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Abstract

We present a deformable generator model to disentan-

gle the appearance and geometric information in purely un-

supervised manner. The appearance generator models the

appearance related information, including color, illumina-

tion, identity or category, of an image, while the geometric

generator performs geometric related warping, such as ro-

tation and stretching, through generating displacement of

the coordinate of each pixel to obtain the final image. Two

generators act upon independent latent factors to extrac-

t disentangled appearance and geometric information from

images. The proposed scheme is general and can be easily

integrated into different generative models. An extensive set

of qualitative and quantitative experiments shows that the

appearance and geometric information can be well disen-

tangled, and the learned geometric generator can be con-

veniently transferred to other image datasets to facilitate

knowledge transfer tasks.

1. Introduction

Learning disentangled structures behind the observations

[2, 26] is a fundamental problem towards understanding and

controlling modern deep models. Such disentangled repre-

sentations are useful not only in building more transparent

and interpretable deep models, but also in a large variety of

downstream AI tasks such as transfer learning and zero-shot

inference where humans excel but machines struggle [22].

Among others, deep generative models, e.g., generator

model, have shown great promise in learning representa-

tion of images in recent years. However, the learned repre-

sentation is often entangled and not interpretable. Learning

disentangled and interpretable representation for deep gen-

erative models is challenging, e.g., from face images where

no facial landmarks are given. However, only limited work

has been done in this direction.

In this paper, we propose to learn deformable generator

model that can disentangle the appearance and geometric

information in purely unsupervised manner under a unified

probabilistic framework. Specifically, our model integrates

two generator networks: one appearance generator and one

geometric generator with two sets of independent latent fac-

tors. The dense local displacements are generated by the ge-

ometric generator, which then act on the image intensities

generated by the appearance generator to obtain the final

image through a differentiable warping function. The mod-

el is learned by introducing alternating back-propagation for

two latent factors, and it can also be easily extended to oth-

er generative models such as deformable variational auto-

encoder. The proposed method can learn well-disentangled

representation, which can transfer the appearance and geo-

metric knowledge to other datasets and tasks.

Our contributions are summarized below:

• Propose a deformable generator network to disentan-

gle the appearance and geometric information in pure-

ly unsupervised manner.

• The proposed method is general and agnostic. It can

be easily extended to different models, such as de-

formable variational auto-encoder.

• Perform extensive experiments both qualitatively and

quantitatively to show that appearance and geometric

information can be well disentangled, which can be ef-

fectively transferred to other datasets and tasks.

2. Related work

Existing work on learning disentangled representation

using deep generative models generally fall into two cate-

gories: implicit learning and explicit learning.

The implicit learning methods proceed through laten-

t factors disentanglement and are focused on two cate-

gories: the Generative Adversarial Networks (GANs) [10,

8, 28, 23, 33] and the Variational Auto-encoders (VAEs)

[17, 30, 27, 21]. InfoGAN [5] and β-VAE [13] are rep-

resentatives for the two families. Though implicit methods
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can be learned unsupervisely, their learned representation is

not controllable and not well separated.

The explicit methods, on the other hand, model appear-

ance and geometric separately and find their roots in the

Active Appearance Models (AAM) which [6, 19] separate-

ly learn the appearance and geometric information. Recent-

ly, [18] incorporates the shape geometry into the GANs and

learns well separated appearance and geometric informa-

tion. However, these methods [19, 18] require annotated

facial landmarks for each image during training. Unsuper-

vised disentangling of the appearance and geometric infor-

mation is challenging and remains largely unexplored. An

independent work proposed recently by [31] follow this di-

rection, but their model is focused on the auto-encoder (AE)

only and is not developed under probabilistic framework

compared to ours.

3. Model and learning algorithm

3.1. Model

Figure 1. An illustration of the proposed model. The model con-

tains two generator networks: one appearance generator and one

geometric generator. The two generators are combined by a warp-

ing function to produce the final image. The warping function in-

cludes a geometric transformation operation for image coordinates

and a differentiable interpolation operation. The refining operation

is optional for improving the warping function.

The proposed model contains two generator network-

s: one appearance generator and one geometric generator,

which are combined by a warping function to produce the

final images or video frames, as shown in figure 1. Suppose

an arbitrary image or video frame X ∈ R
Dx×Dy×3 is gener-

ated with two independent latent vectors, Za ∈ R
da which

controls the appearance, and Zg ∈ R
dg which controls the

geometric information. Varying the geometric latent vec-

tor Zg and fixing the appearance latent vector Za, we can

transform an object’s geometric information, such as rotat-

ing it with certain angle and changing its shape. On the

other hand, varying Za and fixing Zg , we can change the

identity or the category of the object, while keeping it ge-

ometric information unchanged, such as the same viewing

angle or the same shape.

The model can be expressed as

X = F (Za, Zg; θ)

= Fw(Fa(Z
a; θa), Fg(Z

g; θg)) + ǫ (1)

where Za ∼ N(0, Ida
), Zg ∼ N(0, Idg

), and ǫ ∼
N(0, σ2ID) (D = Dx × Dy × 3) are independent. Fw

is the warping function, which uses the displacements gen-

erated by the geometric generator Fg(Z
g; θg) to warp the

image generated by the appearance generator Fa(Z
a; θa) to

synthesize the final output image X .

3.2. Warping function

A warping function usually includes a geometric trans-

formation operation for image coordinates and a differen-

tiable interpolation (or resampling) operation. The geomet-

ric transformation describes the target coordinate (x, y) for

every location (u, v) in the source coordinate. The geomet-

ric operation only modifies the positions of pixels in an im-

age without changing the color or illumination. Therefore,

the appearance information and the geometric information

are naturally disentangled by the two generators in the pro-

posed model.

The geometric transformation Φ can be a rigid affine

mapping, as used in the spatial transformer networks [16],

or a non-rigid deformable mapping, which is the case in our

work. Specifically, the coordinate displacement (dx, dy) (or

the dense optical flow field) of each regular grid (x, y) in

the output warped image X are generated by the geometric

generator Fg(Z
g; θg). The point-wise transformation in this

deformable mapping can be formulated as

(

u

v

)

= Φ(Zg,θg)

(

x

y

)

=

(

x+ dx

y + dy

)

(2)

where (u, v) are the source coordinates of the image gener-

ated by the appearance generator Fa(Z
a; θa).

Since the evaluated (u, v) by Eq.(2) do not always have

integer coordinates, each pixel’s value of the output warped

image X can be computed by a differentiable interpolation

operation. Let Xa = Fa(Z
a; θa) denote the image generat-

ed by the appearance generator. The warping function Fw

can be formulated as

X(x, y) = FI(Xa(x+ dx, y + dy)), (3)

where FI is the differentiable interpolation function. We

use a differentiable bilinear interpolation:

X(x, y) =

Dy
∑

j

Dx
∑

i

Xa(i, j)M(1− |u− i|)M(1− |v − j|)

(4)

where M(·) = max(0, ·). The details of back-propagation

through this bilinear interpolation can be found in [16].
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The displacement (dx, dy) is used in the deformable

convolutional networks [7]. The computation of coordi-

nates displacement (dx, dy) is known as the optical flow

estimation [14, 3, 32, 9, 15, 29]. Our work is concerned

with modeling and generating the optical flow, in addition

to estimating the optical flow.

The displacement (dx, dy) may result from the motion

of the objects in the scene, or the change of viewpoint rel-

ative to 3D objects in the scene. It is natural to incorporate

motion and 3D models into the geometric generator where

the change or variation of Zg depends on the motion and

3D information.

3.3. Inference and learning

To learn this deformable generator model, we introduce

a learning and inference algorithm for two latent vectors,

without designing and learning extra inference networks.

Our method is motivated by a maximum likelihood learn-

ing algorithm for generator networks [12]. Specifically,

the proposed model can be trained by maximizing the log-

likelihood on the training dataset {Xi, i = 1, . . . , N},

L(θ) =
1

N

N
∑

i=1

log p(Xi; θ)

=
1

N

N
∑

i=1

log

∫

p(Xi, Z
a
i , Z

g
i ; θ)dZ

a
i dZ

g
i , (5)

where we integrate out the uncertainties of Za
i and Z

g
i in

the complete-data log-likelihood to get the observed-data

log-likelihood.

We can evaluate the gradient of L(θ) by the following

well-known result, which is related to the EM algorithm:

∂

∂θ
log p(X; θ)

=
1

p(X; θ)

∂

∂θ

∫

p(X,Za, Zg)dZadZg

= Ep(Za,Zg|X;θ)

[

∂

∂θ
log p(X,Za, Zg; θ)

]

(6)

Since the expectation in Eq.(6) is usually analytically in-

tractable, we employ Langevin dynamics to draw samples

from the posterior distribution p(Za, Zg|X; θ) and compute

the Monte Carlo average to estimate the expectation term.

For each observation X , the latent vectors Za and Zg can

be sampled from p(Za, Zg|X; θ) alternately by Langevin

dynamics: we fix Zg and sample Za from p(Za|X;Zg, θ)
∝ p(X,Za;Zg, θ), and then fix Za and sample Zg from

p(Zg|X;Za, θ) ∝ p(X,Zg;Za, θ). At each sampling step,

the latent vectors are updated as follows:

Za
t+1 = Za

t +
δ2

2

∂

∂Za
log p(X,Za

t ;Z
g
t , θ) + δEat

Z
g
t+1 = Z

g
t +

δ2

2

∂

∂Zg
log p(X,Z

g
t ;Z

a
t , θ) + δEgt (7)

where t is the number of steps in the Langevin sampling,

Eat , Egt are independent standard Gaussian noise to prevent

the sampling from being trapped in local modes, and δ is

the step size. The complete-data log-likelihood can be eval-

uated by

log p(X,Za;Zg, θ) = log [p(Za)p(X|Za, Zg, θ)]

= −
1

2σ2
‖X − F (Za, Zg; θ)‖2 −

1

2
‖Za‖2 + C1

log p(X,Zg;Za, θ) = log [p(Zg)p(X|Za, Zg, θ)]

= −
1

2σ2
‖X − F (Za, Zg; θ)‖2 −

1

2
‖Zg‖2 + C2 (8)

where C1 and C2 are normalizing constants. It can be

shown that, given sufficient sampling steps, the sampled Za

and Zg follow their joint posterior distribution.

Obtaining fair samples from the posterior distribution by

MCMC is highly computational consuming. In this paper,

we run persistent sampling chains. That is, the MCMC sam-

pling at each iteration starts from the sampled Za and Zg

in the previous iteration. The persistent updating results in

a chain that is long enough to sample from the posterior

distribution, and the warm initialization vastly reduces the

computational burden of the MCMC sampling. The con-

vergence of stochastic gradient descent based on persistent

MCMC has been studied by [34].

For each training example Xi, we run the Langevin dy-

namics following Eq.(7) to get the corresponding posterior

samples Za
i and Z

g
i . The sample is then used for gradi-

ent computation in Eq.(6). More precisely, the gradient of

log-likelihood over θ is estimated by Monte Carlo approxi-

mation:

∂

∂θ
L(θ) ≈

1

N

N
∑

i=1

∂

∂θ
log p(Xi, Z

a
i , Z

g
i ; θ)

=
1

N

N
∑

i=1

1

σ2
(Xi − F (Za

i , Z
g
i ; θ))

∂

∂θ
F (Za

i , Z
g
i ; θ). (9)

The whole algorithm iterates through two steps: (1)

inferential step which infers the latent vectors through

Langevin dynamics, and (2) learning step which learns the

network parameters θ by stochastic gradient descent. Gra-

dient computations in both steps are powered by back-

propagation. Algorithm 1 describes the details of the learn-

ing and inference algorithm.
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Algorithm 1 Learning and inference algorithm

Require:

(1) training examples {Xi ∈ R
Dx×Dy×3, i = 1, . . . , N}

(2) number of Langevin steps l

(3) number of learning iterations T

Ensure:

(1) learned parameters θ

(2) inferred latent vectors {Za
i , Z

g
i , i = 1, . . . , N}

1: Let t← 0, initialize θ.

2: Initialize {Za
i , Z

g
i , i = 1, . . . , N}

repeat

3: Inference back-propagation: For each i, run l

steps of Langevin dynamics to alternatively sample Za
i

from p(Za
i |Xi;Z

g
i , θ), while fixing Z

g
i ; and sample Z

g
i

from p(Zg
i |Xi;Z

a
i , θ), while fixing Za

i . Starting from

the current Za
i and Z

g
i , each step follows Eq.(7).

4: Learning back-propagation: Update θt+1 ←
θt + ηtL

′(θt), with learning rate ηt, where L′(θt) is

computed according to Eq.(9).

5: Let t← t+ 1
until t = T

3.4. Deformable Variational Auto­encoder

The proposed deformable generator scheme is general

and agnostic to different models. In fact, our method can al-

so be learned by VAE [17] to obtain deformable variational

auto-encoder, by utilizing extra inference network to infer

(Za, Zg) through re-parametrization. Specifically, we learn

another q(Za, Zg|X;φ) to approximate the intractable pos-

terior p(Za, Zg|X; θ). The appearance and geometric

latent vectors are assumed to be independent Gaussian

in the approximated distribution, i.e., q(Za, Zg|X;φ) =
q(Za|X;φ)q(Zg|X;φ), where the means and variances are

modeled by inference network with parameters φ. This de-

formable VAE model is a naturally extension of the pro-

posed deformable generator framework developed. We

show some preliminary results in Sec.4.1.1. Notice that the

proposed scheme can also be used in adversarial learning

methods[10], by designing a separate discriminator network

for shape and appearance. We leave it as our further work.

In this work, we focus on the current learning and inference

algorithm for the sake of simplicity, so that we do not resort

to extra networks.

4. Experiments

In this section, we first qualitatively demonstrate that our

proposed deformable generator framework consistently dis-

entangles the appearance and geometric information. Then

we analyze the proposed model quantitatively. The struc-

tures and parameters of the proposed model are listed in the

Appendix. In the following experiments, in each row we

visualize the generated samples by varying a certain unit of

the latent vectors within the range [−γ, γ], where we set γ

to be 10.

4.1. Qualitative experiments

4.1.1 Experiments on CelebA

We first train the deformable generator on the 10,000 ran-

dom selected face images from CelebA dataset [24]. Select-

ed images are processed by the OpenFace [1] and further

cropped to 64× 64 pixels.

To study the performance of the proposed method in dis-

entangling the appearance and geometric information, we

investigate the effect of different combinations of the geo-

metric latent vector Zg and the appearance latent vector Za.

(1) Set the geometric latent vector Zg to zero, and vary one

dimension of the appearance variable Za from [−γ, γ] with

a uniform step 2γ
10 , while holding the other dimensions of

Za at zero. Some typical generated images are shown in fig-

ure 2. (2) Set Za to be a fixed value, and each time vary one

dimension of the geometric latent vector Zg from [−γ, γ]
with a uniform step 2γ

10 , while keeping the other dimension-

s of Zg at zero. Some representative generated results are

shown in figure 3.

Figure 2. Each dimension of the appearance latent vector encodes

appearance information such as color, illumination and gender. In

the fist line, the color of background and the gender change. In the

second line, the moustache of the man and the hair of the woman

vary. In the third line, the skin color changes from dark to white. In

the fourth line, the illumination lighting changes from the left-side

of the face to the right-side of the face.

As we can observe from figure 2, (1) although the train-

ing faces from CelebA have different viewing angles, the

appearance latent vector only encodes front-view informa-

tion, and (2) each dimension of the appearance latent vector

encodes appearance information such as color, illumination

and identity. For example, in the fist line of figure 2, from

left to right, the color of background varies from black to

white, and the identity of the face changes from a women to

a man. In the second line of figure 2, the moustache of the

man becomes thicker when the value of the corresponding

dimension of Za decreases, and the hair of the woman be-

comes denser when the value of the corresponding dimen-

sion of Za increases. In the third line, from left to right, the
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Figure 3. Each dimension of the geometric latent vector encodes

fundamental geometric information such as shape and viewing an-

gle. In the fist line, the shape of the face changes from fat to thin

from left to the right. In the second line, the pose of the face varies

from left to right. In the third line, from left to right, the vertical

tilt of the face varies from downward to upward. In the fourth line,

the face width changes from stretched to cramped.

skin color varies from dark to white, and in the fourth line,

from left to right, the illumination lighting changes from the

left-side of the face to the right-side of the face.

From figure 3, we have the following interesting obser-

vations. (1) The geometric latent vectors does not encode

any appearance information. The color, illumination and

identity are the same across these generated images. (2)

Each dimension of the geometric latent vector encodes fun-

damental geometric information such as shape and viewing

angle. For example, in the fist line of figure 3, the shape

of the face changes from fat to thin from left to the right;

in the second line, the pose of the face varies from left to

right; in the third line, from left to right, the tilt of the face

varies from downward to upward; and in the fourth line, the

expression changes from stretched to cramped.

Figure 4. Appearance interpolation results by deformable VAE.

The appearance and geometric information could also be

effectively disentangled by the introduced deformable VAE.

For the extra inference network, or encoder network, we use

the mirror structure of our generator model in which we use

convolution layers instead of convolution transpose layers.

The generator network structure as well as other parame-

ters are kept the same as the model learned by alternating

back-propagation. Figures 4 and 5 show interpolation re-

sults following the same protocol described before.

From the results in figures 2 and 3, we find that the ap-

pearance and geometric information of face images have

been disentangled effectively. Therefore, we can apply the

Figure 5. Geometry interpolation results by deformable VAE.

geometric warping (e.g. operations in figure 3) learned by

the geometric generator to all the canonical faces (e.g. gen-

erated faces in figure 2) learned by the appearance genera-

tor. Figure 6 demonstrates the effect of applying geometric

warping to the generated canonical faces in figure 2. Com-

paring figure 2 with figure 6, we find that the rotation and

shape warping operations do not modify the identity infor-

mation of the canonical faces, which corroborates the disen-

tangling power of the proposed deformable generator mod-

el.

(a) Rotation warping.

(b) Shape warping.

Figure 6. Applying the (a) rotation warping and (b) shape warp-

ing operations learned by the geometric generator to the canonical

faces generated by the appearance generator. Compared with fig-

ure 2, only the pose information varies, and the identity informa-

tion is kept in the process of warping.

Furthermore, we evaluate the disentangling ability of the

proposed model by transferring and recombining geometric

and appearance vectors from different faces. Specifically,

we first feed 7 unseen images from CelebA into our de-

formable generator model to infer their appearance vectors

Za
1 , Za

2 ,. . . ,Za
7 and geometric vectors Z

g
1 , Z

g
2 ,. . . ,Z

g
7 using

the Langevin dynamics (with 300 steps) in Eq.(7). Then, we

transfer and recombine the appearance and geometric vec-

tors and use {Za
1 , Z

g
2}, . . . , {Za

1 , Z
g
7} to generate six new

face images, as shown in the second row of figure 7. We

also transfer and recombine the appearance and geometric

vectors and use {Za
2 , Z

g
1},. . . , {Za

7 , Z
g
1} to generate anoth-

er six new faces, as shown in the third row of figure 7. From

the 2nd to the 7th column, the images in the second row

have the same appearance vector Za, but the geometric la-

tent vectors Zg are swapped between each image pair. As
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Figure 7. Transferring and recombining geometric and appearance

vectors. The first row shows 7 unseen faces from CelebA. The sec-

ond row shows the generated faces by transferring and recombin-

ing 2th-7th faces’ geometric vectors with first face’s appearance

vector in the first row. The third row shows the generated faces by

transferring and recombining the 2th-7th faces’ appearance vec-

tors with the first face’s geometric vector in the first row.

we can observe from the second row of figure 7, (1) the geo-

metric information of the original images are swapped in the

synthesized images, and (2) the inferred Zg can capture the

view information of the unseen images. The images in the

third row of figure 7 have the same geometric vector Z
g
1 , but

the appearance vectors Za are swapped between each image

pair. From the third row of figure 7, we observe that (1) the

appearance information are exchanged. (2) The inferred Za

capture the color, illumination and coarse appearance infor-

mation but lose more nuanced identity information. Only

finite features are learned from 10k CelebA images, and the

model may not contain the features necessary to model an

unseen face accurately.

4.1.2 Experiments on expression dataset

We next study the performance of the proposed deformable

generator model on the face expression dataset CK+ [25].

Following the same experimental protocol as the last sub-

section, we can investigate the change produced by each

dimension of the appearance latent vector (after setting the

value of geometric latent vector to zero) and the geometric

latent vector (after setting the appearance latent vector to

a fixed value). The disentangled results are shown in fig-

ure 8. We do not use the labels of expressions provided by

CK+ dataset in the learning. Although the dataset contains

faces of different expressions, the learned appearance latent

vector usually encodes a neutral expression. The geomet-

ric latent vector controls major variation in expression, but

does not change the identity information.

To test whether appearance and geometric information

are disentangled in the proposed model, we try to transfer

the learned expression from CK+ to another face dataset,

Multi-Pie [11], by fine-turning the appearance generator on

the target face dataset while fixing the parameters in the ge-

ometric generator. Figure 8(c) shows the result of transfer-

ring the expressions of 8(b) into the faces of Multi-Pie. The

expressions from the gray faces of CK+ have been trans-

ferred into the color faces of Multi-Pie.

(a) Interpolation of appearance latent vectors.

(b) Interpolation of geometric latent vectors.

(c) Transferring the expression in (b) to the face images in Multi-PIE

dataset.

Figure 8. Interpolation examples of (a) appearance latent vectors

and (b) geometric latent vectors. (c) Transferring the learned ex-

pression to the face images in Multi-PIE dataset.

4.1.3 Experiment on non-face dataset

We could transfer and learn the model on more general

dataset other than face images. For example, the learned

geometric information from the CelebA face images can be

directly transferred to the faces of animals such as cats and

monkeys, as shown in figure 9. The cat faces rotate from

left to right and the shape of monkey faces changes from fat

to thin, when the warpings learned from human faces are

applied.

We also learn our model on the CIFAR-10 [20] dataset,

which includes 50,000 training examples of various object

categories. We randomly sample Za from N(0, Ida
). For

Zg , we interpolate one dimension from −γ to γ and fix the

other dimensions to 0. Figure 9 shows interpolated exam-

ples generated by model learned from the car category. For

each row, we use different Za and interpolate the same di-

mension of Zg . The results show that each dimension of Zg

controls a specific geometric transformation, i.e., shape and

rotation warping.

4.2. Quantitative experiments

4.2.1 Covariance between the latent vectors and geo-

metric variation

First we quantitatively study the covariance between each

dimension of the latent vectors (Zg, Za) and input images

with geometric variation. We use images with ground-

truth labels that record geometric attributes, specifical-

ly the multi-view face images from the Multi-Pie dataset

[11]. For each of the 5 viewing angles {−30◦, −15◦,

0◦, 15◦, 30◦}, we feed 100 images into the learned

model to infer their geometric latent vector Zg and ap-

pearance latent vector Za. Under each view θ ∈
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Figure 9. Transferring and learning model from non-face dataset-

s. The first two rows show geometric interpolation results of cat

and monkey faces after applying the rotation and shape warping

learned from CelebA. The last two rows show geometric interpo-

lation results of the model learned from car category of CIFAR-10

dataset.

{−30◦,−15◦, 0◦, 15◦, 30◦} , we compute the means Z̄
g
θ

and Z̄a
θ of the inferred latent vectors. For each dimen-

sion i of Zg , we construct a 5-dimensional vector Z̄g(i) =
[Z̄g

−30◦(i), Z̄
g
−15◦(i), Z̄

g
0◦(i), Z̄

g
15◦(i), Z̄

g
30◦(i)]. Similarly,

we construct a 5-dimensional vector Z̄a(i) under each di-

mension of Za. We normalize the viewing angles vector

θ = [−30,−15, 0, 15, 30] to have unit norm. Finally, we

compute the covariance between each dimension of the la-

tent vectors (Zg, Za) and input images with view variations

as follows:

R
g
i = |Z̄g(i)⊤θ|, Ra

i = |Z̄a(i)⊤θ| (10)

where i denotes the i-th dimension of latent vector Zg or

Za, and | · | denotes the absolute value. We summarize the

the covariance responses Rg and Ra of the geometric and

appearance latent vectors in figure 10. Rg tends to be much

larger than Ra.

Figure 10. Absolute value of covariance between each dimension

of the geometric (or appearance) latent vectors and view varia-

tions for the face images from Multi-Pie. The left subfigure shows

covariance with the geometric latent vector; the right subfigure

shows covariance with the appearance latent vector.

Moreover, for the two largest R
g
i and the largest Ra

i , we

plot covariance relationship between the latent vector Z̄g(i)
(or Z̄a(i)) and viewing angles vector θ in figure 11. As we

can observe from the left and the center subfigures from fig-

ure 11, the Z̄g(i) corresponding to the two largest R
g
i (R

g
5,

(a)

(b)
Figure 11. (a) Covariance relationship between the mean latent

vector Z̄g(i) (or Z̄a(i)) and viewing angles vector θ. We choose t-

wo dimensions of Zg (Z
g

5
and Z

g

38
, left and center) with the largest

covariance and one dimension of Za with the largest covariance

(Za

25, right). (b) Images generated by varying the values of the

three dimensions in (a) respectively, while fixing the values of oth-

er dimensions to be zero.

R
g
38) is obviously inversely proportional or proportional to

the change of viewing angle. However, as shown in the

right subfigure, the Z̄a(i) corresponding to the largest Ra
i

(Ra
25) does not have strong covariance with the change of

viewing angle. We wish to point out that we should not

expect Za to encode the identity exclusively and Zg to en-

code the view exclusively, because different persons may

have shape changes, and different views may have lighting

or color changes.

Furthermore, we generate face images by varying the di-

mension of Zg corresponding to the two largest covariance

responses from values [−γ,+γ] with a uniform step 2γ
10 ,

while holding the other dimensions of Zg to zero as we did

in the subsection 4.1.1. Similarly, we generate face images

by varying the dimension of Za corresponding to the largest

covariance responses from values [−γ,+γ] with a uniform

step 2γ
10 , while holding the other dimensions of Za to zero.

The generated images are shown in figure 11(b). We can

make several important observations. (1) The variation in

viewing angle in the first two rows is very obvious, and the

magnitude of the change in view in the first row is larger

than that in the second row. This is consistent with the fact

that R
g
5 > R

g
38 and with the observation that the slope in the

left subfigure of figure 11(a) is steeper than that of the cen-

ter subfigure of figure 11(a). (2) In the first row, the faces

rotate from right to left, where R
g
5 is inversely proportion-

al to the viewing angle. In the second row, the faces rotate

from left to right, where R
g
38 is proportional to the viewing

angle. (3) It is difficult to find obvious variation in view-

ing angle in the third row. These generated images further

verify that the geometric generator of the proposed model

mainly captures geometric variation, while the appearance
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MSRE

Methods
VAE ABP Ours

30◦ 110.99± 0.11 117.28± 0.12 89.94± 0.10

15◦ 88.98± 0.09 94.81± 0.10 70.64± 0.08

0◦ 48.78± 0.05 48.36± 0.06 46.10± 0.06

−15◦ 87.89± 0.10 94.12± 0.11 75.11± 0.09

−30◦ 107.94± 0.12 120.58± 0.13 92.66± 0.11

all views 89.02± 0.13 94.66± 0.12 76.52± 0.10

Table 1. Comparison of the Mean Square Reconstruction Er-

rors (MSRE) per image (followed by the corresponding standard

derivations inside the parentheses) of different methods for unseen

multi-view faces from the Multi-Pie dataset.

generator is not sensitive to geometric variation.

4.2.2 Reconstruction error on unseen multi-view faces

Since the proposed deformable generator model can disen-

tangle the appearance and geometric information from an

image, we can transfer the geometric warping operation

learned from one dataset into another dataset. Specifical-

ly, given 1000 front-view faces from the Multi-Pie dataset

[11], we can fine-tune the appearance generator’s param-

eters while fixing the geometric generator’s parameters,

which are learned from the CelebA dataset. Then we can

reconstruct unseen images that have various viewpoints. In

order to quantitatively evaluate the geometric knowledge

transfer ability of our model, we compute the reconstruction

error on 5000 unseen images from Multi-Pie for the views

{−30◦,−15◦, 0◦, 15◦, 30◦}, with 1000 faces for each view.

We compare the proposed model with the state-of-art gen-

erative models, such as VAE [17, 4] and ABP [12]. For

fair comparison, we first train the original non-deformable

VAE and ABP models with the same CelebA training set

of 10,000 faces, and then fine-tune them on the 1000 front-

view faces from the Multi-Pie dataset. We perform 10 in-

dependent runs and report the mean square reconstruction

error per image and standard derivation over the 10 trial-

s for each method under different views as shown in Table

1. Deformable generator network obtains the lowest recon-

struction error. When the testing images are from the view

closing to that from the training images, all the three meth-

ods can obtain small reconstruction errors. When various

views of the testing images are included, deformable gener-

ator network obtains obviously smaller reconstruction error.

Our model benefits from the transferred geometric knowl-

edge learned from the CelebA dataset, while both the non-

deformable VAE and ABP models cannot efficiently learn

or transfer purely geometric information.

4.3. Balancing explaining­away competition

Since the geometric generator only produces displace-

ment for each pixel without modifying the pixel’s value, the

color and illumination information and the geometric infor-

mation are naturally disentangled by the proposed model’s

specific structure. In order to properly disentangle the iden-

tity (or category) and the view (or geometry) information,

the learning capacity between the appearance generator and

geometric generator should be balanced. Two generators

cooperate with each other to generate the images. Mean-

while, they also compete against each other to explain away

the training images. If the learning of the appearance gen-

erator outpaces that of the geometric generator, the appear-

ance generator will encode most of the knowledge, includ-

ing the view and shape information, while the geometric

generator will only learn minor warping operations. On the

other hand, if the geometric generator learns much faster

than the appearance generator, the geometric generator will

encode most of the knowledge, including the identity or cat-

egory information, which should be encoded by the appear-

ance network.

To control the tradeoff between the two generators, we

introduce a balance parameter α, which is defined as the

ratio of the number of filters within each layer of the ap-

pearance and geometric generators. We tune the α carefully

and set it to 0.625 in our experiments.

5. Conclusion

We propose a deformable generator model which aims

to disentangle the appearance and geometric information of

an image into two independent latent vectors Za and Zg .

The learned geometric generator can be transferred to other

datasets, or can be used for the purpose of data augmenta-

tion to produce more variations beyond the training dataset

for better generalization.

In addition to the learning and inference algorithm

adopted in this paper, the model can also be trained by VAE

and GAN, as well as their generalizations such as β-VAE

and info-GAN, which target for disentanglement in gener-

al.

The model can be generalized to model dynamic patterns

by adding transition models for the latent vectors. The tran-

sition model for the appearance vector may generate dy-

namic textures of non-trackable motion, while the transi-

tion model for the geometric vector may generate intuitive

physics of trackable motion. The geometric generator can

also be generalized to incorporate 3D information of rigid

or non-rigid 3D objects.
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