differentiable renderer [24] to

accurately render the mesh under certain camera and light-

ing parameters. A deep network then outputs a prediction

given the rendered image as input. Since this whole process

is differentiable, gradients can be propagated from the net-

work prediction back to the shape or texture of the mesh.

Therefore, we can use gradient based optimization to gen-

erate shape based or texture based perturbation by applying

losses on the network output. The entire pipeline is shown

in Figure 1.

Even though we are only manipulating physical proper-

ties (shape and texture) of a 3D object, we can always fool

state of the art DNNs (see Section 6.2). Specifically, we

show that for any fixed rendering conditions (i.e. lighting

and camera parameters), state of the art object classifiers

(DenseNet [22] and Inception-v3 [48]) and detector (Yolo-
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v3 [42]) can be consistently tricked by slightly perturbing

the shape and texture of 3D objects. We further show that by

using multiple views optimization, the attack success rate

of “adversarial meshes” increases under various viewpoints

(see Table 2). In addition, we conduct user studies to show

that the generated perturbation are negligible to human per-

ception.

Since the perturbation on meshes is adversarially opti-

mized with the help of a differentiable renderer, a natural

question to ask is whether a similar method can be ap-

plied in practice when the rendering operation is not dif-

ferentiable. We try to answer this question by proposing a

pipeline to perform black-box attack on a photorealistic ren-

derer (with non-differentiable rendering operation) under

unknown rendering parameters. We show that via estimat-

ing the rendering parameters and improving the robustness

of perturbation, our generated “adversarial meshes” can at-

tack on a photorealistic renderer.

Additionally, we visualize our shape based perturbation

to show possible vulnerable regions for meshes. This can be

beneficial when we hope to improve the robustness (against

shape deformation) of machine learning models that are

trained on 3D meshes [7, 45, 57] for different tasks such

as view point estimation [46], indoor scene understand-

ing [18, 34, 45, 59] and so on [8, 33, 43, 50, 56].

To summarize, our contributions are listed below: 1) We

propose an end-to-end optimization based method meshAdv

to generate 3D “adversarial meshes” with negligible pertur-

bations, and show that it is effective in attacking different

machine learning tasks; 2) We demonstrate the effectiveness

of our method on a black-box non-differentiable renderer

with unknown parameters; 3) We provide insights into vul-

nerable regions of a mesh via visualizing the flow of shape

based perturbations; 4) We conduct user studies to show that

our 3D perturbation is subtle enough and will not affect user

recognition.

2. Related Work

Adversarial Attacks Adversarial examples have been

heavily explored in 2D domains [17, 35, 38, 47, 54, 55],

but directly manipulation of image pixels requires access to

cameras. To avoid this, physical adversarial examples stud-

ied in [14, 27] show impressive robust adversarial examples

under camera transformations. However, the perturbations

are textured based and may not be applied to arbitrary 3D

shapes.

Meanwhile, Athalye et al. [1] further advance texture

based adversarial examples by enhancing the robustness

against color transformations, and show that the generated

textures for a turtle and a baseball that can make the them

fool a classifier under various different viewpoints. In this

exciting work, the 3D objects serve as a surface to carry

information-rich and robust textures that can fool classi-

fiers. In our work, we also focus on perturbation on 3D

objects, but we explicitly suppress the effect of textures by

starting from 3D objects [52] that have constant reflectance.

Even with constant reflectance, those 3D objects such as

airplanes, bicycles, are easily recognizable due to their dis-

tinctive 3D shape features. In this way, we highlight the

importance of these shape features of objects in adversarial

attacks.

Beyond perturbations in texture form, Zeng et al. [58]

perturbed the physical parameters (normal, illumination and

material) for untargeted attacks against 3D shape classi-

fication and a VQA system. However, for the differen-

tiable renderer, they assume that the camera parameters are

known beforehand and then perturb 2D normal maps un-

der the fixed projection. This may limit the manipulation

space and may also produce implausible shapes. For the

non-differentiable renderer in their work, they have to use

derivative-free optimization for attacks. In comparison, our

method can generate plausible shapes directly in mesh rep-

resentation using gradient based optimization methods.

A concurrent work [30] proposes to manipulate lighting

and geometry to perform attacks. However, there are several

differences compared to our work: 1) Magnitude of pertur-

bation. The perturbation in [30] such as lighting change is

visible, while we achieve almost unnoticeable perturbation

which is important in adversarial behaviors. 2) Targeted

attack. Based on the objective function in [30] and exper-

imental results, the adversarial targets seem close to each

other, such as jaguar and elephant. In our work, we explic-

itly force the object from each class to be targeted-attacked

into all other classes with almost 100% attack success rate.

3) Renderers. We perform attacks based on the state-of-the-

art open-source differentiable renderer [26], which makes

our attacks more accessible and reproducible, while in [30]

a customized renderer is applied and it is difficult to tell

whether such vulnerabilities come from the customized ren-

derer or the manipulated object. 4) Realistic attacks. Ma-

nipulating lighting is less realistic in open environments.

Compared with their attacks on lighting and shape, we pro-

pose to manipulate shape and texture of meshes which are

easier to conduct in practice. 5) Victim learning models. We

attack both classifiers and object detectors, which is widely

used in safety-sensitive applications such as autonomous

driving, while they only attack classifiers.

Differentiable Renderers Besides adversarial attacks, dif-

ferentiable renderers have been used in many other tasks

as well, including inverse rendering [2, 16], 3D morphable

face reconstruction [16], texture optimization [36] and so

on [28]. In these tasks, gradient based optimization can

be realized due to readily available differentiable render-

ers [16, 24, 28, 31, 37, 41]. We also used a differentiable

renderer called Neural Mesh Renderer [24], which is fast

and can be integrated into deep neural networks effortlessly.
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Watermarking for Meshes While mesh watermarking is

also achieved by manipulating the meshes in a subtle way,

the goal is different from ours: it is to hide secret data in

the geometry by satisfying strict properties of vertices and

edges [6, 40]; our task is to perturb the mesh as long as the

rendered image can fool a learning model while keeping the

mesh perceptual realistic. On the other hand, the challenges

in developing 3D mesh watermarking helps to emphasize

the challenges for our attack given the difficulties of gener-

ating perturbation in 3D domains.

3. Problem Definition and Challenges

In 2D domain, let g be a machine learning model trained

to map a 2D image I to its category label y. For g, an adver-

sarial attacker targets to generate an adversarial image Iadv

such that g(Iadv) 6= y (untargeted attack) or g(Iadv) = y′

(targeted attack), where y is the groundtruth label and y′ is

our specified malicious target label.

Unlike adversarial attacks in 2D space, here the image I
is a rendered result of a 3D object S: I = R(S;P,L), com-

puted by a physically based renderer R with camera param-

eters P and illumination parameters L. In other words, it

is not allowed to directly operate the pixel values of I , and

one has to manipulate the 3D object S to generate Sadv such

that the rendered image of it will fool g to make incorrect

predictions: Iadv = R(Sadv;P,L).

Achieving the above goals is non-trivial due to the fol-

lowing challenges: 1) Manipulation space: When render-

ing 3D contents, shape, texture and illumination are entan-

gled together to generate the pixel values in a 2D image,

so image pixels are no longer independent with each other.

This means the manipulation space can be largely reduced

due to image parameterization. 2) Constraints in 3D: 3D

constraints such as physically possible shape geometry and

texture are not directly reflected on 2D [58]. Human percep-

tion of an object are in 3D or 2.5D [32], and perturbation of

shape or texture on 3D objects may directly affect human

perception of them. This means it can be challenging to

generate unnoticeable perturbations on 3D meshes.

4. Methodology

Here we assume the renderer R is known (i.e. white box)

and differentiable to the input 3D object S in mesh repre-

sentation. To make a renderer R differentiable, we have to

make several assumptions regarding object material, light-

ing models, interreflection etc. Please refer to supplemen-

tary material for more details on differentiable rendering

and mesh representation. With a differentiable renderer, we

can use gradient-based optimization algorithms to generate

the mesh perturbations in an end-to-end manner, and we de-

note this method meshAdv.

4.1. Optimization Objective

We optimize the following objective loss function with

respect to Sadv, given model g and target label y′:

L(Sadv; g, y′) = Ladv(S
adv; g, y′) + λLperceptual(S

adv) (1)

In this equation, Ladv is the adversarial loss to fool the

model g into predicting a specified target y′ (i.e. g(Iadv) =
y′), given the rendered image Iadv = R(Sadv;P,L) as in-

put. Lperceptual is the loss to keep the “adversarial mesh”

perceptually realistic. λ is a balancing hyper-parameter.

We further instantiate Ladv and Lperceptual in the next

subsections, regarding different tasks (classification or ob-

ject detection) and perturbation types (shape or texture).

4.1.1 Adversarial Loss

Classification For a classification model g, the output

is usually the probability distribution of object categories,

given an image of the object as the input. We use the cross

entropy loss [11] as the adversarial loss for meshAdv:

Ladv(S
adv; g, y′) = y

′ log(g(Iadv))+(1−y
′) log(1−g(Iadv)),

(2)

where Iadv = R(Sadv;P,L), and y′ is one-hot representa-

tion of the target label.

Object Detection For object detection, we choose a state-

of-the-art model Yolo-v3 [42] as our victim model. It di-

vides the input image I into Z × Z different grid cells. For

each grid cell, Yolo-v3 predicts the locations and label con-

fidence values of B bounding boxes. For each bounding

box, it generates 5 values (4 for the coordinates and 1 for

the objectness score) and a probability distribution over N
classes. Here the adversary’s goal is to make the victim

object disappear from the object detector, called disappear-

ance attack. So we use the disappearance attack loss [15]

as our adversarial loss for Yolo-v3:

Ladv(S
adv; g, y′) = max

z∈Z2,b∈B
H(z, b, y′

, g(Iadv)), (3)

where Iadv = R(Sadv;P,L), and H(·) is a function to rep-

resent the probabilities of label y′ for bounding box b in the

grid cell z, given Iadv as input of model g.

4.1.2 Perceptual Loss

To keep the “adversarial mesh” perceptually realistic, we

leverage a Laplacian loss similar to the total variation

loss [51] as our perceptual loss:

Lperceptual(S
adv) =

∑

i

∑

q∈N (i)

‖Iadvi − I
adv
q ‖22, (4)

where Ii is the RGB vector of the i-th pixel in the image

Iadv = R(Sadv;P,L), and N (i) is the 4-connected neigh-

bors of pixel i.
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We apply this smoothing loss to the image when generat-

ing texture based perturbation for Sadv. However, for shape

based perturbation, manipulation of vertices may intro-

duce unwanted mesh topology change, as reported in [24].

Therefore, instead of using Eq. (4), we perform smoothing

on the displacement of vertices such that neighboring ver-

tices will have similar displacement flow. We achieve this

by extending the smoothing loss to 3D vertex flow, in the

form of a Laplacian loss:

Lperceptual(S
adv) =

∑

vi∈V

∑

vq∈N (vi)

‖∆vi −∆vq‖
2
2, (5)

where ∆vi = v
adv
i

− vi is the displacement of the per-

turbed vertex v
adv
i

from its original position vi in the pris-

tine mesh, and N (vi) denotes connected neighboring ver-

tices of vi defined by mesh triangles.

5. Transferability to Black-Box Renderers

Our meshAdv aims to white-box-attack the system

g(R(S;P,L)) by optimizing S end-to-end since R is dif-

ferentiable. However, we hope to examine the potential of

meshAdv for 3D objects in practice, where the actural ren-

derer may be unavailable.

We formulate this as a black-box attack against a non-

differentiable renderer R′ under unknown rendering param-

eters P ∗, L∗, i.e. we have limited access to R′ but we still

want to generate Sadv such that R′(Sadv, P ∗, L∗) fools the

model g. Because we have no assumptions on the black-box

renderer R′, it can render photorealistic images at a high

computational cost, by enabling interreflection, occlusion

and rich illumination models etc. such that the final image

is an accurate estimate under real-world physics as if cap-

tured by a real camera. In this case, the transferability of

“adversarial meshes” generated by meshAdv is crucial since

we want to avoid the expensive computation in R′ and still

be able to generate such Sadv.

We analyze two scenarios for such transferability.

Controlled Rendering Parameters Before black-box at-

tacks, we want to first test our “adversarial meshes” di-

rectly under the same rendering configuration (lighting pa-

rameters L, camera parameters P ), only replacing the the

differentiable renderer R with the photorealistic renderer

R′. In other words, while Iadv = R(Sadv;P,L) can fool

the model g as expected, we would like to see whether

I ′adv = R′(Sadv;P,L) can still fool the model g.

Unknown Rendering Parameters In this scenario, we

would like to use meshAdv to attack a non-differentiable

system g(R′(S;P ∗, L∗)) under fixed, unknown rendering

parameters P ∗, L∗. In practice, we will have access to the

mesh S and its mask M in the original photorealistic ren-

dering I ′ = R′(S;P ∗, L∗), as well as the model g. Directly

transfer from one renderer to another may not work due to

complex rendering conditions. To improve the performance

of such black-box attack, we propose a pipeline as follows:

1. Estimate camera parameters P̂ by reducing the er-

ror of object silhouette ‖Rmask(S;P ) − M‖2, where

Rmask(S;P ) renders the mask of the object S (light-

ing is irrelevant to produce the mask);

2. Given P̂ , estimate lighting parameters L̂ by reduc-

ing the masked error of rendered images: ‖M ◦
(R(S; P̂ , L)−I ′)‖2, where the operator ◦ is Hadamard

product;

3. Given P̂ , L̂, use meshAdv to generate the “adversarial

mesh” Sadv such that R(Sadv; P̂ , L̂) fools g; To im-

prove robustness, we add random perturbations to P̂
and L̂ when optimizing;

4. Test Sadv in the original scene with photorealistic ren-

derer R′: obtain the prediction g(R′(Sadv;P ∗, L∗)).

6. Experimental Results

In this section, we first show the attack effectiveness of

“adversarial meshes" generated by meshAdv against clas-

sifiers under different settings. We then visualize the per-

turbation flow of vertices to better understand the vulner-

able regions of those 3D objects. User studies show that

the proposed perturbation is subtle and will not mislead hu-

man recognition. In addition, we show examples of ap-

plying meshAdv to object detectors in physically realistic

scenes. Finally, we evaluate the transferability of “adver-

sarial meshes” generated by meshAdv and illustrate how to

use such transferability to attack a black-box renderer.

6.1. Experimental Setup

For victim learning models g, we choose DenseNet [22]

and Inception-v3 [48] trained on ImageNet [12] for classifi-

cation, and Yolo-v3 trained on COCO [29] for object detec-

tion. For meshes (S), we preprocess CAD models in PAS-

CAL3D+ [52] using uniform mesh resampling with Mesh-

Lab [9] to increase triangle density. Since these 3D ob-

jects have constant texture values, for texture perturbation

we also start from constant as pristine texture.

For the differentiable renderer (R), we use the off-the-

shelf PyTorch implementation [26, 39] of the Neural Mesh

Renderer (NMR) [24] to generate “adversarial meshes”. For

rendering settings (R(·;P,L)) when attacking classifiers,

we randomly sample camera parameters P and lighting pa-

rameters L, and filter out configurations such that the clas-

sification models have 100% accuracy when rendering pris-

tine meshes. These rendering configurations are then fixed

for evaluation, and we call meshes rendered under these

configurations PASCAL3D+ renderings. In total, we have
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Perturbation
Type Model

Test
Accuracy

Best Case Average Case Worst Case

Avg. Distance Succ. Rate Avg. Distance Succ. Rate Avg. Distance Succ. Rate

Shape
DenseNet 100.0% 8.4× 10−5 100.0% 1.8× 10−4 100.0% 3.0× 10−4 100.0%

Inception-v3 100.0% 4.8× 10−5 100.0% 1.2× 10−4 99.8% 2.3× 10−4 98.6%

Texture
DenseNet 100.0% 3.8× 10−3 100.0% 1.1× 10−2 99.8% 2.6× 10−2 98.6%

Inception-v3 100.0% 3.7× 10−3 100.0% 1.3× 10−2 100.0% 3.2× 10−2 100.0%

Table 1: Attack success rate of meshAdv and average distance of generated perturbation for different models and different

perturbation types. We choose rendering configurations in PASCAL3D+ renderings such that the models have 100% test

accuracy on pristine meshes so as to confirm the adversarial effects. The average distance for shape based perturbation is

computed using the 3D Laplacian loss from Equation 5. The average distance for texture based perturbation is the root-mean-

squared error of face color change.

7 classes, and for each class we generate 72 different ren-

dering configurations. More details are shown in the sup-

plementary material.

For optimizing the objective, we use Adam [25] as our

solver. In addition, we select the hyperparameter λ in Equa-

tion 1 using binary search, with 5 rounds of search and 1000

iterations for each round.

6.2. MeshAdv on Classification

In this section, we evaluate quantitative and qualitative

performance of meshAdv against classifiers.

For each sample in our PASCAL3D+ renderings, we try

to targeted-attack it into the other 6 categories. Next, for

each perturbation type (shape and texture) and each model

(DenseNet and Inception-v3), we split the results into three

different cases similar to [5]: Best Case means we attack

samples within one class to other classes and report on the

target class that is easiest to attack. Average Case means

we do the same but report the performance on all of the tar-

get classes. Similarly, Worst case means that we report on

the target class that is hardest to attack. The correspond-

ing results are shown in Table 1, including attack success

rate of meshAdv, and the evaluation on generated shape and

texture based perturbation respectively. For shape based

perturbation, we use the Laplacian loss from Equation 5

as the distance metric. For texture based perturbation, we

compute the root-mean-square distance of texture values for

each face of the mesh:

√

1
m

∑m

i=1(t
adv
i

− ti)2, where ti is

the texture color of the i-th face among the mesh’s total m
faces. The results show that meshAdv can achieve almost

100% attack success rate for either adversarial perturbation

types.

Figure 2 shows the generated “adversarial meshes”

against Inception-v3 after manipulating the vertices and tex-

ture respectively. The diagonal shows the images rendered

with the pristine meshes. The target class of each “adver-

sarial mesh” is shown at the top, and similar results for

DenseNet are included in the supplementary material. Note

that the samples in the image are randomly selected and not

manually curated. It is worth noting that the perturbation

on object shape or texture, generated by meshAdv, is barely

noticeable to human, while being able to mislead classifiers.

To help assess the vertex displacement in shape perturba-

tion, we discuss the flow visualization and human percep-

tual study in the following paragraphs.

Visualizing Vertex Manipulation In order to better un-

derstand the vulnerable regions of 3D objects, in Figure 3,

we visualize the magnitude of the vertex manipulation flow

using heatmaps. The heatmaps in the figure correspond to

the ones in Figure 2(a). We adopt two viewpoints in this fig-

ure: the rendered view (i), which is the same as the one used

for rendering the images; and the canonical view (ii), which

is achieved by fixing camera parameters for all shapes: we

set the azimuth angle to 135◦ and the elevation angle to 45◦.

From the heatmaps we observe that the regions with large

curvature value and close to the camera (such as edges) are

more vulnerable, as shown in the example in Figure 3(d).

We find this is reasonable, since vertex displacement in

those regions will bring significant change to normals, thus

affecting the shading from the light sources and causing the

screen pixel value to change drastically.

In addition to magnitude, we additionally show an ex-

ample of flow directions in Figure 3(c), which is a close-up

3D quiver plot of the vertex flow in the vertical stabilizer

region of an aeroplane. In this example, the perturbed aero-

plane mesh is classified to “bicycle” in its rendering. From

this figure, we observe that the adjacent vertices tend to flow

towards similar directions, illustrating the effect of our 3D

Laplacian loss operated on vertex flows (Equation 5).

Human Perceptual Study We conduct a user study on

Amazon Mechanical Turk (AMT) in order to quantify the

realism of the adversarial meshes generated by meshAdv.

We uploaded the adversarial images which are misclassified

by DenseNet and Inception-v3. Participants were asked to

recognize those adversarial object to one of the two classes

(the ground-truth class and the adversarial target class). The
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(a) Perturbation on shape
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(b) Perturbation on texture

Figure 2: Benign images (diagonal) and corresponding ad-

versarial examples generated by meshAdv on PASCAL3D+

renderings tested on Inception-v3. Adversarial target

classes are shown at the top. We show perturbation on (a)

shape and (b) texture. Similar results for DenseNet can be

found in the supplementary material.

order of these two classes was randomized and the adver-

sarial objects are appeared for 2 seconds in the middle of

the screen during each trial. After disappearing, the partici-

pant has unlimited time to select the more feasible class ac-

cording to their perception. For each participant, one could

only conduct at most 50 trials, and each adversarial image

was shown to 5 different participants. The detailed settings

of our human perceptual study are described in the supple-

mentary material. In total, we collect 3820 annotations from

49 participants. In 99.29 ± 1.96% of trials the “adversarial

meshes” were recognized correctly, indicating that our ad-

versarial perturbation will not mislead human as they can

almost always assign the correct label of these “3D adver-

sarial meshes”.

Multiview Robustness Analysis In addition to a fixed

camera when applying meshAdv, we also explore the ro-

bustness of meshAdv against a range of viewpoints for shape

based perturbation. First, we create a victim set of images

rendered under 5, 10 or 15 different azimuth angles for opti-

mizing the attack. We then sample another 20 unseen views

within the range for test. The results are shown in Table 2.

We can see that the larger the azimuth range is, the harder

to achieve high attack success rate. In the meantime, me-

shAdv can achieve relatively high attack success rate when

more victim instances are applied for training. As a re-

sult, it shows that the attack robustness can potentially be

improved under various viewpoints by optimizing on large

victim set.
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(a) Rendered view
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(b) Canonical view

(c) Vertex flow of an “adversarial mesh”

targeting “bicycle”

(d) Perturbation (top)

vs curvature (bottom)

Figure 3: (a) and (b) are visualization of shape based pertur-

bation with respect to Figure 2(a). (c) is a close view of flow

directions, and (d) is an example to compare the magnitude

of perturbation with the magnitude of curvature. Warmer

color indicates greater magnitude and vice versa.

Victim Set Size
Azimuth Range

45◦ ∼ 60◦ 35◦ ∼ 70◦ 15◦ ∼ 75◦

5 views 67% 45% 28%
10 views 73% 58% 38%
15 views 79% 74% 48%

Table 2: Targeted attack success rate for unseen camera

views. We attack using 5, 10, or 15 views, and test with

20 unseen views in the same range.

6.3. MeshAdv on Object Detection

For object detection, we use Yolo-v3 [42] as our target

model.

Indoor Scene First, we test meshAdv within the indoor

scene which is pure synthetic. We compose the scene man-

ually with a desk and a chair to simulate an indoor setting,

and place in the scene a single directional light with low am-

bient light. We then put the Stanford Bunny mesh [49] onto

the desk, and show that by manipulating either the shape or

the texture of the mesh, we can achieve the goal of either

removing the target table detection or removing all detec-

tions while keeping the perturbation almost unnoticeable,
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(a) Benign

(b) Table | Shape (c) All | Shape

(d) Table|Texture (e) All | Texture

Figure 4: “Adversarial meshes” generated by meshAdv in a

synthetic indoor scene. (a) represents the benign rendered

image and (b)-(e) represent the rendered images from “ad-

versarial meshes” by manipulating the shape or texture. We

use the format “adversarial target | perturbation type” to de-

note the victim object aiming to hide and the type of pertur-

bation respectively.

(a) S | GT (b) Sadv | Dog (c) S | GT (d) S
adv|Bicycle

Figure 5: “Adversarial meshes” generated by meshAdv for

an outdoor photo. (a) and (c) show images rendered with

pristine meshes as control experiments, while (b) and (d)

contain “adversarial meshes” by manipulating the shape.

We use the format “ S/Sadv | target” to denote the be-

nign/adversarial 3D meshes and the target to hide from the

detector respectively.

as shown in Figure 4.

Outdoor Scene Given a real photo of an outdoor scene,

we hope to remove the detections of real objects in the

photo. Different from the indoor sceen in which lighting

is known, we have to estimate the parameters of a sky light-

ing model [21] using the API provided by Hold-Geoffroy

et al. [20] as groundtruth lighting and adapt to the differen-

tiable renderer. We then use this lighting to render our mesh

onto the photo. In the real photo, we select the dog and the

bicycle as our target objects and aim to remove the detec-

tion one at a time. We show that we successfully achieve

the adversarial goal with barely noticeable perturbation, as

in Figure 5.

6.4. Transferability to Black­Box Renderers

As mentioned in Section 5, the final adversarial goal is

to black-box attack a system g(R′(S;P,L)) in which the

Model/Target aeroplane bicycle boat bottle

DenseNet 65.2% 69.1% 66.7% 63.0%

Inception-v3 67.1% 83.3% 39.6% 76.9%

Model/Target chair diningtable sofa average

DenseNet 37.1% 70.3% 47.9% 59.8%

Inception-v3 32.1% 75.0% 52.3% 60.9%

Table 3: Untargeted attack success rate against Mitsuba by

transferring “adversarial meshes” generated by attacking a

differentiable renderer targeting different classes.

Figure 6: Confusion matrices of targeted success rate for

evaluating transferability of “adversarial meshes” on differ-

ent classifiers. Left: DenseNet; right: Inception-v3.

renderer R′ is a computationally intensive renderer that is

able to produce photorealistic images. Here we choose Mit-

suba [23] as such renderer, and focus on shape based per-

turbation.

Controlled Rendering Parameters Before perform such

attacks, we first evaluate the transferability under controlled

parameters. We directly render the “adversarial meshes”

Sadv generated in Section 6.2 using Mitsuba, with the same

lighting and camera parameters. We then calculate the tar-

geted/untargeted attack success rate by feeding the Mitsuba-

rendered images to the same victim classification models

g. The result of untargeted attacks are shown in Table 3,

and the confusion matrices for targeted attacks are show in

Figure 6. We observe that for untargeted attack, the “ad-

versarial meshes” can be transferred to Mitsuba with rela-

tively high atttack success rate for untargeted attack; while

as shown in Figure 6, the targeted attack barely transfers in

this straightforward setting.

Unknown Rendering Parameters To more effectively

targeted attack the system g(R′(S;P ∗, L∗)) when render-

ing parameters P ∗, L∗ are unknown, we apply the pipeline

from Section 5 on a classifier and an object detector, re-

spectively. we first use the Adam optimizer [25] to obtain

the camera estimate P̂ , then estimate the lighting L∗ us-

ing 5 directional lights and an ambient light L̂. Note that
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Viewpoint and lighting estimate
Black-box rendering of an airplane mesh

Prediction: “airliner”
NMR rendering + Background

(d, θ, φ, ψ)

Re-render using the black-box renderer

Prediction: “hammerhead”

Shape perturbations by MeshAdv

Target: “hammerhead”

Figure 7: Transferability of “adversarial meshes” against classifiers in unknown rendering environment. We estimate the

camera viewpoint and lighting parameters using the differentiable renderer NMR, and apply the generated “adversarial mesh”

to the photorealistic renderer Mitsuba. The “airliner” is misclassified to the target class “hammerhead” after rendered by

Mitsuba.

(a) Benign (b) S | NMR (c) S | Mitsuba (d) Sadv | NMR (e) Sadv | Mitsuba

Figure 8: Transferability of “adversarial meshes” against object detectors in unknown rendering environment. (b) (c) are

controlled experiments. Sadv is generated using NMR (d), targeting to hide the leftmost chair (see red arrows), and the

adversarial mesh is tested on Mitsuba (e). We use “S/Sadv | renderer" to denote whether the added object is adversarially

optimized and the renderer that we aim to attack with transferability respectively.

the groundtruth lighting L∗ spatially varies due to inter-

reflection and occlusion, so it is impossible to have an ex-

act estimate using the global lighting model in NMR. Then

we manipulate the shape Sadv in the NMR until the image

Iadv = R(Sadv : P̂ , L̂) can successfully targeted-attack the

classifier or the object detector g with a high confidence.

During this process, we add small random perturbation to

the estimated parameters (P̂ , L̂) such that Sadv will be more

robust under uncertainties. For testing, we re-render Sadv

with Mitsuba using the original setting and test the rendered

image I ′adv = R′(Sadv, P ∗, L∗) on the same model g.

For classification, we place an aeroplane object from

PASCAL3D+ and put it in an outdoor scene under sky light.

As is shown in Figure 7, we successfully attacked the clas-

sifier to output the target “hammerhead” by replacing the

pristine mesh with our “adversarial mesh” in the original

scene. Note that even we do not have an accurate lighting

estimate, we still achieve the transferability by adding per-

turbation to lighting parameters. For object detection, we

modified a scene from [3], and placed the Stanford Bunny

object into the scene. The adversarial goal here is to remove

the leftmost chair in the image. Without an accurate lighting

estimate, Figure 8 shows that the “adversarial meshes” can

still successfully remove the target (the leftmost chair) from

the detector.

7. Conclusion

In this paper, we proposed meshAdv to generate “adver-

sarial meshes” by manipulating the shape or the texture of

a mesh. These “adversarial meshes” can be rendered to

2D domains to mislead different machine learning models.

We evaluate meshAdv quantitatively and qualitatively using

CAD models from PASCAL3D+, and also show that the ad-

versarial behaviors of our “adversarial meshes” can transfer

to black-box renderers. This provides us a better under-

standing of adversarial behaviors of 3D meshes in practice,

and can motivate potential future defenses.
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