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Abstract

Learning effective distance metric between data has

gained increasing popularity, for its promising performance

on various tasks, such as face verification, zero-shot learn-

ing, and image retrieval. A major line of researches em-

ploys hard data mining, which makes efforts on searching

a subset of significant data. However, hard data mining

based approaches only rely on a small percentage of data,

which is apt to overfitting. This motivates us to propose

a novel framework, named deep asymmetric metric learn-

ing via rich relationship mining (DAMLRRM), to mine rich

relationship under satisfying sampling size. DAMLRRM

constructs two asymmetric data streams that are differently

structured and of unequal length. The asymmetric struc-

ture enables the two data streams to interlace each other,

which allows for the informative comparison between new

data pairs over iterations. To improve the generalization

ability, we further relax the constraint on the intra-class

relationship. Rather than greedily connecting all possible

positive pairs, DAMLRRM builds a minimum-cost spanning

tree within each category to ensure the formation of a con-

nected region. As such there exists at least one direct or in-

direct path between arbitrary positive pairs to bridge intra-

class relevance. Extensive experimental results on three

benchmark datasets including CUB-200-2011, Cars196,

and Stanford Online Products show that DAMLRRM effec-

tively boosts the performance of existing deep metric learn-

ing approaches.

1. Introduction

Metric learning aims at finding appropriate similarity

measurements of data, whose major thinking is to keep the

distance between similar instances close and dissimilar in-

stances far away in an embedding space. This topic is of

great practical importance due to its wide applications, in-

cluding face recognition [12, 52, 45], clustering [9, 44, 53],

∗Corresponding author.

and retrieval [57, 49, 51, 50, 22, 10]. Conventional Ma-

halanobis metric learning approaches learn a linear trans-

formation of the data and measure the similarity based on

Euclidean distance, which fail to capture the high-order

correlation[15, 42, 47]. Riding on the development of deep

neural network [21, 33, 37], deep metric learning (DML)

has gained a lot of attention. Guided by a metric loss, DML

projects data into an embedding space with rich semantic

information through convolutional neural network. It shows

potential capability even in challenging tasks, such as fine-

grained classification [8, 41, 55, 25], large-category classi-

fication [2, 31, 46], and zero-shot learning [28, 56, 6, 26].

According to the types of loss, DML can be roughly

divided into contrastive and triplet approaches. However,

enumerating all possible pairs or triplets will arise nearly

exponential sampling size, which is impractical even for a

moderate number of instances. One common solution is to

sample a subset of instances as a training pool. The fact

is that, when the sampled training pool merely covers easy

instances that contribute little to the optimization, only a

weak embedding model can be obtained. Therefore, hard

data mining aiming to find out confusing instances becomes

an important topic, and a large number of methods are pro-

posed [35, 34, 16, 11, 43, 54, 14]. Those methods tackle

this topic to a certain extent yet are still deficient in the fol-

lowing three aspects. First, a complicated data preprocess-

ing is involved to select hard data, whereas the hard level is

changing with the evolution of the model [34]. Second, only

a small subset of relationship is exploited. Third, the hard

level is difficult to control. When the selected instances are

not hard enough, the learned model is not discriminative.

Conversely, when the instances are selected too hard, the

overfitting problem often occurs [43].

In this work, we propose a novel framework, named deep

asymmetric metric learning via rich relationship mining

(DAMLRRM). DAMLRRM firstly builds two asymmetric

data streams, which interlace to each other so that contin-

ues new pairs are compared during iterations. Compared

with conventional one stream metric learning approaches,

DAMLRRM can mine considerably richer relationship un-
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der lower sampling size. Furthermore, DAMLRRM relaxes

the constraint on positive pairs to extend the generaliza-

tion capability. Specifically, we build positive pairs training

pool by constructing a minimum connected tree for each

category instead of considering all positive pairs within a

mini-batch. As a result, there will exist a direct or indirect

path between any positive pair, which ensures the relevance

being bridged to each other. The inspiration comes from

ranking on manifold [58] that spreads the relevance to their

nearby neighbors one by one. The connected graph loss

can help maintain the inherent distribution of the data and

achieve a good generalization ability. In experiments, we

empirically show the state-of-the-art results on CUB200-

2011 [39], Cars196 [1], and Stanford online products [35]

datasets for clustering and retrieval tasks. In a nutshell, this

paper makes the following contributions:

i) We departure from the traditional hard data min-

ing based technique and propose a novel asymmetric two

streams based deep learning framework for metric learning,

which also differs from conventional methods only involv-

ing one stream.

ii) We devise a relaxation technique for positive pairs

constraint to improve the model generalization ability,

which is verified in our empirical study.

iii) Our proposed model achieves better accuracy when

using fewer than ten percents of sampling size compared

with the peer methods including the lifted method [35] and

N-pair [34].

2. Related Work

Siamese network [5] is the seminal work of the con-

trastive DML. It firstly employs twins networks to nonlin-

early map two signature instances into feature space. And

subsequently, a contrastive loss is employed to optimize

the mapping procedure. The contrastive loss minimizes the

distance between positive pairs and enlarges the distance

between negative pairs if they are closer than a predeter-

mined margin. Based on the siamese network, a collection

of approaches are proposed to settle dimensionality reduc-

tion and face verification tasks [13, 7, 36, 38].

Although making great progress, contrastive metric

learning approaches suffer from one drawback, that focus

on absolute distance whereas relative distance matters more

for most tasks [30, 31, 35]. Triplet loss, an evolution formu-

lation of contrastive loss, has been proposed to tackle this

issue. It trains a model on a triplets training pool, where

each triplet consists of an anchor, a positive and a nega-

tive instance. The anchor and the positive instances share

the same label, while the anchor and the negative instances

have different labels. The training process encourages the

network to find an embedding where the distance between

positive pairs is smaller than the distance between negative

pairs with some margins.

Nevertheless, contrastive and triplet losses tend to be dif-

ficult to optimize in practice, mainly influenced by the way

of selecting the training pool. Confusing instances, doing

a crucial contribution to optimization, should be paid huge

attention to. FaceNet [31] targets on the online hard data

generation, which uses large mini-batches in the order of a

few thousand instances and only computes the argmin and

argmax within a mini-batch. However, the batch size is

1800, which is a big memory obstacle when implementa-

tion. To take full advantage of relative relationship, Song

et al. [35] allow mining the negatives from both the left

and right data pair instead of negative being defined only

according to anchor points. Chen et al. [16] introduce a

position-dependent deep metric unit, which can be used to

select hard instances to guide the deep embedding learn-

ing in an online and robust manner. Sohn et al. [34] indi-

cate that a minority of negative instance based loss function

suffers from poor local optima. As a result, they propose

an (N + 1)-tuplet loss that optimizes to identify a posi-

tive instance from N − 1 negative instances, which gains

some performance improvement. More recently, Duan et

al. [11] propose a deep adversarial metric learning frame-

work to generate synthetic hard negatives from the observed

negative instances.

The fundamental philosophy behind hard data mining is

that for a pair of positive instances, select a significant neg-

ative sample through offline or online and penalize on the

relative distance if they violate the constraint. However,

both offline-based and online-based hard data mining strate-

gies exist defects. Offline-based methods select the hard

instances before training which will not be updated with

the updating models. It is unreasonable as a hard relation-

ship is dynamically decided by different models. Online-

based methods decide the hard negative sample within a

mini-batch along with training, which makes the compar-

ison within a very small subset of instances. The hard qual-

ity is not guaranteed. One common drawback of these two

forms is that the learned metric is insufficient because of

the low utilization of pairs or triplets. Therefore, we make

efforts on exploiting more pairs while controlling the sam-

pling size in this paper.

Graph is a mathematical structure used to model pair-

wise relations between objects [4, 3]. A graph in the con-

text is made up of vertices and points which are connected

by edges. Graph knowledge is used to express the cor-

relation network in many applications, such as image re-

trieval [32], Linguistics processing[17] and saliency detec-

tion [48]. More recently, Iscen et al. [18] utilize an undi-

rected graph to mine an efficient training pool without label,

which verifies the priority of graph in building correlation.

In this paper, we take advantage of the graph to relax the

constraint between positive pairs, which is quite helpful to

boost the generalization ability.
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Figure 1. The asymmetric deep metric learning framework of our proposed method. Two different structured batches are employed for two

stream network training, where the upper one is neatly arranged and the lower one is shuffled. Mapped by two shared networks, the feature

embedding of instances are obtained and the learning process is supervised by two loss functions.

3. Proposed Approach

Figure 1 illustrates the framework of our proposed

method DAMLRRM. Two weight-shared networks are em-

ployed to map two asymmetric data batches, where the

upper stream accepts neatly arranged data (neat stream)

and the lower stream takes shuffled data as input (shuffled

stream). Our model builds a minimum-cost spanning tree

for each class in the neat stream which establishes a stable

intra-class manifold. Furthermore, the strong discrimina-

tion capability is achieved by adopting a shuffled stream to

provide various negative instances for the neat stream. We

detail our proposed model in the following subsections.

3.1. Preliminaries

Let X = {xi|i = 1, 2, · · · , Nx} and S =
{si|i = 1, 2, · · · , Ns} be the training pools of two

streams, where Nx and Ns are the numbers of instances

in X and S respectively. The target of DML is to learn

a nonlinear transformation to semantic embedding space

f : Rd̃ → Rd, which is a differentiable deep network with

parameter θ. We measure the similarity of (xi,xj) in term

of the Euclidean distance in the embedding space, which is

computed as Dij = ‖f(xi) − f(xj)‖
2. Furthermore, we

construct each category as an undirected weighted subgraph

G = (V,E,D), where each node in V corresponds to a

sample, the edges in E connect positive pairs, and D stores

the edge weights.

3.2. Rich Relationship Mining with Asymmetric
Structure

To obtain rich relationship, we propose an asymmetric

framework for metric learning. Asymmetry is reflected in

structure and quantity, respectively. In structure, two total

different structured data batches are built for two streams re-

spectively. The data batch of the upper stream is neat while

the other one is randomly shuffled. It can be clearly shown

on the left side of Figure 1 and the formulations are

B
x = {x1

1, · · · ,x
k
1 ;x

2
2, · · · ,x

k
2 ; · · · ;x

1
m, · · · ,xk

m}

B
s = {s1, s2, · · · , sb/2}

B = {Bx, Bs}.

(1)

The neat data batch B
x is composed of m categories where

there are k instances for each category. And the shuf-

fled data batch B
s contains b/2 randomly instances, where

b/2 = m ∗ k. Hence for each iteration, the training batch

B consists of two parts: one neat data batch B
x and one

shuffled data batch B
s.

In quantity, the training pools’ sizes of the two streams

are unequal, namely Nx 6= Ns. Quantity asymmetric

makes it possible that the same instances in one data stream

compare with different instances in another data stream at

different iteration times. For example, B
s
1, B

s
l and B

s
n

in Figure 2 include the same instances at different itera-

tion times, while they compares with different instances in

stream 1. Specifically, B1 and Bl are composed by

B1 = {Bx
1 ; B

s
1}, Bl = {Bx

1 ; B
s
l }

B
x
1 6= B

x
l , B

s
1 = B

s
l .

(2)

By doing so, our model can exploit abundant relationship

while not increase the sampling size.

The intuitive motivations behind the asymmetric metric

learning come from two aspects: 1) The neat stream mainly

focus on establishing the consistent intra-class relationship

by a minimum-cost spanning tree, which constrains positive
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Figure 2. The interlaced batches. The lengths of the two data streams are various, which make the same instances contained by stream2

interacting with different instances in stream 1. Under the same sampling size, such interlaced batches can mine more pair correlation.

pairs to form a unified manifold. However, such an intra-

class relationship is not stable enough because it observes

limited negative instances; 2) the shuffled stream gener-

ates diverse and numerous negative instances for the neat

stream, which aims to establish a discriminative inter-class

relationship. It is worth note that, the two batches do not

cause extra memory or computation cost, because we just

split half of the batch size which previous approaches em-

ploy and the two networks share all weights.

3.3. Connected Graph based Loss Functions

Previous approaches constrain on all possible positive

pairs in a mini-batch, which is too strict and causes an

overfitting problem. Inspired by the method of ranking on

data manifold [58], that the global consistency is obtained

by spreading the relevance of source point to its nearest

neighbors one by one, we relax the constraint of positive

pairs. Rather than connecting all positive pairs, we build

a minimum-cost spanning tree for each category. By do-

ing so, a connected field within one class is obtained, which

ensure a direct or indirect path exists between arbitrary pos-

itive pairs and not too much pressure is employed on the

pairs which are not visually similar. In other words, the in-

stances that far distributed in the original visual space are

allowed indirectly associated and their distance being larger

than the threshold. The central idea is to retain the intrin-

sic distribution of data to the utmost extent while ensuring

semantic consistency.

We employ a simple minimum-spanning tree algorithm

named prim [27] to build the connected graph. Prim algo-

rithm is a greedy algorithm which finds a minimum span-

ning tree for a weighted undirected graph. It finds a sub-

set of the edges to form a tree which includes every vertex,

where the total weight of all edges in the tree is minimized.

The procedure of prim algorithm is summarized as follows:

(1) Build a weighted graph G = (V,E,D), where D is

measured by Euclidean distance. Set Vvisted = {∅}

and Vunvisted = V. Initialize a tree with a single arbi-

trary vertex Vstart ∈ V. Add Vstart into Vvisted and

remove it from Vunvisted.

(2) Grow the tree by one edge: choosing a minimum-

weight edge Eminimum ∈ E which connect Vvisted

and Vunvisted, then attach it to the tree. Add the

minimum-weight-connected vertex into Vvisted and re-

move it from Vunvisted.

(3) Repeat step 2 until all vertices are covered in the tree

(Vvisted = V).

Figure 3 gives a concrete example. Suppose the starting

vertex being the point 1 (Figure 3(a)), then the next vertex

will reach point 2 (Figure 3(b)) by choosing the minimum

weight connected to point 1. Then find out the minimum

weight of all edges connected to both point 1 and 2 and

hence reached point 4. Repeat this progress until all vertices

are included in the tree like Figure 3(c). For the situation in

Figure 3,

PP = {(x1,x2); (x2,x3); (x2,x4); (x4,x5); (x4,x6)},
(3)

where PP is the connected positive pairs pool. Notably,

this minimum-cost spanning tree is quite different from

simply choosing the nearest positive pairs which does not

ensure a connected field within a category.

The objective function is defined based on the built pos-

itive pairs pool. Predefine a boundary α and a margin β,

the optimize goal is limiting the distance of positive pairs

smaller than α − β. For the negative instances, we hope

they will not break into the tree, so the distance is forced to

be bigger than α+ β. The graph loss function is defined as

Lg=
1

Pg





∑

i,j∈PP

[Di,j−α+β]2+ +
∑

i,j∈NP

[−Di,j+α+β]2+



 ,

(4)
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(c) Minimum-Cost Spanning Tree

Figure 3. The building procedure of minimum-cost spanning tree. The relevance is bridged from one to another at the smallest weight cost

until all instances within this category are connected directly or indirectly.

where Pg is the number of pairs that violate the constraint

and NP is the negative pairs pool.

For the instances in the shuffled stream, the positive in-

stances are expected to join into the prim tree, we force it

to connect to the nearest point in the tree. And the negative

instances are constrained to be far away. Hence the shuffled

loss Ls is defined as

Ls=
1

Ps





∑

i,j∈NN

[Di,j−α+β]2+ +
∑

i,j∈NP

[−Di,j+α+β]2+



 ,

(5)

where Ps is the number of violated pairs and NN is the top

1 nearest positive pairs pool between two streams.

Combining the two loss functions, the final objective

function can be formulated as:

L = Lg + Ls, (6)

where we do not employ any balance parameter when com-

bining the two loss functions, as the motivation behind them

are the same. The principle that we obey to design the ob-

jective function is respecting the data distribution most as

long as the semantic consistency satisfied. The goal, accom-

plished by connecting connect the nearest positive pairs of

the two stream and build prim tree within a neat stream, is

to relax the constraint and achieve generalization ability.

4. Experiments

In this section, we evaluate the effectiveness of our pro-

posed DAMLRRM on three public benchmark datasets for

both image retrieval and clustering tasks. The Caffe pack-

age [20] is used through the experiments. All images are

resized to 256-by-256 at first. For data augmentation, the

training instances are performed standard random crop and

horizontal mirroring, while a single center crop for testing.

The embedding size is set to d = 512 for all embedding

vectors [40, 11]. GoogLeNet [37] pretrained on ImageNet

ILSVRC dataset [29] is used for initialization and a ran-

domly initialized fully connected layer is added. The base

learning rate is set to 10e − 4 and 10 times faster for the

newly added fully connected layer. We use SGD with 40k
training iterations and 60 mini-batch size for each stream.

4.1. Benchmark Datasets

We conduct our experiments on CUB-200-2011 [39],

Cars196 [1] and Stanford Online Products [35] . For all

datasets, we follow the conventional protocol of splitting

training and testing [35]:

CUB-200-2011 [39] dataset covers 200 species of birds

with 11, 788 instances, where the first 100 species (5, 864
images) are used for training and the rest of 100 species

(5, 924 images) are used for testing.

Cars196 [1] dataset is composed by 16, 185 cars images

of 196 classes. We use the first 98 classes (8, 054 images)

for training and the other 98 classes (8, 131 images) for test-

ing.

Stanford Online Products [35] dataset contains 22, 634
classes with 120, 053 product images in total, where the first

11, 318 classes (59, 551 images) are used for training and

the remaining 11, 316 classes (60, 502 images) are used for

testing.

When building the tree in the neat stream, we set k = 5
for CUB-200-2011 and Cars196 , and k = 3 for Stanford

Online Products because each product has only about 5.3
images.

4.2. Baselines

To verify the superiority of our proposed method, we

compare with eight baseline deep metric learning algo-

rithms, which are 1) DDML [23]; 2) contrastive embedding

loss (Contrastive) [13]; 3) Triplet embedding loss (Triplet)

[42]; 4) triplet loss with N-pair sampling, (Triplet+N-pair);

5) Lifted [35]; 6) N-pair loss (N-pair) [34]; 7) Angular loss

(Angular) [40]; and 8) adversarial metric loss (AML) [11].

As the central issue of this work is the sufficient relation-

ship mining under a small sampling size, we did not employ

any hard negative mining strategies to complicate the com-
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Table 1. Comparison of clustering and retrieval on CUB 200 2011

[39] dataset

Method
Clustering(%) Recall@a(%)

NMI F1 R@1 R@2 R@4 R@8

DDML[23] 47.3 13.1 31.2 41.6 54.7 67.1

Contrastive[13] 47.2 12.5 27.2 36.3 49.8 62.1

Triplet[42] 49.8 15.0 35.9 47.7 59.1 70.0

Triplet+N-pair 54.1 20.0 42.8 54.9 66.2 77.6

Lifted[35] 56.4 22.6 43.6 56.6 68.6 79.6

N-pair[34] 60.2 28.2 51.9 64.3 74.9 83.2

Angular[40] 61.0 30.2 53.6 65.0 75.3 83.7

AML[11] 61.3 29.5 52.7 65.4 75.5 84.3

OURS 61.7 31.2 55.1 66.5 76.8 85.3

Table 2. Comparison of clustering and retrieval on the Cars196 [1]

dataset

Method
Clustering(%) Recall@a(%)

NMI F1 R@1 R@2 R@4 R@8

DDML[23] 41.7 10.9 32.7 43.9 56.5 68.8

contrastive[13] 42.3 10.5 27.6 38.3 51.0 63.9

Triplet[42] 52.9 17.9 45.1 57.4 69.7 79.2

Triplet+N-pair 54.3 19.6 46.3 59.9 71.4 81.3

Lifted[35] 55.1 25.1 48.3 61.1 71.8 81.1

N-pair[34] 62.7 31.8 68.9 78.9 85.8 90.9

Angular[40] 62.4 31.8 71.3 80.7 87.0 91.8

AML[11] 63.1 31.9 72.5 82.1 88.5 92.9

OURS 64.2 33.5 73.5 82.6 89.1 93.5

Table 3. Comparison of clustering and retrieval on the stanford

online products [35] dataset

Method
Clustering(%) Recall@a(%)

NMI F1 R@1 R@10 R@100

DDML[23] 83.4 10.7 42.1 57.8 73.7

Contrastive[13] 82.4 10.1 37.5 53.9 71.0

Triplet[42] 86.3 20.2 53.9 72.1 85.7

Triplet+N-pair 86.4 21.0 58.1 76.0 89.1

Lifted[35] 87.2 25.3 62.6 80.9 91.2

N-pair [34] 87.9 27.1 66.4 82.9 92.1

Angular[40] 87.8 26.5 67.9 83.2 92.2

AML[11] 89.1 31.7 66.3 82.8 92.5

OURS 88.2 30.5 69.7 85.2 93.2

parison. However, our work can be easily combined with

any hard negative mining method.

4.3. Evaluation Metrics

Following the standard protocol used in [35, 34], we cal-

culate the Recall@a metric [19] for retrieval task. Specif-

ically, for each query image, top a nearest images will be

returned based on Euclidean distance, then the recall score

will be 1 if at least one positive image appears in the re-

turned a images and 0 otherwise. For clustering evaluation,

we adopt the k-means algorithm to cluster testing instances

and the quality is reported in terms of the standard F1 and

NMI metrics. Refer to [35] for detailed formulation.

Table 4. Comparison of different boundary α on CUB-200-2011

[39] dataset

Varying

α

Recall@a(%)

R@1 R@2 R@4 R@8

α = 26 52.9 65.4 76.1 85.1

α = 28 53.1 65.3 76.1 84.7

α = 30 55.1 66.5 76.8 85.3

α = 32 54.5 66.0 76.4 85.3

Table 5. Comparison of different margin β on CUB-200-2011 [39]

dataset
Varying

β

Recall@a(%)

R@1 R@2 R@4 R@8

β = 0.1 51.9 64.5 75.8 84.9

β = 0.3 52.7 64.9 75.6 84.4

β = 0.5 55.1 66.5 76.8 85.3

β = 0.7 53.9 65.7 76.2 85.3

β = 1.0 53.2 66.3 76.8 85.4

4.4. Result Analysis

Retrieval and clustering. Table 1, 2 and 3 report the

clustering and retrieval results for CUB-200-2011, Cars196

and Stanford Online Products separately. We color the best

results with red and the second best with blue. The Com-

parison between traditional contrastive or triplet and Lifted

or N-pair shows that hard data mining indeed help to boost

the performance. N-pair can be cooperated with many met-

ric learning approaches and achieve improvement mainly

because of the advance in its batch construction. Among

all baselines, our proposed method DAMLRRM achieves

state-of-the-art performance in most cases. It worth men-

tioning that, DAMLRRM does not need complicated offline

data preprocessing and release from hard data mining.

Figure 4 and 5 show the visualization results of CUB-

200-2011 and Cars196, which implemented by dimension-

ality reduction algorithm t-SNE [24]. We zoom in four re-

gions to highlight several representative classes and the var-

ious colors of the bounding box are corresponding to dif-

ferent categories. Two of the zoom-in regions are used for

demonstrating the compact feature embedding of intra-class

and the rest two for illustrating the discrimination between

different classes. Despite the large pose and appearance

variation, our method effectively generates a significant fea-

ture mapping that preserves semantic similarity. Figure 6

gives some instances of query and top-5 ranking images for

Stanford Online Products. Despite the huge changes in the

viewpoint, configuration, and illumination, our method can

successfully retrieve instances from the same class.

Ablation study: effect of boundary α and margin

β. There are two hyperparameters involved in our method,

which are boundary α and margin β respectively. Table 4

and 5 study the impact of various parameters for the re-

trieval task on CUB-200-2011 dataset. We set β = 0.5
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Figure 4. Visualization of feature embedding computed by our method using t-SNE on CUB-200-2011 dataset.

Figure 5. Visualization of feature embedding computed by our method using t-SNE on Cars196 dataset.

Table 6. Comparison of one stream data batch construction and

asymmetric data batch construction of CUB-200-2011 [39] dataset

Method
# Sampling

Size

Recall@a(%)

R@1 R@2 R@4 R@8

Lifted[35] 700K 46.9 59.8 71.2 81.5

N-pair[34] 500K 51.0 63.3 74.3 83.2

OURS1 36K 52.3 65.5 76.2 85.5

when varying the value of α, and set α = 0.5 when dis-

cussing β. It can be seen that the best performance is ob-

tained when α = 30, β = 0.5. Furthermore, DAMLRRM

Table 7. Comparison of full combined positive pairs and prim tree

connected positive pairs on CUB-200-2011 [39] dataset

Method
Recall@a(%)

R@1 R@2 R@4 R@8 R@16

Full PPs 48.2 61.3 72.8 84.3 90.1

OURS 2 51.2 63.5 74.6 84.5 91.2

is not sensitive to the two parameters and we set boundary

to 30 and margin to 0.5 throughout our experiments.

Ablation study: effect of asymmetric batches. In or-

der to verify the effectiveness of asymmetric structure, we
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Query RetrievalQuery Retrieval

Figure 6. Examples of successful queries on our Stanford Online Products dataset using our embedding (size 512). Images in the first

column are query images and the rest are five nearest neighbors.

remove the graph loss and keep the shuffled loss only, which

is denoted as OURS1. We compare it with conventional one

stream data batch construction methods: Lifted and N-pair

algorithms. Table 6 reports the retrieval metrics of CUB-

200-2011 and demonstrates the priority of two asymmet-

ric stream batches construction. Notably, our method only

samples about 36K images which are about ten percentage

of Lifted and N-pair.

Ablation study: effect of graph pairs construction. To

illustrate the difference between two positive training pools

established by minimum-cost spanning tree and fully com-

bination, we remove the shuffled loss from DAMLRRM and

keep graph loss. We denote them as OURS2 and Full PPs

respectively. Table 7 reports the retrieval result of CUB-

200-2011. We can observe that minimum-cost tree based

positive pairs training pool is significant for improving the

performance, which is mainly because relaxing the con-

straint employed on positive pairs and the generalization

ability is enhanced.

Algorithmic complexity analysis. Compared with

Lifted[35] and N-pair[34], our proposed method builds a

prim tree within each category additionally. The computa-

tional complexity of prim tree is: Op =
∑k−1

i=1
i · (k − i),

where k is the number of instances in a tree. The compar-

ison of training time cost is shown in Table 8, we believe

that the additional offline training time is worthy given the

significantly improved accuracy. For testing, all instances

are mapped by one stream model, and the time cost is the

same.

5. Conclusion

In this paper, we propose a novel asymmetric loss for

deep metric learning, which targets at mining the rich rela-

tionship and enhance generalization ability at the same time.

Table 8. Comparison of training time on CUB 200 2011[39]

dataset.

Method Lifted[35] N-pair[34] OURS

Iterations/Sec 2.2 2.2 0.84

Training Time 5.1 h 5.1 h 13.2 h

To min the rich relationship, we construct two structured

and quantified asymmetric data streams, which interlace to

each other during iterations. Such an asymmetric structure

enables continuous newly combined pairs to be compared

when optimizing the model, and hence a rich relationship is

mined under a small amount of sampling size. To enhance

its generalization ability, we relax the constraint on posi-

tive pairs. Instead of connecting all possible positive pairs,

we build a minimum-cost spanning tree within one cate-

gory to ensure the form of connected field. Minimum-cost

spanning tree based sampling algorithm obeys the inherent

distribution of data, where not all positive instances are as-

sociated directly. Our proposed model releases from hard

data mining and achieves higher accuracy while even at the

cost of fewer than ten percents sampling images compared

with the peer methods including the lifted method [35] and

N-pair [34].
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