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Abstract

The reconstruction and analysis of tree-like topological

structures in the biomedical images is crucial for biologists

and surgeons to understand biomedical conditions and plan

surgical procedures. The underlying tree-structure topology

reveals how different curvilinear components are anatomi-

cally connected to each other. Existing automated topology

reconstruction methods have great difficulty in identifying

the connectivity when two or more curvilinear components

cross or bifurcate, due to their projection ambiguity, imag-

ing noise and low contrast. In this paper, we propose a

novel curvilinear structural similarity measure to guide a

dominant-set clustering approach to address this indispens-

able issue. The novel similarity measure takes into account

both intensity and geometric properties in representing the

curvilinear structure locally and globally, and group curvi-

linear objects at crossover points into different connected

branches by dominant-set clustering. The proposed method

is applicable to different imaging modalities, and quantita-

tive and qualitative results on retinal vessel, plant root, and

neuronal network datasets show that our methodology is ca-

pable of advancing the current state-of-the-art techniques.

1. Introduction

Accurate reconstruction of the pervasive tree-like struc-

tures commonly encountered in biomedical imagery, such

as blood vessels in medical images, the roots of plants

in color photography, or neuronal arbors in optical mi-

croscopy images, is a fundamental step in providing valu-

able clinical information in diagnosis of pathological con-

ditions [25, 30], revealing important information about the

delivery of nutrients to different plant tissues [14, 1], or

screening the neuronal connectivity to study the relation be-

tween neuronal structure and function [3, 26], respectively.

In consequence, extracting and representing the geometri-

cal (radii, lengths or tortuosity) and topological (branching

connectivity) properties of these tree-like structures is criti-

cal for diagnosis, or other analytic purposes.

Rapid development has taken place in the automatic ge-

ometric extraction of the properties of tree-like structures,

as evidenced by extensive reviews [16, 32]: but automated

topology reconstruction from a single, two-dimensional (2-

D) image of a three-dimensional (3-D) tree-structure is rel-

atively unexplored, and more challenging. The main reason

is that while a 3-D tree-structure projects readily to a 2-D

image plane, the problem of then reconstructing the topol-

ogy of the tree-like structure from it is ill-posed and error-

prone [14], due to their depth loss in projection, imaging

noise and low contrast in appearance and geometric struc-

tures.

The underlying tree-structure topology must be able to

identify and differentiate individual curvilinear objects from

the entire tree network. The top row of Figure 1 shows ex-

amples of tree-like structures in biomedical imagery: the

bottom row gives their derived topological information.

Manual reconstruction of these tree-structure topologies is

time consuming, and commercial software, e.g., Vaa3D1,

still largely relies on manual annotation and so is subject to

human error [11]. Thus, the catalyst for the development of

algorithms for accurate automatic topology reconstruction

has been primarily the need to overcome time constraints

and avoid human error.

1http://home.penglab.com/proj/vaa3d/home
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Figure 1. Examples of biomedical images exhibiting tree-like

structures, and their derived topological information. From left

to right: retinal vessels, a plant root system, and neuronal arbors.

Each individual tree branch is marked with a distinct color.

1.1. Related works

Automated tree-structure topology reconstruction from

three-dimensional images is a well-posed problem [18],

and most existing efforts in tree-structure topology recon-

struction have focused on three-dimensional data, such as

the lung airways from computed tomography (CT) [6, 19],

cerebral vascular network from magnetic resonance an-

giogram (MRA) [4, 27], and nerves or neurons from mi-

croscopic image stacks [5]. However, topology estimation

from a single 2-D image of a 3-D tree-structure is more

challenging, and has received relatively little attention. To

the best of our knowledge, only a small number of studies

have addressed the topic directly.

The topological reconstruction of tree structures in neu-

ronal and retinal images was formalized as label propaga-

tion over a two step graph-theoretical approach by De et

al. [11, 12], and each tree branch could be separated from

the tree-like network. Cheng et al. [8] formed a directed

graph to represent the retinal vessel network. The entire

vessel graph was separated into several subgraphs with in-

dividual labels, by propagating tree labels from known root

nodes to the entire graph. Estrada et al. [14] regularized the

topology reconstruction task with a parametric tree-growth

model by using a heuristic search algorithm, and applied it

to the retinal vessels, plant roots and synthetic leafy trees.

The authors further utilized the topological information to

classify all the vessels into arteries or veins [13]. Dashtbo-

zorg et al. [10] proposed a graph-based approach for retinal

vessel topology estimation, and the vessel orientation and

angle features were used to group the nodes at crossover

into two pairs.

The automated methods so far developed often fail to

identify the connectivity correctly in instances of curvilin-

ear crossover: i.e., two curvilinear objects overlap or touch-

ing due to the projection [10]. Crossovers lead to difficulty

in predicting whether a given curvilinear object contacting

a crossover belongs to the same tree, or a different tree,

due both to their projective ambiguity and subtle changes in

appearance, contrast and geometry in the imaging process.

Moreover, the inhomogeneous intensity and poor contrast

due to imaging noise or uneven illumination, often leads to

a tree with apparent discontinuities, or with fuzzy bound-

aries, and which aggravates the difficulty in the estimation

of topology.

1.2. Proposed approach

Recently, it has been shown in [33] that the topology

of the retinal vessel tree can be estimated by exploiting the

concept of dominant set clustering, which formalizes the

task of topology estimation as a pairwise clustering prob-

lem. However, this method still makes topological mis-

takes, because it suffers from the fact that the dominant

set clustering approach uses the Euclidean distance at the

pixel level without attending to global properties, such as

tree shape. Such a similarity measure cannot fully capture

the structural information conveyed in terms of intensity or

shape.

To overcome these limitations, we propose a novel tree-

like structure topology reconstruction framework that works

automatically from a single 2-D image. In particular, we

focus on addressing the bottleneck crossover problem. The

proposed method includes three main contributions:

• The formalization of the topology reconstruction of a

tree-like structure from a single projective image.

• A novel curvilinear structural similarity measure is

introduced by aggregating three different similarities,

which together can take into account both intensity and

geometric properties to represent curvilinear structures

locally and globally. It ensures that the extracted simi-

larity is diverse in features.

• The re-conceptualization of the topology estimation

task as a pairwise clustering problem: a curvilinear

structural similarity-enabled dominant set clustering,

which proves to be an effective way of addressing the

problem of tracing branches at crossovers.

The proposed method has been validated quantitatively

using four publicly accessible datasets with three different

imaging modalities - microscopic images, retinal color fun-

dus images, and RGB source images.

2. Method

2.1. Graph Generation

The proposed topology reconstruction approach for tree

structure requires a pre-processing step, which encom-

passes the following four phases.
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(a) (b) (c) (d) (e)
Figure 2. The pipeline of the proposed method to reconstruct the topology of tree-like structure from an example image. (a) Tree-like

structure (retinal vessel); (b) Extracted tree-like structure; (c) Skeletonized tree-like structure; (d) Localization of junctions, in which green

triangles indicate bifurcations, red squares and yellow stars crossovers. (e) Reconstructed topology of tree network.

Segmentation: The infinite perimeter active contour

model using hybrid region information [34] was em-

ployed to automatically segment the tree-like structures.

(Note: this step may be skipped for some datasets where

manual annotation of the tree-like structures is provided

with the data source.) Skeletonization: The center-

lines of tree-structures provide an accurate representa-

tion of their topologies. Therefore, an iterative morphol-

ogy thinning operation [2] is performed on the extracted

tree-structures to obtain a single-pixel-wide skeleton map.

Junction localization: The bifurcations, crossovers, and fil-

ament ends (terminal points) may then be extracted from

the skeleton map by locating junction points (pixels with

more than two neighbors) and terminal points (pixels with

one neighbor). All the junction points and their neighbors

are then removed from the skeleton map, producing an im-

age with clearly separated segments. Junctions are catego-

rized into four groups, according to the number of points

involved in each junction - terminal points (1), connecting

points (2), bifurcation points (3), and crossovers/meeting

points (4 and above). The bracketed number indicates the

number of filament segments connected to each intersec-

tion. Graph generation: A graph can be generated from

the skeleton map by linking first and last nodes in the same

segment. The typical misrepresentations from the generated

graph, such as node splitting, missing links and false links,

are corrected by employing a graph modification approach

proposed in [10].

Fig. 2 (a)-(d) shows an example of the outline of the

graph preparation for retinal vessels.

2.2. Dominant­set Clustering for Topology Recon­
struction

The concept of dominant sets arises from the study

of graph theory, by which a continuous formulation of

the maximum clique problem is defined [23]. An undi-

rected graph G with weighted edges is represented by

G = (V,E, ω), where V is a set of nodes/pixels, edge

set E ⊆ V × V indicates all the possible connections, and

ω : E → R is the positive weight function and represents

the similarity among the pixels in V . A |V |×|V | symmetric

matrix A = (aij) is used to represent the weighted graph G
as an adjacency matrix.

A dominant set can be formally defined based on the

values of similarity among nodes in V . Let S ⊆ V be a

nonempty subset of nodes, pi ∈ V and pj ∈ S. The rela-

tive similarity between pi and pj with respect to the average

similarity between pj and its neighbours in S is defined as:

φS(i, j) = aij −
1

|S|

∑

pk∈S

ajk. (1)

The edge weight definition plays a crucial role in the pro-

posed method. In [33], the inverse Euclidean distance be-

tween the two end points of an edge in the feature space is

used, where each node is represented as a 23-dimensional

feature vector. However, this approach lacks of robustness

due to failure to capture global characteristics. In our work,

aij is derived by a curvilinear structural similarity metric

which is aggregated from pixel level, region level, and geo-

metrical similarities. The derivation of this novel similarity

will be proposed below in Sec. 3.

It is known from definition that φS(i, j) in Eqn. (1) can

be either positive or negative. The weight of pi with regard

to S is assigned recursively as:

WS(i) =

{

1 if |S| = 1
∑

pj∈S\{pi}

φS\{pi}(i, j)WS\{pi}(j) otherwise.

(2)

where S \{pi} indicates the nodes set S excluding the node

pi, and WS(i) expresses the similarity between node pi and

the nodes of S \ {pi} with respect to the mutual similarity

amongst the nodes in S \ {pi}. Finally, the total weight of

S is calculated by W (S) =
∑

pi∈S WS(i).

Formally, a non-empty subset of nodes S, S ⊆ V such

that W (S′) > 0 for any non-empty S′ ⊆ S is said to be a

dominant set if:

WS(i) > 0, for all pi ∈ S (3)
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Algorithm 1 Topology Estimation(I)

Inputs: I: a set of points pi that is associated with intersections;

Outputs: S∗: a partition of I , each element of which includes points of the same

branch;

1: initialize the |I| × |I| symmetric matrix A = (aij) by calculating aij =
ω(i, j) with respect to given features;

2: S∗ = ∅
3: while I 6= ∅ do

4: initialize a |I| dimensional vector x(0) ∈ ∆
5: for t = 0 : MaxIteration − 1 do

6: for i = 1 : |I| do

7: x
(t+1)
i = x

(t)
i

(Ax
(t))i

x
(t)′Ax

(t)

8: end for

9: end for

10: S = ∅
11: for each x

(MaxIteration)
i > 0 do

12: remove the column and row with respect to pi from A
13: S = S

⋃
pi

14: end for

15: I = I \ S
16: S∗ = S∗

⋃
{S}

17: end while

and

WS∪{pi}(i) < 0, for all pi /∈ S. (4)

In general, the weights of edges within the dominant set

of a edge-weighted graph should be large, representing high

internal homogeneity or similarity [23]. By contrast, the

weights of edges which link to the dominant sets externally

will be small. Therefore, the dominant set is a proper so-

lution to identify branches of a tree, because the similarity

of two points from the same branch should be large, while

that of two points belonging to different branches should be

small.

Dominant sets can be identified by local solutions of the

program:

maximize f(x) = x⊤Ax
subject to x ∈ ∆,

(5)

where

∆ =
{

x ∈ R
d :

d
∑

i=1

xi = 1 and xi ≥ 0 for all i = 1, · · · , d
}

and d = |I \ S|. A strict local solution x∗ of Eqn. (5) in-

dicates a dominant set S of G, where xi > 0 means that

the node in question pi ∈ S. An effective optimization ap-

proach for solving Eqn. (5) is given by the so-called repli-

cator dynamics [24]:

x
(t+1)
i = x

(t)
i

(Ax(t))i

x(t)⊤Ax(t)
, (6)

where i = 1, 2, · · · , |S|. It has been proven that for any ini-

tialization of x ∈ ∆, its trajectory will remain in ∆ with the

increase of iteration t. As t in Eqn. (6) increases, the ob-

jective function f(x) in Eqn. (5) is either strictly increasing

or constant. In practice, the stopping criterion of the dy-

namic system can be set as a maximal number of iteration

t, or as a minimal increment of f(x). Algorithm 1 shows

the complete procedure for partitioning a tree structure into

branches S.

It is worth noticing that a peeling-off strategy has been

adopted: i.e., this method iteratively extracts a subset of

points belonging to the same branch (a dominant set S) each

time by using Eqn. (6) and repeating the process with the

remaining points within the intersection I = I \ S. The

identification of different branches at an intersection is car-

ried out by identifying the most obvious branch first, and

then the second most obvious, and so on. Therefore, the

peeling-off strategy is a direct, intuitive implementation of

this procedure [24].

3. Curvilinear structural similarity measure

The similarity metric aij = ω(i, j) in Algorithm 1 is as

yet to be defined. In this section, we will detail this similar-

ity measure.

Traditional similarity measures, such as the Euclidean

distance, cannot fully capture the local and global, or

intensity-based and geometry-based structural information

of the given objects, and it is hard to provide reliable in-

formation for data clustering. Therefore, a fine similarity

measure with informative local and global structural details

is essential in the reconstruction of a complicated tree-like

structure. In this work, we adopt the concept of struc-

tural similarity (SSIM) [29], and re-conceptualize it as a

new tree-structural similarity measurement, which further

exploits the regional and geometric characteristics of curvi-

linear segments.

Two different curvilinear segments will be deemed to

be from the same tree branch if they satisfy the following

anatomical characteristics, which are supported by clinical

and biological evidences [21, 26, 14]:

• High local similarity: their local contrast is small;

• High global similarity: entire objects consist of similar

curvilinear compoenents;

• High geometric similarity: the global orientations and

tortuosity of the curvilinear object are similar.

In consequence, we propose a novel curvilinear struc-

tural similarity measure to satisfy the above properties. This

similarity measurement is aggregated from the similarity

measured at pixel level, region level, and geometrical level.

3.1. Pixel­aware structural similarity measure

SSIM is a similarity measure that is able to compare the

local pattern of pixel intensities from the perspective of im-

age formation. Let u and v be the pixel values in the seg-

ments where the nodes pi and pj are located, respectively.
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Then the SSIM(i, j) of two segments containing nodes pi
and pj can be defined as:

SSIM(i, j) =
2u′

iv
′
j

(u′
i)2 + (v′

j)2
·

2σui
σvj

(σui
)2 + (σvj

)2
·
σuiuj

σui
σvj

.

(7)

The three terms of SSIM are luminance, contrast, and struc-

tural components, respectively [29]. The u′, σu, v′, and

σv are the mean and standard deviation of the pixel values

of the two segments containing nodes pi and pj , respec-

tively, and σuv is the covariance between them. (Note, in

the real application, the size of the two curvilinear segments

are usually in different, as thus they are straightened and re-

sized into a certain shape.) It can be observed that the three

components are relatively independent. For example, the

smaller the difference between u′ and v′, or σu and σv, the

greater the similarity of luminance or contrast. Meanwhile,

the change of luminance or contrast will not affect the struc-

tures measurement. In [29], the structural similarity of two

different objects is equivalent to the correlation coefficient

between u and v, and it is associated with the two normal-

ized vectors (u− u′)/σu and (v − v′)/σv.

3.2. Region­aware structural similarity measure

The pixel level structural similarity measure discussed

above is mainly defined by the intensity values of each

pixel, and so can capture local details of curvilinear objects.

However, a purely pixel level structural similarity measure

cannot well account for regional similarities [9, 15]. There-

fore, in this section, we propose a novel region level struc-

tural similarity measure.

Assume that the given segment i is partitioned into M
superpixels {pi

m}Mm=1, and segment j is superpixelized

into N patches {pj
n}

N
M=1 using the Simple Linear Itera-

tive Clustering (SLIC) method. The region-aware structure

similarity (RSIM) of these two segments can be formulated

as:

RSIM(i, j) =

M
∑

m=1

N
∑

n=1

SSIM(pi
m,pj

n) · w(p
i
m,pj

n), (8)

where w(pi
m,pj

n) is a standard Gaussian weighting func-

tion to model the local contrast in terms of geometric dis-

tances between superpixels m and n, so that local contrast

can be effectively combined with control over the influence

radius:

w(pi
m,pj

n) =
1

Z
exp{−

‖pi
m − pj

n‖
2

2σ2
}, (9)

where Z is the normalization term to ensure that
∑N

n=1,n 6=m w(pi
m,pj

n) = 1. The range of the regional sim-

ilarity may be controlled by the standard deviation σ2 from

0 to 1. Larger values of σ increase the spatial weighting of

the distant segments, and vice versa. In our implementation,

we set σ2 = 0.3 empirically. The operator ‖ ·‖ indicates the

spatial distance between pi
m and pj

n.

The RSIM considers not only the local intensity values,

but also how the pixel values are distributed in each patch,

and how similar such distributions are between different

patches. This method treats patches (superpixels) instead as

units for similarity measurement by considering how sim-

ilar different patches are and comparing them directly to

each other [15] in order to determine their relative contrast

and similarity.

3.3. Geometry­aware structural similarity measure

Dividing the intensity-based structural similarity into

pixel level and region level, helps in obtaining the object

structural similarity. However, in the field of biomedical im-

age analysis, the object’s shape or geometry level similarity

is crucial to revealing abnormalities [35]. To this end, we

propose a novel geometrical structural similarity measure

(GSIM) in this work. This GSIM can capture the overall

geometry of a shape, or the tortuosity of a curvilinear com-

ponent, and is more robust to variation in imaging quality

and scale.

In our work, the shape index is proposed in order to cap-

ture the intuitive notion of ‘shape’ locally and globally [20].

The shape index E of each centerline pixel in a given seg-

ment may be defined as

E =
2

π
arctan

C2 + C1

C2 − C1
, (10)

where C1 and C2 are the curvatures of each side of a curvi-

linear segment. The curvature obtained from eigensystem

analysis of the Hessian matrix is commonly used in the

computation of vectors tangent to oriented structures [31].

The measurement of shape index in a 3D surface is better

able to represent the concavity or convexity of a given re-

gion, and in 2D or 1D applications, it may be employed to

reveal the global tortuosity of a given shape or curve.

The GSIM can be obtained by calculating the relative

distance between their arguments:

GSIM(i, j) = exp
{

−
rd(E ′

i ,E
′
j )

2

2g2
}

, (11)

where E ′ indicates the mean shape index value of a seg-

ment, and g is a control parameter that is able to reveal how

distant pixels and dissimilar features will impact the shape

index of the current pixel: here, g2 = 3 is empirically cho-

sen. The relative distance rd(·) of two shape indices be-

tween two objects is defined as:

rd(Ei,Ej) =
‖Ei,Ej‖

avek⊂S(‖Ei,Ej‖)
, (12)
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(a) Origin (b) Groundtruth (c) LBP (d) MMNX (e) MFTD (f) Ours

Figure 3. Two examples of topology reconstruction by different methods on neuron arbors from the NeurB1 and NeurB2 dataset.

Table 1. Performances of different methods in identifying the connectivity at junctions, and their DIADEM scores for the NeurB1 and

NeurB2 datasets.

Dataset # Junction Method
# Correctly

AccI AccII DIADEM
Identified

NeurB1 557

Ours 501 90.0% 93.6% 0.67

LBP - - - 0.42

MFTD 389 69.8% - 0.52

MMNX 207 37.2% - 0.43

NeurB2 254

Ours 207 81.5% 92.0% 0.63

LBP - - - 0.19

MFTD 199 78.4% - 0.26

MMNX 67 26.4% - 0.22

where avek⊂S(‖Ei − Ej‖) is the average Euclidean dis-

tance of shape index values between segment i and other

candidate segment k in intersection S.

3.4. Similarity Fusion via OWA aggregation

Each of the three aforementioned curvilinear structural

similarity measures has disadvantages if used alone in real

applications. However, they can be aggregated to provide

a more robust solution. Weighted average operators (linear

summation, Hadamard product, average operator, etc.) are

commonly used to implement the aggregation process. In

this work, we formulate a combined curvilinear structural

similarity by using an Ordered Weighted Averaging (OWA)

operator to combat the scale and illumination change from

one segment to another.

The fundamental aspect of an OWA operator is the rank-

ing step, in which the extraneous variables are ranked in

descending order, with their values subsequently integrated

into a single aggregated value [28]. An OWA mapping

AOWA: Rq → R is defined as

AOWA(a1, · · · , aQ) =

Q
∑

q=1

wqaπ(q), (13)

where aπ(q) is a permutation of aq , in which aπ(q) is the q-

th largest value of the aq . The ordering of input arguments

gives the OWA a nonlinear character. wq is a collection of

weights that satisfies
∑

q wq = 1, q = 1, · · · , Q,Q > 1.

Different choices of the weight w lead to different aggre-

gation results: in our work, w1 = 0.25, w2 = 0.35, and

w3 = 0.4 were chosen empirically. By applying the OWA

aggregation to a real problem of this kind, users will have

the degree of freedom to control both the t-transitivity of the

operator [28], by tuning the stress function, or by tuning the

weights in a weighting vector.

4. Datasets and Experimental Results

4.1. Datasets

Four tree-like image datasets were used in this work

to validate the effectiveness of our approach: two neu-

ronal image datasets (NeuB1 and NeuB2 [11] ), one reti-

nal image dataset (WIDE [14]), and one plant root dataset

(RICE [14]).

The neuronal datasets NeuB1 and NeuB2 contain 112

and 98 neuronal images, respectively. (Note: images from

the NeuB2 dataset are more challenging, due to noise and

blurring.) The manual annotations of structure topology

were made by using the annotation tool Neuromantic2.

The WIDE dataset [14] comprises 15 high resolution

color fundus images, each of 3900×3072 pixels. The RICE

dataset [14] comprises of 18 rice-root RGB source images

of 1300×900 pixels. Both datasets are available from Duke

University, and the manual annotations of the topological

2https://www.reading.ac.uk/neuromantic/body_

index.php
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trees were generated by a sketching software [7].

4.2. Results on NeurB1 and NeurB2 datasets

Figure 3 presents for visual comparison the topology

reconstruction results of the competing methods on two

example images from the NeurB1 and NeurB2 neuronal

dataset: a commercially available neurite tracer module

of Metamorph NX (MMNX)3; and two label propagation

methods for tree-structure topology estimation: Loopy Be-

lief Propagation (LBP) [22], and Matrix Forest Theorem of

Directed (MFTD) [11]. Pink discs indicate incorrectly iden-

tified junctions, and gray square demonstrate correctly iden-

tified junctions of neuronal images. Compared with their

gold standards, it is clear from visual inspection that the

proposed method made consistently far fewer mistakes.

To facilitate better observation and objective evaluation

of the performance of the proposed method in the topology

reconstruction of tree-like structures, we calculate the accu-

racy of the identified junctions and their associated curvilin-

ear centerline pixels of the tree-like structure as follows. Let

A be the total number of the junctions or centerline pixels

of a tree-like structure, and B be the number of the junc-

tions or centerline pixels that have been correctly identified

(the vertices of the estimated topology tree have been as-

signed labels identical with groundtruth). The accuracy is

then computed by Acc = B
A
× 100%, and here we refer to

AccI and AccII as the accuracy at junction level, and cen-

terline pixel level, respectively. In addition, the DIADEM

score [17] is utilized to measure the similarity between a

groundtruth tree-like structure and the corresponding topol-

ogy estimation result. The DIADEM score is a widely-used

metric to measure the similarity of two neuronal structures,

and the obtained score falls in the range [0, 1], where 0 indi-

cates a completely mismatch and 1 indicates perfect agree-

ment. The x-y threshold of the DIADEM score is set as 30

pixels in this experiment.

Table 1 presents the performance measurements of the

proposed method and competing methods in identifying

connectivity at junctions. It may be observed that the pro-

posed method is able to detect the most of the junctions cor-

rectly, with AccI = 90.0%, AccII = 93.6%, and DIADEM

score = 0.67 in the NeurB1 dataset. Overall, our approach

consistently outperforms the commercial software and the

other topology estimation methods by a rather large margin

with respect to crossover issues. (Note: we quote the visual

and numerical results reported in [11] in the belief that their

results were the best achievable.)

3https://www.moleculardevices.com/

en/assets/tutorials-videos/dd/img/

introduction-metamorph-nx-software

Table 2. Performances of the proposed method in identifying con-

nectivity at junctions from the WIDE and RICE datasets.

Dataset # Junction
# Correctly

AccI AccIIIdentified

WIDE 4908 4743 96.6% 93.6%

RICE 962 949 98.7% 98.9%

Table 3. Topology reconstruction performances of different meth-

ods from the WIDE and RICE datasets.
Dataset Method sp sf sa sr

WIDE

Human 0.988 0.991 0.826 0.940

Ours 0.971 0.980 0.788 0.901

HSA 0.966 0.972 0.732 0.860

GLA 0.906 0.920 0.571 0.748

RICE

Ours 0.988 0.992 0.921 0.984

HSA 0.983 0.991 0.898 0.972

GLA 0.941 0.958 0.795 0.895

4.3. Results on the WIDE and RICE datasets

Figures 4 and 5 illustrate the topology reconstruction re-

sults on the WIDE and RICE datasets. Again, we first mea-

sure the performance of the proposed method in identifying

connectivity in the WIDE and RICE datasets, as shown in

Table 2, by counting the number of correctly identified junc-

tions. As expected, the accuracy of the topology reconstruc-

tion at vessel centerline level (i.e. AccII = 93.6% in WIDE

dataset) is lower than the result obtained at junction level

(AccI = 96.6%). This is because the number of curvilinear

segments is much larger than the number of junctions.

In order to provide an objective evaluation, we have com-

pared the proposed method with a Heuristic Search Algo-

rithm (HSA) [14] that efficiently explores the space of pos-

sible trees starting from the Greedy Linear-time Algorithm

(GLA) [14], and these are the only two methods in the lit-

erature that have reported topology reconstruction perfor-

mances on these two datasets. For the sake of fair compari-

son, four weighted scores were obtained to measure the sim-

ilarity between each reconstructed tree and the ground-truth

tree: parent similarity (sp), flow similarity (sf), absolute sim-

ilarity (sa), and relative similarity (sr). The first two demon-

strate local performance in connectivity, while the latter two

capture more global differences. For more detail, we refer

the reader to [14].

Table 3 reports the comparison of our method with

the state-of-the-art topology reconstruction methods on the

WIDE and RICE datasets. For the WIDE dataset, the inter-

observer scores were reported in [14]. It can be seen that

the similarity scores of the proposed method are very close

to those of the human observer. All three methods - the

proposed method and its two competitors - achieve superior

performances on the RICE dataset. That is because the roots

of rice plants have fewer branches than the other datasets,

and these root structures have a tendency to grow down-

wards through the ground (right direction of Figure 5), giv-
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(a) Origin (b) Groundtruth (c) HSA (d) Ours
Figure 4. Two examples of topology reconstruction by different methods on retinal vessels from the WIDE dataset. The white circles

indicate the incorrectly identified junctions.

(a) Origin (b) Groundtruth (c) HSA (d) Ours

Figure 5. Two examples of topology reconstruction by different methods on plant roots from the RICE dataset.

ing a radially symmetrical appearance. In consequence, the

less variable images tend to lead to more accurate results in

the topology estimation task.

5. Conclusions

The topology reconstruction from a single 2-D image

of a 3-D tree-structure is challenging, since the full spa-

tial location of each tree branch is lost after projection. In

this paper, we have proposed a novel topology estimation

method for tree-like structures, formulated as a pairwise

clustering problem. First, a novel curvilinear structure sim-

ilarity measurement is proposed, then it is utilized to guide

the dominant-set clustering approach to identify the connec-

tivity at the junctions, before finally achieving an accurate

topology estimation of the tree network.

It is worth noting that by using this method the number

of points processed in the course of identifying a dominant

set is greatly reduced, from the number of pixels in an image

to the number of junctions in a tree network. This leads to

an increase of time-efficiency in topology estimation. The

competitiveness of our approach is demonstrated by the fact

that it accurately reconstructed tree topologies from four

publicly accessible biomedical image datasets with differ-

ent imaging modalities. The results demonstrated that our

method achieves superior performances when compared di-

rectly with the existing state-of-the-art ones. It is believed

that the proposed method could be a powerful tool for ana-

lyzing tree-like structures in the biomedical images.
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