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Abstract

Hyperspectral imaging can help better understand the

characteristics of different materials, compared with tradi-

tional image systems. However, only high-resolution mul-

tispectral (HrMS) and low-resolution hyperspectral (LrHS)

images can generally be captured at video rate in practice.

In this paper, we propose a model-based deep learning ap-

proach for merging an HrMS and LrHS images to generate

a high-resolution hyperspectral (HrHS) image. In specific,

we construct a novel MS/HS fusion model which takes the

observation models of low-resolution images and the low-

rankness knowledge along the spectral mode of HrHS im-

age into consideration. Then we design an iterative algo-

rithm to solve the model by exploiting the proximal gradi-

ent method. And then, by unfolding the designed algorithm,

we construct a deep network, called MS/HS Fusion Net,

with learning the proximal operators and model parameters

by convolutional neural networks. Experimental results on

simulated and real data substantiate the superiority of our

method both visually and quantitatively as compared with

state-of-the-art methods along this line of research.

1. Introduction

A hyperspectral (HS) image consists of various bands of

images of a real scene captured by sensors under different

spectrums, which can facilitate a fine delivery of more faith-

ful knowledge under real scenes, as compared to traditional

images with only one or a few bands. The rich spectra of HS

images tend to significantly benefit the characterization of

the imaged scene and greatly enhance performance in dif-

ferent computer vision tasks, including object recognition,

classification, tracking and segmentation [10, 37, 35, 36].

In real cases, however, due to the limited amount of inci-

dent energy, there are critical tradeoffs between spatial and

spectral resolution. Specifically, an optical system usually

can only provide data with either high spatial resolution but

a small number of spectral bands (e.g., the standard RGB

image) or with a large number of spectral bands but re-

duced spatial resolution [23]. Therefore, the research issue
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Figure 1. (a)(b) The observation models for HrMS and LrHS im-

ages, respectively. (c) Learning bases Ŷ by deep network, with

HrMS Y and LrHS Z as the input of the network. (d) The HrHSI

X can be linearly represented by Y and to-be-estimated Ŷ , in a

formulation of X ≈ Y A+ Ŷ B, where the rank of X is r.

on merging a high-resolution multispectral (HrMS) image

and a low-resolution hyperspectral (LrHS) image to gener-

ate a high-resolution hyperspectral (HrHS) image, known

as MS/HS fusion, has attracted great attention [47].

The observation models for the HrMS and LrHS images

are often written as follows [12, 24, 25]:

Y = XR+Ny, (1)

Z = CX +Nz, (2)

where X ∈ R
HW×S is the target HrHS image1 with H , W

and S as its height, width and band number, respectively,

Y ∈ R
HW×s is the HrMS image with s as its band number

(s < S), Z ∈ R
hw×S is the LrHS image with h, w and S

as its height, width and band number (h < H , w < W ),

R ∈ R
S×s is the spectral response of the multispectral sen-

sor as shown in Fig. 1 (a), C ∈ R
hw×HW is a linear op-

erator which is often assumed to be composed of a cyclic

convolution operator φ and a down-sampling matrix D as

shown in Fig. 1 (b), Ny and Nz are the noises contained in

1The target HS image can also be written as tensor X ∈ R
H×W×S .

We also denote the folding operator for matrix to tensor as: fold(X) = X .
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HrMS and LrHS images, respectively. Many methods have

been designed based on (1) and (2), and achieved good per-

formance [40, 14, 24, 25].

Since directly recovering the HrHS image X is an ill-

posed inverse problem, many techniques have been ex-

ploited to recover X by assuming certain priors on it. For

example, [54, 2, 11] utilize the prior knowledge of HrHS

that its spatial information could be sparsely represented un-

der a dictionary trained from HrMS. Besides, [27] assumes

the local spatial smoothness prior on the HrHS image and

uses total variation regularization to encode it in their opti-

mization model. Instead of exploring spatial prior knowl-

edge from HrHS, [52] and [26] assume more intrinsic spec-

tral correlation prior on HrHS, and use low-rank techniques

to encode such prior along the spectrum to reduce spectral

distortions. Albeit effective for some applications, the ratio-

nality of these techniques relies on the subjective prior as-

sumptions imposed on the unknown HrHS to be recovered.

An HrHS image collected from real scenes, however, could

possess highly diverse configurations both along space and

across spectrum. Such conventional learning regimes thus

could not always flexibly adapt different HS image struc-

tures and still have room for performance improvement.

Methods based on Deep Learning (DL) have outper-

formed traditional approaches in many computer vision

tasks [34] in the past decade, and have been introduced to

HS/MS fusion problem very recently [28, 30]. As com-

pared with conventional methods, these DL based ones are

superior in that they need fewer assumptions on the prior

knowledge of the to-be-recovered HrHS, while can be di-

rectly trained on a set of paired training data simulating the

network inputs (LrHS&HrMS images) and outputs (HrHS

images). The most commonly employed network structures

include CNN [7], 3D CNN [28], and residual net [30]. Like

other image restoration tasks where DL is successfully ap-

plied to, these DL-based methods have also achieved good

resolution performance for MS/MS fusion task.

However, the current DL-based MS/HS fusion meth-

ods still have evident drawbacks. The most critical one is

that these methods use general frameworks for other tasks,

which are not specifically designed for MS/HS fusion. This

makes them lack interpretability specific to the problem.

In particular, they totally neglect the observation models

(1) and (2) [28, 30], especially the operators R and C,

which facilitate an understanding of how LrHS and HrMs

are generated from the HrHS. Such understanding, how-

ever, should be useful for calculating HrHS images. Besides

this generalization issue, current DL methods also neglect

the general prior structures of HS images, such as spectral

low-rankness. Such priors are intrinsically possessed by all

meaningful HS images, which implies that DL-based meth-

ods still have room for further enhancement.

In this paper, we propose a novel deep learning-based

method that integrates the observation models and image

prior learning into a single network architecture. This work

mainly contains the following three-fold contributions:

Firstly, we propose a novel MS/HS fusion model, which

not only takes the observation models (1) and (2) into con-

sideration but also exploits the approximate low-rankness

prior structure along the spectral mode of the HrHS im-

age to reduce spectral distortions [52, 26]. Specifically, we

prove that if and only if observation model (1) can be sat-

isfied, the matrix of HrHS image X can be linearly rep-

resented by the columns in HrMS matrix Y and a to-be-

estimated matrix Ŷ , i.e., X = Y A+ Ŷ B with coefficient

matrices A and B. One can see Fig. 1 (d) for easy under-

standing. We then construct a concise model by combining

the observation model (2) and the linear representation of

X . We also exploit the proximal gradient method [3] to

design an iterative algorithm to solve the proposed model.

Secondly, we unfold this iterative algorithm into a deep

network architecture, called MS/HS Fusion Net or MHF-

net, to implicitly learn the to-be-estimated Ŷ , as shown in

Fig. 1 (c). After obtaining Ŷ , we can then easily achieve X

with Y and Ŷ . To the best of our knowledge, this is the first

deep-learning-based MS/HS fusion method that fully con-

siders the intrinsic mechanism of the MS/HS fusion prob-

lem. Moreover, all the parameters involved in the model can

be automatically learned from training data in an end-to-end

manner. This means that the spatial and spectral responses

(R and C) no longer need to be estimated beforehand as

most of the traditional non-DL methods did, nor to be fully

neglected as current DL methods did.

Thirdly, we have collected or realized current state-of-

the-art algorithms for the investigated MS/HS fusion task,

and compared their performance on a series of synthetic and

real problems. The experimental results comprehensively

substantiate the superiority of the proposed method, both

quantitatively and visually.

In this paper, we denote scalar, vector, matrix and ten-

sor in non-bold case, bold lower case, bold upper case and

calligraphic upper case letters, respectively.

2. Related work

2.1. Traditional methods

The pansharpening technique in remote sensing is

closely related to the investigated MS/HS problem. This

task aims to obtain a high spatial resolution MS image by

the fusion of a MS image and a wide-band panchromatic

image. A heuristic approach to perform MS/HS fusion is to

treat it as a number of pansharpening sub-problems, where

each band of the HrMS image plays the role of a panchro-

matic image. There are mainly two categories of pansharp-

ening methods: component substitution (CS) [5, 17, 1] and

multiresolution analysis (MRA) [20, 21, 4, 33, 6]. These

methods always suffer from the high spectral distortion,
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since a single panchromatic image contains little spectral

information as compared with the expected HS image.

In the last few years, machine learning based meth-

ods have gained much attention on MS/HS fusion problem

[54, 2, 11, 14, 52, 48, 26, 40]. Some of these methods used

sparse coding technique to learn a dictionary on the patches

across a HrMS image, which delivers spatial knowledge of

HrHS to a certain extent, and then learn a coefficient ma-

trix from LrHS to fully represent the HrHS [54, 2, 11, 40].

Some other methods, such as [14], use the sparse matrix fac-

torization to learn a spectral dictionary for LrHS images and

then construct HrMS images by exploiting both the spectral

dictionary and HrMS images. The low-rankness of HS im-

ages can also be exploited with non-negative matrix factor-

ization, which helps to reduce spectral distortions and en-

hances the MS/HS fusion performance [52, 48, 26]. The

main drawback of these methods is that they are mainly de-

signed based on human observations and strong prior as-

sumptions, which may not be very accurate and would not

always hold for diverse real world images.

2.2. Deep learning based methods

Recently, a number of DL-based pansharpening meth-

ods were proposed by exploiting different network struc-

tures [15, 22, 42, 43, 29, 30, 32]. These methods can be

easily adapted to MS/HS fusion problem. For example,

very recently, [28] proposed a 3D-CNN based MS/HS fu-

sion method by using PCA to reduce the computational

cost. This method is usually trained with prepared train-

ing data. The network inputs are set as the combination

of HrMS/panchromatic images and LrHS/multispectral im-

ages (which is usually interpolated to the same spatial size

as HrMS/panchromatic images in advance), and the outputs

are the corresponding HrHS images. The current DL-based

methods have been verified to be able to attain good per-

formance. They, however, just employ networks assembled

with some off-the-shelf components in current deep learn-

ing toolkits, which are not specifically designed against the

investigated problem. Thus the main drawback of this tech-

nique is the lack of interpretability to this particular MS/HS

fusion task. In specific, both the intrinsic observation model

(1), (2) and the evident prior structures, like the spectral cor-

relation property, possessed by HS images have been ne-

glected by such kinds of “black-box” deep model.

3. MS/HS fusion model

In this section, we demonstrate the proposed MS/HS fu-

sion model in detail.

3.1. Model formulation

We first introduce an equivalent formulation for observa-

tion model (1). Specifically, we have following theorem2.

2All proofs are presented in supplementary material.

Theorem 1. For any X ∈ R
HW×S and Ỹ ∈ R

HW×s, if

rank(X) = r > s and rank(Ỹ ) = s, then the following two

statements are equivalent to each other:

(a) There exists an R ∈ R
S×s, subject to,

Ỹ = XR. (3)

(b) There exist A ∈ R
s×S , B ∈ R

(r−s)×S and Ŷ ∈
R

HW×(r−s), subject to,

X = Ỹ A+ Ŷ B. (4)

In reality, the band number of an HrMS image is usually

not large, which makes it full rank along spectral mode. For

example, the most commonly used HrMS images, RGB im-

ages, contain three bands, and their rank along the spectral

mode is usually also three. Thus, by letting Ỹ = Y −Ny

where Y is the observed HrMS in (1), it is easy to find that

Ỹ and X satisfy the conditions in Theorem 1. Then the

observation model (1) is equivalent3 to

X = Y A+ Ŷ B +Nx, (5)

where Nx = −NyA is caused by the noise contained in the

HrMS image. In (5), [Y , Ŷ ] can be viewed as r bases that

represent columns in X with coefficients matrix [A;B] ∈

R
r×S , where only the r − s bases in Ŷ are unknown. In

addition, we can derive the following corollary:

Corollary 1. For any Ỹ ∈ R
HW×s, Z̃ ∈ R

hw×S , C ∈
Rhw×HW , if rank(Ỹ ) = s and rank(Z̃) = r > s, then the

following two statements are equivalent to each other:

(a) There exist X ∈ R
HW×S and R ∈ R

S×s, subject to,

Ỹ = XR, Z̃ = CX, rank(X) = r. (6)

(b) There exist A ∈ R
s×S , r > s, B ∈ R

(r−s)×S and

Ŷ ∈ R
HW×(r−s), subject to,

Z̃ = C
(

Ỹ A+ Ŷ B
)

. (7)

Let Z̃ = Z −Nz , where Z is the observed LrHS image

in (2). It is easy to find that, when being viewed as equations

of the to-be-estimated X , R and C, the observation model

(1) and model (2) are equivalent to the following equation

of Ŷ , A, B and C:

Z = C
(

Y A+ Ŷ B
)

+N , (8)

where N = Nz − CNyA denotes the noise contained in

HrMS and LrHS image. Then, we can design the following

MS/HS fusion model:

min
Ŷ

∥

∥

∥
C

(

Y A+ Ŷ B
)

−Z

∥

∥

∥

2

F
+ λf

(

Ŷ
)

, (9)

3We say two equation are equivalent to each other if the solution of

one equation can easily achieve by solving the other one
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where λ is a trade-off parameter, and f(·) is a regularization

function. We adopt regularization on the to-be-estimated

bases in Ŷ , rather than on X as in conventional, to facil-

itate an entire preservation of spatial details4 contained in

the known HrMS bases (Y ) for representing X .

It should be noted that for data obtained with the same

sensors, A, B and C are fixed. This means that they can be

learned from the training data. In the later sections we will

show how to learn them with a deep network.

3.2. Model optimization

We now solve (9) using a proximal gradient algorithm

[3], which iteratively updates Ŷ by calculating

Ŷ (k+1) = argmin
Ŷ

Q
(

Ŷ , Ŷ (k)
)

, (10)

where Ŷ (k) is the updating result after k−1 iterations, k =
1, 2, · · · ,K, and Q(Ŷ , Ŷ (k)) is a quadratic approximation

[3] defined as:

Q
(

Ŷ , Ŷ (k)
)

=g
(

Ŷ (k)
)

+
〈

Ŷ − Ŷ (k),∇g
(

Ŷ (k)
)〉

+
1

2η

∥

∥

∥
Ŷ − Ŷ (k)

∥

∥

∥

2

F
+ λf

(

Ŷ
)

,
(11)

where g(Ŷ (k)) = ‖C(Y A+ Ŷ (k)B)− Z‖2F and η plays

the role of stepsize.

It is easy to prove that the problem (10) is equivalent to:

min
Ŷ

1

2

∥

∥

∥
Ŷ −

(

Ŷ (k)−η∇g
(

Ŷ (k)
))

∥

∥

∥

2

F
+ληf

(

Ŷ
)

. (12)

For many kinds of regularization terms, the solution of Eq.

(12) is usually in closed-form [8], written as:

Ŷ (k+1) = proxλη

(

Ŷ (k)−η∇g
(

Ŷ (k)
))

, (13)

where proxλη(·) is a proximal operator dependent on f(·).

Since ∇g(Ŷ (k)) = CT (C(Y A + Ŷ (k)B) − Z)BT , we

can obtain the final updating rule for Ŷ :

Ŷ
(k+1)=proxλη

(

Ŷ
(k)

−ηC
T
(

C

(

YA+ Ŷ
(k)
B

)

−Z

)

B
T
)

.

(14)

We can then unfold this algorithm into a deep network.

4. MS/HS fusion net

Based on the above algorithm, we build a deep neural

network for MS/HS fusion by unfolding all steps of the al-

gorithm as network layers. This technique has been widely

utilized in various computer vision tasks and has been sub-

stantiated to be effective in compressed sensing, dehazing,

deconvolution, etc. [44, 45, 53]. The proposed network is a

4 Directly imposing regularization terms on X , e.g., TV norm, will

lead to losing of details like the sharp edge and lines in X .

For 𝑘𝑘 = 1:𝐾𝐾 do: In stage 𝑘𝑘 = 1:𝐾𝐾 of the network do:

Iterative optimization algorithm Network design

𝒳𝒳 𝑘𝑘 = 𝒴𝒴 ×3 𝑨𝑨𝑻𝑻 + �𝒴𝒴(𝑘𝑘) ×3 𝑩𝑩𝑻𝑻𝑿𝑿 𝑘𝑘 = 𝒀𝒀𝑨𝑨+ �𝒀𝒀(𝑘𝑘)𝑩𝑩 ℰ 𝑘𝑘 = downSample𝜃𝜃𝑑𝑑𝑘𝑘 𝒳𝒳 𝑘𝑘 − 𝒵𝒵𝑬𝑬(𝑘𝑘) = 𝑪𝑪𝑿𝑿 𝑘𝑘 − 𝒁𝒁 𝒢𝒢 𝑘𝑘 = 𝜂𝜂 ⋅ upSample𝜃𝜃𝑑𝑑𝑘𝑘 ℰ 𝑘𝑘 ×3 𝑩𝑩𝑮𝑮 𝑘𝑘 = 𝜂𝜂𝑪𝑪𝑇𝑇𝑬𝑬(𝑘𝑘)𝑩𝑩𝑇𝑇 �𝒴𝒴 𝑘𝑘+1 = proxNet𝜃𝜃𝑝𝑝𝑘𝑘 �𝒴𝒴 𝑘𝑘 − 𝒢𝒢 𝑘𝑘𝒀𝒀 𝑘𝑘+1 = prox𝜆𝜆𝜆𝜆 �𝒀𝒀(𝑘𝑘) − 𝑮𝑮 𝒌𝒌
Figure 2. An illustration of relationship between the algorithm

with matrix form and the network structure with tensor form.

structure of K stages, corresponding to K iterations in the

iterative algorithm for solving Eq. (9), as shown in Fig. 3

(a) and (b). Each stage takes the HrMS image Y , LrHS im-

age Z, and the output of the previous stage Ŷ , as inputs,

and outputs an updated Ŷ to be the input of next layer.

4.1. Network design

Algorithm unfolding. We first decompose the updating

rule (14) into the following equivalent four sequential parts:

X(k) = Y A+ Ŷ (k)B, (15)

E(k) = CX(k) −Z, (16)

G(k) = ηCTE(k)BT , (17)

Ŷ (k+1) = proxλη

(

Ŷ (k) −G(k)
)

. (18)

In the network framework, we use the images with their

tensor formulations (X ∈ R
H×W×S , Y ∈ R

H×W×s and

Z ∈ R
h×w×S) instead of their matrix forms to protect their

spatial structure knowledge and make the network structure

(in tensor form) easily designed. We then design a network

to approximately perform the above operations in tensor

version. Refer to Fig. 2 for easy understanding.

In tensor version, Eq. (15) can be easily performed by

the two multiplications between a tensor and a matrix along

the 3rd mode of the tensor. Specifically, in the TensorFlow5

framework, multiplying a tensor with an matrix in R
m×n

along the channel mode can be easily performed by using

the 2D convolution function with a associated 1×1×m×n

tensor. Thus, we can perform the tensor version of (15) by:

X (k) = Y ×3 A
T + Ŷ(k) ×3 B

T , (19)

where ×3 denotes the mode-3 multiplication for tensor6.

In Eq. (16), the matrix C represents the spatial down-

sampling operator, which can be decomposed into 2D con-

volutions and down-sampling operators [12, 24, 25]. Thus,

we perform the tensor version of (16) by:

E(k) = downSample
θ
(k)
d

(

X (k)
)

−Z, (20)

5https://tensorflow.google.cn/
6For a tensor U ∈ R

I×J×K with uijk as its elements, and V ∈

R
K×L with vkl as its elements, let W = U ×3V , the elements of W are

wijl =
∑K

k=1 uijkvlk . Besides, W = U ×3 V ⇔ W = UV
T .
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Figure 3. (a) The proposed network with K stages implementing K iterations in the iterative optimization algorithm, where the kth stage

is denoted as Sk, (k = 1, 2, · · · ,K). (b) The flowchart of kth (k < K) stage. (c)-(e) Illustration of the first, kth (1 < k < K) and final

stage of the proposed network, respectively. When setting Ŷ
(k) = 0, Sk is equivalent to S1.

where E(k) is an h×w×S tensor, downSample
θ
(k)
d

(·) is the

downsampling network consisting of 2D channel-wise con-

volutions and average pooling operators, and θ
(k)
d denotes

filters involved in the operator at the kth stage of network.

In Eq. (17), the transposed matrix CT represents a spa-

tial upsampling operator. This operator can be easily per-

formed by exploiting the 2D transposed convolution [9],

which is the transposition of the downsampling operator.

By exploiting the 2D transposed convolution with the filter

size as (20), we can approach (17) in the network by:

G(k) = η · upSample
θ
(k)
u

(

E(k)
)

×3 B, (21)

where G(k) ∈ R
H×W×S , upSample

θ
(k)
u

(·) is the spacial

upsampling network consisting of transposed convolutions

and θ
(k)
u denotes the corresponding filters in the kth stage.

In Eq. (18), prox(·) is a to-be-decided proximal operator.

We adopt the deep residual network (ResNet) [13] to learn

this operator. We then represent (18) in our network as:

Ŷ(k+1) = proxNet
θ
(k)
p

(

Ŷ(k) − G(k)
)

, (22)

where proxNet
θ
(k)
p

(·) is a ResNet which represents the prox-

imal operator in our algorithm and the parameters involved

in the ResNet at the kth stage are denoted by θ
(k)
p .

With Eq. (19)-(22), we can now construct the stages in

the proposed network. Fig. 3 (b) shows the flowchart of a

single stage of the proposed network.

Normal stage. In the first stage, we simply set Ŷ(1) =
0. By exploiting (19)-(22), we can obtain the first network

stage as shown in Fig. 3 (c). Fig. 3 (d) shows the kth stage

(1 < k < K) of the network obtained by utilizing (19)-(22).

Final stage. As shown in Fig. 3(e), in the final stage,

we can approximately generate the HrHS image by (19).

Note that X(K) (the unfolding matrix of X (K)) has been

intrinsically encoded with low-rank structure. Moreover,

according to Theorem 1, there exists an R ∈ R
S×s, s.t.,

Y = X(K)R, which satisfies the observation model (1).

However, HrMS images Y are usually corrupted with

slight noise in reality, and there is a little gap between the

low rank assumption and the real situation. This implies that

X(K) is not exactly equivalent to the to-be-estimated HrHS

image. Therefore, as shown in Fig. 3 (e), in the final stage

of the network, we add a ResNet on X (K) to reduce the gap

between the to-be-estimated HrHS image and X (K):

X̂ = resNetθr

(

X (K)
)

. (23)

In this way, we design an end-to-end training architec-

ture, called MS/HS fusion net or MHFnet. We denote the

function of entire net as X̂ = MHFnet (Y,Z,Θ), where Θ
represents all parameters involved in the network. Please

refer to supplementary material for more details.

4.2. Network training

Training loss. As shown in Fig. 3 (e), the training loss

for each training image is defined as following:

L = ‖X̂−X‖2F+α
∑K

k=1
‖X (k)−X‖2F+β‖E

(K)‖2F , (24)

where X̂ and X (k) are the final and per-stage outputs of the

proposed network, α and β are two trade-off parameters7.

7We set α and β with small values (0.1 and 0.01, respectively) in all

experiments, to make the first term play a dominant role.
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Figure 4. Illustration of how to create the training data when HrHS

images are unavailable.

The first term is the pixel-wise L2 distance between the out-

put of the proposed network and the ground truth X , which

is the main component of our loss function. The second

term is the pixel-wise L2 distance between the output X (k)

and the ground truth X in each stage. This term helps find

the correct parameters in each stage, since appropriate Ŷ(k)

would lead to ˆX (k) ≈ X . The final term is the pixel-wise

L2 distance of the residual of observation model (2) for the

final stage of the network.

Training data. For simulation data and real data with

available ground-truth HrHS images, we can easily use the

paired training data {(Yn,Zn),Xn}
N
n=1 to learn the param-

eters in the proposed MHF-net. Unfortunately, for real data,

HrHS images Xns are sometimes unavailable. In this case,

we use the method proposed in [30] to address this prob-

lem, where the Wald protocol [50] is used to create the

training data as shown in Fig. 4. We downsample both

HrMS images and LrHS images in space, so that the orig-

inal LrHS images can be taken as references for the down-

sampled data. Please refer to supplementary material for

more details.

Implementation details. We implement and train our

network using TensorFlow framework. We use Adam opti-

mizer to train the network for 50000 iterations with a batch

size of 10 and a learning rate of 0.0001. The initializa-

tions of the parameters and other implementation details are

listed in supplementary materials.

5. Experimental results

We first conduct simulated experiments to verify the

mechanism of MHF-net quantitatively. Then, experimen-

tal results on simulated and real data sets are demonstrated

to evaluate the performance of MHF-net.

Evaluation measures. Five quantitative picture quality

indices (PQI) are employed for performance evaluation, in-

cluding peak signal-to-noise ratio (PSNR), spectral angle

mapper (SAM) [49], erreur relative globale adimension-

nelle de synthèse (ERGAS [38]), structure similarity (SSIM

[39]), feature similarity (FSIM [51]). SAM calculates the

average angle between spectrum vectors of the target MSI

and the reference one across all spatial positions and ER-

GAS measures fidelity of the restored image based on the

weighted sum of MSE in each band. PSNR, SSIM and

FSIM are conventional PQIs. They evaluate the similarity

between the target and the reference images based on MSE

Table 1. Average performance of the competing methods over 12

testing samples of CAVE data set with respect to 5 PQIs.

ResNet
MHF-net with (K,L)

(4, 9) (7, 5) (10, 4) (13, 2)
PSNR 32.25 36.15 36.61 36.85 37.23

SAM 19.093 9.206 8.636 7.587 7.298

ERGA 141.28 92.94 88.56 86.53 81.87

SSIM 0.865 0.948 0.955 0.960 0.962

FSIM 0.966 0.974 0.975 0.975 0.976

and structural consistency, perceptual consistency, respec-

tively. The smaller ERGAS and SAM are, and the larger

PSNR, SSIM and FSIM are, the better the fusion result is.

5.1. Model verification with CAVE data

To verify the efficiency of the proposed MHF-net, we

first compare the performance of MHF-net with different

settings on the CAVE Multispectral Image Database [46]8.

The database consists of 32 scenes with spatial size of

512×512, including full spectral resolution reflectance data

from 400nm to 700nm at 10nm steps (31 bands in total). We

generate the HrMS image (RGB image) by integrating all

the ground truth HrHS bands with the same simulated spec-

tral response R, and generate the LrHS images via down-

sampling the ground-truth with a factor of 32 implemented

by averaging over 32× 32 pixel blocks as [2, 16].

To prepare samples for training, we randomly select 20
HS images from CAVE database and extract 96 × 96 over-

lapped patches from them as reference HrHS images for

training. Then the utilized HrHS, HrMS and LrHS images

are of size 96× 96× 31, 96× 96× 3 and 3× 3× 31, re-

spectively. The remaining 12 HS images of the database are

used for validation, where the original images are treated as

ground truth HrHS images, and the HrMS and LrHS images

are generated similarly as the training samples.

We compare the performance of the proposed MHF-net

under different stage number K. In order to make the com-

petition fair, we adjust the level number L of the ResNet

used in proxNet
θ
(k)
p

for each situation, so that the total level

number of the network in each setting is similar to each

other. Moreover, to better verify the efficiency of the pro-

posed network, we implement another network for compe-

tition, which only uses the ResNet in (22) and (23) without

using other structures in MHF-net. This method is simply

denoted as “ResNet”. In this method, we set the input as

[Y,Zup], where Zup is obtained by interpolating the LrHS

image Z (using a bicubic filter) to the dimension of Y as

[28] did. We set the level number of ResNet to be 30.

Table 1 shows the average results over 12 testing HS im-

ages of two DL methods in different settings. We can ob-

serve that MHF-net with more stages, even with fewer net

levels in total, can significantly lead to better performance.

We can also observe that the MHF-net can achieve better

8http://www.cs.columbia.edu/CAVE/databases/
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Figure 5. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of chart and staffed toy, where we display the 10th (490nm) band

of the HS image. (b) The ground-truth HrHS image. (c)-(n) The results obtained by 12 comparison methods, with two demarcated areas

zoomed in 4 times for easy observation.

Table 2. Average performance of the competing methods over 12

testing images of CAVE date set with respect to 5 PQIs.

PSNR SAM ERGAS SSIM FSIM

FUSE 30.95 13.07 188.72 0.842 0.933

ICCV15 32.94 10.18 131.94 0.919 0.961

GLP-HS 33.07 11.58 126.04 0.891 0.942

SFIM-HS 31.86 7.63 147.41 0.914 0.932

GSA 33.78 11.56 122.50 0.884 0.959

CNMF 33.59 8.22 122.12 0.929 0.964

M-FUSE 32.11 8.82 151.97 0.914 0.947

SASFM 26.59 11.25 362.70 0.799 0.916

PNN 32.42 14.73 134.51 0.884 0.956

3D-CNN 34.82 8.96 109.20 0.937 0.971

ResNet 32.25 16.14 141.28 0.865 0.966

MHF-net 37.23 7.30 81.87 0.962 0.976

results than ResNet (about 5db in PSNR), while the main

difference between MHF-net and ResNet is our proposed

stage structure in the network. These results show that the

proposed stage structure in MHF-net, which introduces in-

terpretability specifically to the problem, can indeed help

enhance the performance of MS/HS fusion.

5.2. Experiments with simulated data

We then evaluate MHF-net on simulated data in compar-

ison with state-of-art methods.

Comparison methods. The comparison methods in-

clude: FUSE [41]9, ICCV15 [18]10, GLP-HS [31]11, SFIM-

HS [19]11, GSA [1]11, CNMF [48]12, M-FUSE [40]13 and

SASFM [14]14, representing the state-of-the-art traditional

methods; PNN [30] and 3D-CNN [28] representing the

state-of-the-art DL-based methods. We also compare the

proposed MHF-net with the implemented ResNet method.

Performance comparison with CAVE data. With the

same experiment setting as in the previous section, we com-

pare the performance of all competing methods on the 12

9http://wei.perso.enseeiht.fr/publications.html
10https://github.com/lanha/SupResPALM
11http://openremotesensing.net/knowledgebase/

hyperspectral-and-multispectral-data-fusion/
12http://naotoyokoya.com/Download.html
13https://github.com/qw245/BlindFuse
14We write the code by ourselves.

testing HS images (K = 13 and L = 2 in MHF-net). Table

2 lists the average performance over all testing images of all

comparison methods. From the table, it is seen that the pro-

posed MHF-net method can significantly outperform other

competing methods with respect to all evaluation measures.

Fig. 5 shows the 10-th band (490nm) of the HS image chart

and staffed toy obtained by the completing methods. It is

easy to observe that the proposed method performs better

than other competing ones, in the better recovery of both

finer-grained textures and coarser-grained structures. More

results are depicted in the supplementary material.

Performance comparison with Chikusei data. The

Chikusei data set [47]15 is an airborne HS image taken over

Chikusei, Ibaraki, Japan, on 29 July 2014. The data set is of

size 2517 × 2335 × 128 with the spectral range from 0.36

to 1.018. We view the original data as the HrHS image and

simulate the HrMS (RGB image) and LrMS (with a factor

of 32) image in the similar way as the previous section.

We select a 500 × 2210-pixel-size image from the top

area of the original data for training, and extract 96 × 96
overlapped patches from the training data as reference

HrHS images for training. The input HrHS, HrMS and

LrHS samples are of sizes 96× 96× 128, 96× 96× 3 and

3× 3× 128, respectively. Besides, from remaining part of

the original image, we extract 16 non-overlap 448× 544×
128 images as testing data. More details about the experi-

mental setting are introduced in supplementary material.

Table 3 shows the average performance over 16 testing

images of all competing methods. It is easy to observe that

the proposed method significantly outperforms other meth-

ods with respect to all evaluation measures. Fig. 6 shows

the composite images of a test sample obtained by the com-

peting methods, with bands 70-100-36 as R-G-B. It is seen

that the composite image obtained by MHF-net is closest

to the ground-truth, while the results of other methods usu-

ally contain obvious incorrect structure or spectral distor-

tion. More results are listed in supplementary material.

15http://naotoyokoya.com/Download.html
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Figure 6. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set. We show the composite

image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(n) The results obtained by 10 comparison

methods, with two demarcated areas zoomed in 4 times for easy observation.

(b) LrHS image

(i) M-FUSE

(c) FUSE

(j) SAMF (m) ResNet

(f) SFIM-HS

(n) MHF-net

(g) GSA

(h) CNMF

(a) HrMS image (e) GLP-HS

(l) 3D-CNN

(d) ICCV15

(k) PNN

Figure 7. (a) and (b) are the HrMS (RGB) and LrHS images of the left bottom area of Roman Colosseum acquired by World View-2 (WV-

2). We show the composite image of the HS image with bands 5-3-2 as R-G-B. (c)-(n) The results obtained by 10 comparison methods,

with a demarcated area zoomed in 5 times for easy observation.

Table 3. Average performance of the competing methods over 16

testing samples of Chikusei data set with respect to 5 PQIs.

PSNR SAM ERGAS SSIM FSIM

FUSE 26.59 7.92 272.43 0.718 0.860

ICCV15 27.77 3.98 178.14 0.779 0.870

GLP-HS 28.85 4.17 163.60 0.796 0.903

SFIM-HS 28.50 4.22 167.85 0.793 0.900

GSA 27.08 5.39 238.63 0.673 0.835

CNMF 28.78 3.84 173.41 0.780 0.898

M-FUSE 24.85 6.62 282.02 0.642 0.849

SASFM 24.93 7.95 369.35 0.636 0.845

PNN 24.30 4.26 157.49 0.717 0.807

3D-CNN 30.51 3.02 129.11 0.869 0.933

ResNet 29.35 3.69 144.12 0.866 0.930

MHF-net 32.26 3.02 109.55 0.890 0.946

5.3. Experiments with real data

In this section, sample images of Roman Colosseum ac-

quired by World View-2 (WV-2) are used in our experi-

ments16. This data set contains an HrMS image (RGB im-

age) of size 1676 × 2632 × 3 and an LrHS image of size

419× 658× 8, while the HrHS image is not available. We

select the top half part of the HrMS (836 × 2632 × 3) and

LrHS (209× 658× 8) image to train the MHF-net, and ex-

ploit the remaining parts of the data set as testing data. We

first extract the training data into 144× 144× 3 overlapped

HrMS patches and 36×36×3 overlapped LrHS patches and

then generate the training samples by the method as shown

in Fig. 4. The input HrHS, HrMS and LrHS samples are of

16https://www.harrisgeospatial.com/DataImagery/

SatelliteImagery/HighResolution/WorldView-2.aspx

size 36× 36× 8, 36× 36× 3 and 9× 9× 8, respectively.

Fig. 6 shows a portion of the fusion result of the test-

ing data (left bottom area of the original image). Visual

inspection evidently shows that the proposed method gives

the better visual effect. By comparing with the results of

ResNet, we can find that the results of both methods are

clear, but the color and brightness of result of the proposed

method are much closer to the LrHS image.

6. Conclusion

In this paper, we have provided a new MS/HS fusion

network. The network takes the advantage of deep learn-

ing that all parameters can be learned from the training data

with fewer prior pre-assumption on the data, and further-

more takes into account the generation mechanism underly-

ing the MS/HS fusion data. This is achieved by construct-

ing a new MS/HS fusion model based on the observation

models, and unfolding the algorithm into an optimization-

inspired deep network. The network is thus specifically in-

terpretable to the task, and can help discover the spatial and

spectral response operators in a purely end-to-end manner.

Experiments implemented on simulated and real MS/HS fu-

sion cases have substantiated the superiority of the proposed

MHF-net over the state-of-the-art methods.
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