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Abstract

Video inpainting, which aims at filling in missing re-

gions of a video, remains challenging due to the difficulty

of preserving the precise spatial and temporal coherence of

video contents. In this work we propose a novel flow-guided

video inpainting approach. Rather than filling in the RGB

pixels of each frame directly, we consider video inpaint-

ing as a pixel propagation problem. We first synthesize a

spatially and temporally coherent optical flow field across

video frames using a newly designed Deep Flow Comple-

tion network. Then the synthesized flow field is used to guide

the propagation of pixels to fill up the missing regions in the

video. Specifically, the Deep Flow Completion network fol-

lows a coarse-to-fine refinement to complete the flow fields,

while their quality is further improved by hard flow exam-

ple mining. Following the guide of the completed flow, the

missing video regions can be filled up precisely. Our method

is evaluated on DAVIS and YouTube-VOS datasets qualita-

tively and quantitatively, achieving the state-of-the-art per-

formance in terms of inpainting quality and speed. Codes

and models are available at https://github.com/

nbei/Deep-Flow-Guided-Video-Inpainting

1. Introduction

The goal of video inpainting is to fill in missing regions

of a given video sequence with contents that are both spa-

tially and temporally coherent [4, 12, 22, 24]. Video in-

painting, also known as video completion, has many real-

world applications such as undesired object removal [9] and

video restoration [32].

Inpainting real-world high-definition video sequences

remains challenging due to the camera motion and the com-

plex movement of objects. Most existing video inpainting

algorithms [12, 21, 22, 27, 30] follow the traditional im-

age inpainting pipeline, by formulating the problem as a

patch-based optimization task, which fills missing regions

through sampling spatial or spatial-temporal patches of the

known regions then solve minimization problem. Despite

some good results, these approaches suffer from two draw-

backs. First, these methods typically assume smooth and

homogeneous motion field in the missing region, therefore

they cannot handle videos with complex motions. A failure

case is shown in Fig. 1(b). Second, the computational com-

plexity of optimization-based methods is high thus those

methods are infeasible for the real-world applications. For

instance, the method by Huang et al. [12] requires approx-

imately 3 hours to inpaint a 854×480-sized video with 90

frames containing 18% missing regions.

Although significant progress has been made in image

inpainting [15, 17, 23, 26, 35] through the use of Convo-

lutional Neural Network (CNN) [18], video inpainting us-

ing deep learning remains much less explored. There are

several challenges for extending deep learning-based image

inpainting approaches to the video domain. As shown in

Fig. 1(c), a direct application of an image inpainting algo-

rithm on each frame individually will lead to temporal arti-

facts and jitters. On the other hand, due to the large amount

of RGB frames, feeding the entire video sequence at once to

a 3D CNN is also difficult to ensure the temporal coherence.

Meanwhile, an extremely large model capacity is needed to

directly inpaint the entire video sequence, which is not com-

putationally practical given its large memory consumption.

Rather than filling the RGB pixels, we propose an alter-

native flow-guided approach for video inpainting. The mo-

tivation behind our approach is that completing a missing

flow is much easier than filling in pixels of a missing region

directly, while using the flow to propagate pixels tempo-

rally preserves the temporal coherence naturally. As shown

in Fig. 1(d), compared with RGB pixels, the optical flow

is far less complex and easier to complete since the back-

ground and most objects in a scene typically have trackable

motion. This observation inspires us to design our method

to alleviate the difficulty of video inpainting by first syn-

thesizing a coherent flow field across frames. Most pixels

in the missing regions can then be propagated and warped

from the visible regions. Finally we can fill up the small

amount of regions that are not seen in the entire video using

the pixel hallucination [35].

In order to fill up the optical flows in videos, we design

a novel Deep Flow Completion Network (DFC-Net) with
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(b) patch-based approach (c) image inpainting (d) Flow-guided Video Inpainting(a) missing region
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Figure 1: In this example, we show two common inpainting settings, foreground object removal and fixed region inpainting.

(a) Missing regions are shown in orange. (b) The result of patch-based optimization approach is affected by complex motions.

(c) The image inpainting approach is incapable of maintaining the temporal coherence. (d) Our approach considers the video

inpainting as a pixel propagation problem, in which the optical flow field is completed (shown on the left) and then the

synthesized flow field is used to guide the propagation of pixels to fill up missing regions (shown on the right). Our inpainting

preserves the detail and video coherence.

the following technical novelties:

(1) Coarse-to-fine refinement: The proposed DFC-Net is

designed to recover accurate flow field from missing re-

gions. This is made possible through stacking three similar

subnetworks (DFC-S) to perform coarse-to-fine flow com-

pletion. Specifically, the first subnetwork accepts a batch of

consecutive frames as the input and estimates the missing

flow of the middle frame on a relatively coarse scale. The

batch of coarsely estimated flow fields is subsequently fed

to the second subnetwork followed by the third subnetwork

for further spatial resolution and accuracy refinement.

(2) Temporal coherence maintenance: Our DFC-Net is de-

signed to naturally encourage global temporal consistency

even though its subnetworks only predict a single frame

each time. This is achieved through feeding a batch of con-

secutive frames as inputs, which provide richer temporal in-

formation. In addition, the highly similar inputs between

adjacent frames tend to produce continuous results.

(3) Hard flow example mining: We introduce hard flow ex-

ample mining strategy to improve the inpainting quality on

flow boundary and dynamic regions.

In summary, the main contribution of this work is a novel

flow-guided video inpainting approach. We demonstrate

that compelling video completion in complex scenes can be

achieved via high-quality flow completion and pixel prop-

agation . A Deep Flow Completion network is designed to

cope with arbitrary shape of missing regions, complex mo-

tions, and maintain temporal consistency. In comparison

to previous methods, our approach is significantly faster in

runtime speed, while it does not require any assumptions

about the missing regions and the motions of the video con-

tents. We show the effectiveness of our approach on both

the DAVIS [25] and YouTube-VOS [34] datasets with the

state-of-the-art performance.

2. Related Work

Non-learning-based Inpainting. Prior to the prevalence of

deep learning, most image inpainting approaches fall into

two categories, i.e., diffusion-based or patch-based meth-

ods, which both aim to fill the target holes by borrowing

appearance information from known regions. A diffusion-

based method [1, 5, 19] propagates appearance informa-

tion around the target hole for image completion. This ap-

proach is incapable of handling the appearance variations

and filling large holes. A patch-based method [6, 8, 10, 29]

completes missing regions by sampling and pasting patches

from known regions or other source images. This kind

of approach has been extended to the temporal domain

for video inpainting [21, 22, 27]. Strobel et al. [30] and

Huang et al. [12] further estimate the motion field in the

missing regions to address the temporal consistency prob-

lem. In comparison to diffusion-based methods, patch-

based methods can better handle non-stationary visual data.

However, the dense computation of patch similarity is a

very time-consuming operation. Even by using the Patch-
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Match [2, 3] to accelerate the patch matching process, the

speed of [12] is still approximately 20 times slower than

our approach. Importantly, unlike our deep learning based

approach, all the aforementioned methods cannot capture

high-level semantic information. They thus fall short in re-

covering content in regions that encompasses complex and

dynamic motion from multiple objects.

Learning-based Inpainting. The emergence of deep learn-

ing inspires recent works to investigate various deep archi-

tectures for image inpainting. Earlier works [17, 26] at-

tempted to directly train a deep neural network for inpaint-

ing. With the advent of Generative Adversarial Networks

(GAN), some studies [15, 23, 35] formulate inpainting as

a conditional image generation problem. By using GAN,

Pathak et al. [23] train an inpainting network that can han-

dle large-sized holes. Iizuka et al. [15] improved [23] by

introducing both global and local discriminators for deriv-

ing the adversarial losses. More recently, Yu et al. [35] pre-

sented a contextual attention mechanism in a generative in-

painting framework, which further improves the inpainting

quality. These methods achieve excellent results in image

inpainting. Extending them directly to the video domain

is, however, challenging due to the lack of temporal con-

straints modeling. In this paper we formulate an effective

framework that is specially designed to exploit redundant

information across video frames. The notion of pixel propa-

gation through deeply estimated flow fields is new in the lit-

erature. The proposed techniques, e.g., coarse-to-fine flow

completion, maintaining temporal coherence, and hard flow

example mining are shown effective in the experiments, out-

performing existing optimization-based and deep learning-

based methods.

3. Methodology

Figure 2 depicts the pipeline of our flow-guided video

inpainting approach. It contains two steps, the first step is

to complete the missing flow while the second step is to

propagate pixels with the guidance of completed flow fields.

In the first step, a Deep Flow Completion Network

(DFC-Net) is proposed for coarse-to-fine flow completion.

DFC-Net consists of three similar subnetworks named as

DFC-S. The first subnetwork estimates the flow in a rela-

tively coarse scale and feeds them into the second and third

subnetwork for further refinement. In the second step, af-

ter the flow is obtained, most of the missing regions can

be filled up by pixels in known regions through a flow-

guided propagation from different frames. A conventional

image inpainting network [35] is finally employed to com-

plete the remaining regions that are not seen in the entire

video. Thanks to the high-quality estimated flow in the first

step, we can easily propagate these image inpainting results

to the entire video sequence.

Section 3.1 will introduce our basic flow completion sub-

network DFC-S in detail. The stacked flow completion net-

work, DFC-Net, is specified in Sec. 3.2. Finally, the RGB

pixel propagation procedure will be clarified in Sec. 3.3.

3.1. Deep Flow Completion Subnetwork (DFC­S)

Two types of inputs are provided to the first DFC-S in our

network: (i) a concatenation of flow maps from consecutive

frames, and (ii) the associated sequence of binary masks,

each of which indicating the missing regions of each flow

map. The output of this DFC-S is the completed flow field

of the middle frame. In comparison to using a single flow

map input, using a sequence of flow maps and the corre-

sponding masks improves the accuracy of flow completion

considerably.

More specifically, suppose f0
i→(i+1) represents the ini-

tial flow between i-th and (i + 1)-th frames and Mi→(i+1)

denotes the corresponding indicating mask. We first ex-

tract the flow field using FlowNet 2.0 [16] and initialize

all holes in f0
∗

by smoothly interpolating the known val-

ues at the boundary inward. To complete f0
i→(i+1), the in-

put {f0
(i−k)→(i−k+1), ..., f

0
i→(i+1), ..., f

0
(i+k)→(i+k+1)} and

{M(i−k), ...,Mi, ...,M(i+k)} are concatenated along the

channel dimension and then fed into the first subnetwork,

where k denotes the length of consecutive frames. Gener-

ally, k = 5 is sufficient for the model to acquire related

information and feeding more frames do not produce ap-

parent improvement. With this setting, the number of input

channels is 33 for the first DFC-S (11 flow maps each for

the x- and y-direction flows, and 11 binary masks). For the

second and third DFC-S, inputs and outputs are different.

Their settings will be discussed in Sec. 3.2.

As shown in Fig. 2(a), considering the tradeoff between

model capacity and speed, DFC-S uses the ResNet-50 [11]

as the backbone. ResNet-50 consists of five blocks named

as ‘conv1’, ‘conv2 x’ to ‘conv5 x’. We modify the input

channel of the first convolution in ‘conv1’ to fit the shape

of our inputs (e.g., 33 in the first DFC-S). To increase the

resolution of features, we decrease the convolutional strides

and replace convolutions by dilated convolutions from the

‘conv4 x’ to ‘conv5 x’ similar to [7]. An upsampling mod-

ule that is composed of three alternating convolution, relu

and upsampling layers are then appended to enlarge the pre-

diction. To project the prediction to the flow field, we re-

move the last activation function in the upsampling module.

3.2. Refine Flow by Stacking

Figure 2(a) depicts the architecture of DFC-Net, which is

constructed by stacking three DFC-S. Typically, the smaller

the hole, the easier the missing flow can be completed, so

we first shrink the size of input frames of the first subnet-

work to obtain good initial results. The frames are then

gradually enlarged in the second and third subnetwork to

capture more details, following a coarse-to-fine refinement
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(a) Deep Flow Completion Network (DFC-Net)
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(b) Flow Guided Frame Inpainting

not connected to a known pixelknown pixel flow guided warping

(1) Flow Guided Pixel Propagation

forward propagation

backward propagation

bidirection merge

Image Inpainting

(2) Inpaint Unseen Regions in Video

Figure 2: The pipeline of our deep flow-guided video inpainting approach. Best viewed with zoom-in.

paradigm. Compared with the original size, inputs for three

subnetworks are resized as 1/2, 2/3 and 1 respectively.

After obtaining the coarse flow from the first subnet-

work, the second subnetwork focuses on further flow

refinement. To better align the flow field, the forward

and backward flows are refined jointly in the second

subnetwork. Suppose f1 is the coarse flow field generated

by the first subnetwork. For each pair of the consecutive

frames, i-th frame and (i+1)-th frame, the second sub-

network takes a sequence of estimated bidirectional flow

{f1
(i−k)→(i−k+1), ..., f

1
i→(i+1), ..., f

1
(i+k)→(i+k+1)} and

{f1
(i−k)←(i−k+1), ..., f

1
i←(i+1), ..., f

1
(i+k)←(i+k+1)} as in-

put and produces refined flows {f2
i→(i+1), f

2
i←(i+1)}.

Similar to the first subnetwork, binary

masks {M(i−k), ...,Mi, ...,M(i+k)} and

{M(i−k+1), ...,M(i+1), ...,M(i+k+1)} are also fed into the

second subnetwork to indicate masked regions of the flow

field. The second subnetwork shares the same architecture

as the first subnetwork, however, the number of input and

output channels is different.

Finally, predictions from the second subnetwork are en-

larged and further fed into the third subnetwork, which

strictly follows the same procedure as the second subnet-

work to obtain the final results. A step-by-step visualization

is provided in Fig. 3, the quality of the flow field is gradually

improved through the coarse-to-fine refinement.

Training. During training, for each video sequence, we

randomly generate the missing regions. The optimization

goal is to minimize the l1 distance between predictions and

ground-truth flows. Three subnetworks are first pre-trained

separately and then jointly fine-tuned in end-to-end manner.

Specifically, the loss of the i-th subnetwork is defined as:

missing region ground truth initial flow

stage-1 stage-2 stage-3

Figure 3: Visualization of different subnetworks outputs. The

quality of the completed flows is improved over the coarse-to-fine

refinement. Best viewed with zoom-in.

Li =
‖M ⊙ (f i − f̂)‖1

‖M‖1
, (1)

where f̂ is the ground-truth flow and ⊙ is element-wise

multiplication. For the joint fine-tuning, the overall loss is a

linear combination of subnetwork losses.

Hard Flow Example Mining (HFEM). Because the ma-

jority of the flow area is smooth in video sequences, there

exists a huge bias in the number of training samples be-

tween the smooth region and the boundary region. In our

experiments, we observe that directly using l1 loss generally

leads to the imbalanced problem, in which the training pro-

cess is dominated by smooth areas and the boundary region

in the prediction is blurred. What is worse, the incorrect

edge of flow can lead to serious artifacts in the subsequent

propagation step.

To overcome this issue, inspired by [28], we leverage the

hard flow example mining mechanism to automatically fo-

cus more on the difficult areas thus to encourage the model
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hard region w/o HFEM w/ HFEM

Figure 4: Hard flow example mining.

to produce sharp boundaries. Specifically, we sort all pixels

in a descending order of the loss. The top p percent pixels

are labeled as hard samples. Their losses are then enhanced

by a weight λ to enforce the model to pay more attention to

those regions. The l1 loss with hard flow example mining is

defined as:

Li =
‖M ⊙ (f i − f̂)‖1

‖M‖1
+ λ ∗

‖Mh ⊙ (f i − f̂)‖1
‖Mh‖1

, (2)

where Mh is the binary mask indicating the hard regions.

As shown in Fig. 4, the hard examples are mainly dis-

tributed around the high frequency regions such as the

boundaries. Thanks to the hard flow example mining, the

model learns to focus on producing sharper boundaries.

3.3. Flow Guided Frame Inpainting

The optical flow generated by DFC-Net establishes a

connection between pixels across frames, which could be

used as the guidance to inpaint missing regions by propa-

gation. Figure 2(b) illustrates the detailed process of flow-

guided frame inpainting .

Flow Guided Pixel Propagation. As the estimated flow

may be inaccurate in some locations, we first need to check

the validity of the flow. For a forward flow f3
i→(i+1) and

a location xi, we verify a simple condition based on pho-

tometric consistency: ‖(xi+1 + f3
i←(i+1)(xi+1))− xi‖

2
<

ǫ,, where xi+1 = xi + f3
i→(i+1)(xi) and ǫ is a relatively

small threshold (i.e., 5). This condition means that after

the forward and backward propagation, the pixel should go

back to the original location. If it is not satisfied, we shall

believe that f1
i→(i+1)(xi) is unreliable and ignore it in the

propagation. The backward flow can be verified with the

same approach.

After the consistency check, as shown in Fig. 2(b)(1), all

known pixels are propagated bidirectionally to fill the miss-

ing regions based on the valid estimated flow. In particu-

lar, if an unknown pixel is connected with both forward and

backward known pixels, it will be filled by a linear com-

bination of their pixel values whose weights are inversely

proportional to the distance between the unknown pixel and

known pixels.

Inpaint Unseen Regions in Video. In some cases, the

missing region cannot be filled by the known pixels tracked

by optical flow (e.g., white regions in Fig. 2(b)(2)), which

means that the model fails to connect certain masked re-

gions to any pixels in other frames. The image inpaint-

ing technique [35] is employed to complete such unseen

regions. Figure 2(b)(2) illustrates the process of filling un-

seen regions. In practice, we pick the a frame with unfilled

regions in the video sequence and apply [35] to complete

it. The inpainting result is then propagated to the entire

video sequence based on the estimated optical flow. A sin-

gle propagation may not fill all missing regions, so image

inpainting and propagation steps are applied iteratively un-

til no more unfilled regions can be found. In average, for

a video with 12% missing regions, there are usually 1% of

unseen pixels and they can be filled after 1.1 iterations.

4. Experiments

Inpainting Settings. Two common inpainting settings are

considered in this paper. The first setting aims to remove the

undesired foreground object, which has been explored in the

previous work [12, 22]. In this setting, a mask is given to

outline the region of the foreground object. In the second

setting, we want to fill up an arbitrary region in the video,

which might contain either foreground or background. This

setting corresponds to some real-world applications such as

watermark removal and video restoration. To simulate this

situation, following [15, 35], a square region in the center of

video frames is marked as the missing region to fill up. Un-

less otherwise indicated, for a video frame with size H×W ,

we fix the size of the square missing region as H/4×W/4.

The non-foreground mask typically leads to inaccurate flow

field estimation, which makes this setting more challenging.

Datasets. To demonstrate the effectiveness and generaliza-

tion ability of the flow-guided video inpainting approach,

we evaluate our method on DAVIS [25] and YouTube-

VOS [34] datasets. DAVIS dataset contains 150 high-

quality video sequences. A subset of 90 videos has all

frames annotated with the pixel-wise foreground object

masks, which is reserved for testing. For the remaining

60 unlabeled videos, we adopt them for training. Although

DAVIS is not originally proposed for the evaluation of video

inpainting algorithms, it is adopted here because of the pre-

cise object mask annotations. YouTube-VOS [34] consists

of 4,453 videos, which are split into 3,471 for training, 474

for validation and 508 for testing. Since YouTube-VOS

does not provide dense object mask annotations, we only

use it to evaluate the performance of the models in second

inpainting setting.

Data Preparation and Evaluation Metric. FlowNet

2.0 [16] is used for flow extraction. The data preparation

is different for the two inpainting settings as follows.

(1) Setting 1: foreground object removal. To prepare the

training set, we synthesize and overlay a mask of random

shape onto each frame of a video. Random motion is in-
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Table 1: Quantitative results for the fixed region inpainting.

YouTube-VOS DAVIS
time1(min.)

PSNR SSIM PSNR SSIM

Deepfill [35] 16.68 0.15 16.47 0.14 0.3

Newson et al. [22] 23.92 0.37 24.72 0.43 ∼270

Huang et al. [12] 26.48 0.39 27.39 0.44 ∼180

Ours 27.49 0.41 28.26 0.48 8.5

troduced to simulate the actual object mask. Masked and

unmasked frames form the training pairs. For testing, since

the ground-truths of removed regions are not available, eval-

uations are thus conducted through a user study.

(2) Setting 2: fixed region inpainting. Each of the training

frame is covered by a fixed square region at the center of

the frame. Again, masked and unmasked frames form the

training pairs. For testing, besides the user study, we also

report the PSNR and SSIM following [20, 33] in this setting.

PSNR measures image’s distortion, while SSIM measures

the similarity in structure between the two images.

4.1. Main Results

We quantitatively and qualitatively compare our ap-

proach with other existing methods on DAVIS and

YouTube-VOS datasets. For YouTube-VOS, our model is

trained on its training set. The data in DAVIS dataset is in-

sufficient for training a model from scratch. We thus use the

pretrained model from YouTube-VOS and fine-tune it using

the DAVIS training set. The performances are reported on

their respective test set.

Quantitative Results. We first make comparison with ex-

isting methods quantitatively on the second inpainting task

that aims to fill up a fixed missing region. The results are

summarized in Table 1.

Our approach achieves the best performance on both

datasets. As shown in Table 1, directly applying the image

inpainting algorithm [35] on each frame leads to inferior

results. Compared with conventional video inpainting ap-

proaches [12, 22], our approach could better handle videos

with complex motions. Meanwhile, our approach is signifi-

cantly faster in runtime speed and thus it is more well-suited

for real-world applications.

User study. Evaluation metrics in terms of reconstruction

errors are not perfect as there are many reasonable solu-

tions for the original video frames. Therefore, we perform

a user study to quantify the performance of our approach

and existing works [12, 35] for their inpainting quality. We

use the models trained on DAVIS dataset for this experi-

ment. Specifically, we randomly choose 15 videos from

DAVIS testing set for each participant. The videos are

1Following [12], we report the running time on the “CAMEL” video in

DAVIS dataset. While Newson et al. [22] have not reported the execution

time in the paper, we use the similar environment with [12] to test their

execution time.

Ours Huang et al. Deepfill

0%

20%

40%

60%

80%

100%

rank 1 rank 2 rank 3

fixed region inpainting

0%

20%

40%

60%

80%

100%

rank 1 rank 2 rank 3

foreground object removal

Figure 5: User study. “Rank x” means the percentage of inpaint-

ing results from each approach being chosen as the x-th best.

then inpainted by three approaches (ours, Deepfill [35], and

Huang et al. [12]) under two different settings. To better

display the details, the video is played at a low frame rate

(5 FPS). For each video sample, participants are requested

to rank the three inpainting results after the video is played.

We invited 30 participants for the user study. The result

is summarized in Fig. 5, which is consistent with the quan-

titative result. Our approach significantly outperforms the

other two baselines, while the image inpainting method per-

forms the worst since it is not designed to maintain temporal

consistency on its output. Figure 6 shows some examples of

our inpainting results2.

Qualitative Comparison. In Fig. 7, we compare our

method with Huang et al.’s method in two different settings.

From the first case, it is evident that our DFC-Net can bet-

ter complete the flow. Thanks to the completed flow, the

model can easily fill up the region with correct pixel value.

In the more challenging case shown in the second example,

our method is much more robust on inpainting the complex

masked region such as the part of a woman, compared to

the notable artifacts in Huang et al.’s result.

4.2. Ablation Study

In this section, we conduct a series of ablation studies

to analyze the effectiveness of each component in our flow-

guided video inpainting approach. Unless otherwise indi-

cated we employ the training set of YouTube-VOS for train-

ing. For better quantitative comparison, all performances

are reported on the validation set of YouTube-VOS under

the second inpainting setting, since we have the ground-

truth of the removed regions under this setting.

Comparison with Image Inpainting Approach. Our flow-

guided video inpainting approach significantly eases the

task of video inpainting by using the synthesized flow fields

as a guidance, which transforms the video completion prob-

lem into a pixel propagation task. To demonstrate the ef-

fectiveness of this paradigm, we compare it with a direct

image inpainting network for each individual frame. For

a fair comparison, we adopt the Deepfill architecture but

with multiple color frames as input, which is named as

‘Deepfill+Multi-Frame’. Then the ‘Deepfill+Multi-Pass’

2We highly recommend watching the video demo in https://

youtu.be/zqZjhFxxxus
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Figure 6: Results of our flow-guided video inpainting approach. For each input sequence (odd row), we show representative frames with

mask of missing region overlay. We show the inpainting results in even rows. Best viewed with zoom-in.

missing region Huang et al. Ours

Figure 7: Comparison with Huang et al.

architecture stacks three ‘Deepfill+Multi-Frame’ like DFC-

Net. Table 2 presents the inpainting results on both

DAVIS and YouTube-VOS. Although the multi-frame in-

put and stacking architecture can bring marginal improve-

ments compared to Deepfill. The significant gap between

‘Deepfill+Multi-Frame’ and our method demonstrates that

using the high-quality completed flow field as guidance can

ease the task of video inpainting.

Effectiveness of Hard Flow Example Mining. As intro-

duced in Sec. 3.2, most of the area of optical flow is smooth

and that may result in degenerate models. Therefore, a hard

flow example mining mechanism is proposed to mitigate the

influence of the label bias in the problem of flow inpainting.

Similarly, in this experiment, we adopt the first DFC-S to

examine the effectiveness of hard flow example mining

Table 3 lists the flow completion accuracy under differ-

ent mining settings, as well as the corresponding inpainting

performance. The parameter p represents the percentage of

samples that are labeled as the hard one. We use the stan-

dard end-point-error (EPE) metric to evaluate our inpainted

flow. For clear demonstration, all flow samples are divided

into smooth and non-smooth sets according to their vari-

ance. Overall, the hard flow example mining mechanism

improves the performance under all settings. When p is

smaller, which means samples are harder, it will increase

Table 2: Quantitative results for the fixed region inpaint-

ing. “Deepfill+Multi-Frame” uses Deepfill architecture but

with multiple frames as input. “Deepfill+Multi-Pass” stacks

three “Deepfill+Multi-Frame” networks.

YouTube-VOS DAVIS

PSNR SSIM PSNR SSIM

Deepfill 16.68 0.15 16.47 0.14

Deepfill+Multi-Frame 16.71 0.15 16.55 0.15

Deepfill+Multi-Pass 17.02 0.16 16.94 0.17

Ours 27.49 0.41 28.26 0.48

Table 3: Ablation study on hard flow example mining.

p (%)
Flow completion (EPE) Video inpainting

smooth region hard region overall PSNR SSIM

w/o HFEM 0.13 1.17 1.03 24.43 0.36

70 0.13 1.13 1.01 24.63 0.36

50 0.13 1.04 0.99 26.15 0.37

30 0.13 1.04 0.99 26.15 0.37

10 0.13 1.08 1.00 25.92 0.37

the difficulty during training. However, if p is larger, the

model would not get much improvement compared with the

baseline. The best choice of p ranges from 30% to 50%. In

our experiments, we fix p as 50%.

Effectiveness of Stacked Architecture. Table 4 depicts the
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Table 4: Ablation study on stacked architecture.

Flow completion Video inpainting

(EPE) PSNR SSIM

Region-Fill 1.07 23.85 0.35

Stage-1 0.99 26.15 0.37

Stage-2 0.94 27.10 0.38

DFC-Single 0.97 26.58 0.37

DFC-Net (w/o MS) 0.95 27.02 0.40

DFC-Net (Stage-3) 0.93 27.50 0.41

Table 5: Ablation study on flow-guided pixel propagation.

PSNR SSIM

w/o pixel propagation 19.43 0.24

w/ pixel propagation 27.50 0.41

Table 6: Ablation study on the quality of the initial flow on

DAVIS.
EPE PSNR SSIM

Huang et al. w/o Flownet2 – 27.39 0.44

Huang et al. w/ FlowNet2 1.02 27.73 0.45

ours 0.93 28.26 0.48

step-by-step refinement results of DFC-Net, including flows

and the corresponding inpainting frames. To further demon-

strate the effectiveness of stacked DFC-Net, Table 4 also in-

cludes two other baselines that are constructed as follows:

• DFC-Single: DFC-Single is a single stage flow completion

network that is similar to DFC-S. To ensure a fair compari-

son, DFC-Single adopts a deeper backbone, i.e. ResNet-101.

• DFC-Net (w/o MS): The architecture of DFC-Net (w/o MS)

is the same as DFC-Net. However, in each stage of this base-

line model, the input’s scale does not change and the data is

full resolution from the start to the end.

By inspecting Table 4 closer, we could find that the end-

point-error is gradually reduced by the coarse-to-fine refine-

ment. The result of DFC-Single is somewhat inferior to

the second stage, which suggests the effectiveness of us-

ing the stacked architecture in this task. To further indicate

the effectiveness of using multi-scale input in each stage,

we compare our DFC-Net with DFC-Net (w/o MS). The

performance gap verifies that the strategy of using multi-

scale input in each stage improves the result of our model

since using the large scale’s input in the early stage typically

causes the instability of training.

Effectiveness of Flow-Guided Pixel Propagation. Af-

ter obtaining the completed flow, all known pixels are first

propagated bidirectionally to fill the missing regions based

on the valid estimated flow. This step produces high-quality

results and also reduces the size of missing regions that have

to be handled in the subsequent step.

As shown in Table 5, compared with a baseline approach

that directly use the image inpainting and flow warping to

inpaint unseen regions, this intermediate step greatly eases

the task and improves the overall performance.

Missing Region Huang et al+FlowNet2 Ours

Figure 8: Comparison of completed flow between Huang et al.

and ours.

Figure 9: A failure case. The input is shown in the first row, and

the output is shown in the second row.

Ablation Study on Initial Flow. The flow estimation al-

gorithm is important but not vital since it only affects the

flow quality outside the missing regions. By contrast, the

quality of the completed flow inside the missing regions is

more crucial. We substitute the initial flow of [12] with flow

estimated by FlowNet2 to ensure a fair comparison. Table 6

and Fig. 8 demonstrate the effectiveness of our method.

Failure Case. A failure case is shown in Fig. 9. Our method

failed in this case mainly because the completed flow is in-

accurate on the edge of the car. The propagation process

cannot amend that. In the future, we will use the learning

based propagation method to mitigate the influence of the

inaccuracy of the estimated flow. Other more contemporary

flow estimation methods [13, 14, 31] will be investigated

too.

5. Conclusion

We propose a novel deep flow-guided video inpainting

approach, showing that high-quality flow completion could

largely facilitate inpainting videos in complex scenes. Deep

Flow Completion network is designed to cope with arbi-

trary missing regions, complex motions, and yet maintain

temporal consistency. In comparison to previous methods,

our approach is significantly faster in runtime speed, while

it does not require any assumption about the missing regions

and the movements of the video contents. We show the ef-

fectiveness of our approach on both the DAVIS [25] and

YouTube-VOS [34] datasets with the state-of-the-art perfor-

mance.
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