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Abstract

In this work, we study the robustness of a CNN+RNN

based image captioning system being subjected to adversar-

ial noises. We propose to fool an image captioning system

to generate some targeted partial captions for an image pol-

luted by adversarial noises, even the targeted captions are

totally irrelevant to the image content. A partial caption in-

dicates that the words at some locations in this caption are

observed, while words at other locations are not restricted.

It is the first work to study exact adversarial attacks of tar-

geted partial captions. Due to the sequential dependencies

among words in a caption, we formulate the generation of ad-

versarial noises for targeted partial captions as a structured

output learning problem with latent variables. Both the gen-

eralized expectation maximization algorithm and structural

SVMs with latent variables are then adopted to optimize the

problem. The proposed methods generate very successful at-

tacks to three popular CNN+RNN based image captioning

models. Furthermore, the proposed attack methods are used

to understand the inner mechanism of image captioning sys-

tems, providing the guidance to further improve automatic

image captioning systems towards human captioning.

1. Introduction

It has been shown [29] that deep neural networks (DNNs)

[18] are vulnerable to adversarial images, which are visu-

ally similar to benign images. Most of these works focus

on convolutional neural networks (CNNs) [17] based tasks

(e.g., image classification [15, 33, 32, 31], object detection

[9], or object tracking [38, 19]), of which the loss functions

are factorized to independent (i.e., unstructured) outputs, so

that the gradient can be easily computed to generate adver-

sarial noises. However, if the output is structured, it may be
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(Original) A double decker bus is 

driving down the street.

(Targeted) A bird is flying over a 

body of water. 

(Result) A bird is flying over a body 

of water. (4.2249)

(Targeted) A bird is         over a 

        of water.

(Result) A bird is sitting over a 

truck of water. (5.0674)

(Targeted) A market with a variety 

of fruit and vegetables. 

(Result) A market with a variety of 

fruit and vegetables. (5.6272)

(b) (c)(a)

Benign Image Targeted Complete CaptionsTargeted Partial Captions

(Original) A group of sheep standing 

on top of a lush green field.

(Targeted) A                 a variety of 

fruit         vegetables. 

(Result) A group of a variety of 

fruit and vegetables. (5.2710)

Figure 1. Examples of adversarial attacks to the image captioning

model of Show-Attend-and-Tell [35], using the proposed attack

methods dubbed GEM (the top row) and latent SSVMs (the bottom

row), respectively. In each targeted partial caption (i.e., targeted),

the red ‘_’ indicates one latent word. In each predicted caption

(i.e., result), the value at the end denotes the norm of adversarial

noises ‖ǫ‖2. All targeted captions are successfully attacked, while

adversarial noises are invisible to human perception.

difficult to derive the gradient of the corresponding struc-

tured loss. One popular deep model with structured outputs

is the combination of CNNs and recurrent neural networks

(RNNs) [26], where the visual features extracted by CNNs

are fed into RNNs to generate a sequential output. We call

this combination as a CNN+RNN architecture in this pa-

per. One typical task utilizing the CNN+RNN architecture

is image captioning [30], which describes the image content

using a sentence. In this work, we present adversarial attacks

to image captioning, as an early attempt of the robustness of

DNNs with structured outputs.

Given a trained CNN+RNN image captioning model and

an benign image, we want to fool the model to produce a tar-

geted partial caption, which may be totally irrelevant to the

image content, through adding adversarial noises to that im-

4135



age. This task is called exact adversarial attack of targeted

partial captions, which has never been studied in previous

work. As shown in Fig. 1(b), a targeted partial caption in-

dicates that the words at some locations are observed, while

the words at other locations are not specified, i.e., latent.

When the words at all locations are observed, it becomes a

targeted complete caption (see Fig. 1(c)). To this end, the

marginal posterior probability of the targeted partial caption

should be maximized, while minimizing the norm of adver-

sarial noises. It could be formulated as a structured output

learning problem with latent variables [3, 37]. Specifically,

we present two formulations. One is maximizing the log

marginal likelihood of the targeted partial caption, which can

be optimized by the generalized expectation maximization

(GEM) algorithm [4]. The other is maximizing the margin

of the log marginal likelihood between the targeted partial

caption and all other possible partial captions at the same

locations, which can be optimized by the structural support

vector machines with latent variables (latent SSVMs) [37].

Note that the proposed formulations are not coupled with

any specific CNN+RNN architecture. Thus, we evaluate

the proposed methods on three popular image captioning

models, including Show-and-Tell [30], Show-Attend-and-

Tell [35] and self-critical sequence training (SCST) utilizing

reinforcement learning [24]. Experiments on MS-COCO

[20] demonstrate that the proposed methods can generate

successful adversarial attacks. As shown in Fig. 1(b, c),

the targeted captions are successfully attacked, while the

adversarial noises are invisible to human perception.

It should be emphasized that the value of this work is not

just exploring the robustness the image captioning system,

but also understanding its inside mechanism. The analyses

about untargeted captions and the style of targeted captions

could reveal the differences between automatic captioning

and human captioning, as shown in Section 6. Moreover, the

proposed formulation based on structured output learning

is independent with any specific task. It provides a new

perspective for exact attacks to deep neural networks with

structured outputs, which has not been well studied.

The main contributions of this work are four-fold. (1) We

are the first to study the adversarial attack of targeted par-

tial captions to image captioning systems. (2) We formulate

this attack problem as structured output learning with latent

variables. (3) Extensive experiments show that state-of-the-

art image captioning models can be easily attacked by the

proposed methods. (4) We utilize the attack method to un-

derstand the inner mechanism of image captioning systems.

2. Related Work

Deep neural networks (DNNs) were firstly shown in [29]

to be vulnerable to adversarial examples, and many seminal

methods have been developed in this literature. According

to the information about the attacked model accessible to

the attacker, existing works can be generally partitioned into

three categories, including white-box, gray-box, and black-

box attacks. We refer the readers to the survey of adversarial

examples in [1] for more details. In this section, we catego-

rize existing works according to the outputs of the attacked

model, including independent and structured outputs.

Adversarial attacks to DNNs with independent outputs.

Since DNNs (especially CNNs) show very encouraging re-

sults on many visual tasks (e.g., image classification [15],

object detection [9], and semantic segmentation [21]), many

previous works have also studied the robustness of these

DNN-based visual tasks. For example, image classification

is a typical successful visual application of CNNs, and it is

also widely studied to verify the newly developed adversarial

attack methods, such as box-constrained L-BFGS [29], fast-

gradient-sign method (FSGM) [10], iterative FSGM [16],

momentum iterative FSGM[7], Carlini and Wagner attack

[5], DeepFool [23], etc. These works demonstrate that image

classification based on popular CNN models (e.g., ResNet

[11] or Inception-v3 [28]) is very vulnerate to adversarial

examples. The robustness of other typical visual tasks, e.g.,

object detection and semantic segmentation, is also studied

in [8, 22, 34] and [34, 8, 2], respectively. A common trait of

above works is that they focus on CNNs and their loss func-

tions are factorized to independent outputs. Consequently,

the gradients of the loss function with respect to the input

image can be easily computed to generate adversarial noises.

Adversarial attacks to DNNs with structured outputs.

However, the outputs of some deep models are structured.

One typical model is the CNN+RNN architecture, of which

the output is a temporally dependent sequence. It has been

the main-stream model in some visual tasks, such as image

captioning [30] and visual question answering [27]. Due

to the dependencies among words in the sequence, it may

be difficult to compute the gradient of the attack loss func-

tion with respect to the noise. An early attempt to attack

CNN+RNN based tasks was proposed in [36]. However,

it can only implement attacking of targeted complete sen-

tences, and treat structured outputs as single outputs. A

recent attack to the CNN+RNN based image captioning sys-

tem is called Show-and-Fool [6]. It presents two types of

attacks, including targeted captions and targeted keywords.

Its attack of targeted captions is a special case of our stud-

ied attack of targeted partial captions. Its attack of targeted

keywords encourages the predicted sentence to include the

targeted keywords, but their locations cannot be specified. In

contrast, our attack of targeted partial captions could enforce

the targeted keywords to occur at specific locations, which is

more restricted. Moreover, the formulations and optimiza-

tion methods of Show-and-Fool are totally different with

ours. Its formulations of targeted captions and keywords are

different, while the proposed structured output learning with

latent variables provides a systematic formulation for both
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attacks of targeted partial and complete captions.

3. Structured Outputs of CNN+RNN based Im-

age Captioning Systems

Given a trained CNN+RNN based captioning model with

parameters θ, and an perturbed image I = I0 + ǫ ∈ [0, 1],
the posterior probability of a caption S is formulated as

P (S|I0, ǫ;θ) =
N
∏

t=1

P (St|S<t, I0, ǫ;θ), (1)

where I0 represents the benign image, and ǫ denotes the

adversarial noise. S = {S1, . . . ,St, . . . ,SN} indicates a

sequence of N variables. St indicates the output variable

of t-step, and its state could be one from the candidate set

V = {1, 2, . . . , |V|}, corresponding to the set of candidate

words, i.e., V . S<t = {S1, . . . ,St−1}; when t = 1, we

define S<t = ∅. Note that we do not specify the formula-

tion of P (St|S<t, I0, ǫ;θ), and it can be specified as any

CNN+RNN model (e.g., Show-and-Tell [30]). For clarity,

we ignore the notations I0 and θ hereafter.

Besides, a partial caption is denoted as SO, which means

that the variables at the specific placesO are observed, while

other variables are unobserved, i.e., latent. Specifically, we

define O ⊂ {1, 2, . . . , N} and SO = {St|t ∈ O}, where

St = st with st ∈ V being the observed state. All observed

states are summarized as an ordered set SO = {st|t ∈
O}. The latent variables are defined as SH = {St|t ∈
H ≡ {1, 2, . . . , N} \ O} = S \ SO. Then, the posterior

probability of the partial caption SO is formulated as:

P (SO|ǫ) =
∑

SH

P (SO,SH|ǫ), (2)

where
∑

SH
indicates the summation over all possible con-

figurations of latent variables SH.

4. Adversarial Attack of Targeted Partial Cap-

tions to Image Captioning

Learning ǫ. The goal of the targeted partial caption at-

tack is to enforce the predicted caption S to be compatible

with SO, meaning that the predicted words at O are exactly

SO. To this end, while minimizing the norm of adver-

sarial noises, either of the following two criterion can be

adopted. (1) The log marginal likelihood lnP (SO = SO|ǫ)
is maximized (see Section 4.1). (2) The margin of the

log marginal likelihood between the targeted caption (i.e.,

lnP (SO = SO|ǫ)) and all other possible partial captions

(i.e., lnP (ŜO 6= SO|ǫ)) is maximized. It is formulated as

structural SVMs with latent variables (see Section 4.2).

Inference. Given the optimized ǫ, the caption of the image

perturbed by ǫ is inferred as follows:

S∗
ǫ
= argmax

S

P (S|I0 + ǫ). (3)

4.1. Maximizing Log Marginal Likelihood via Gen-
eralized EM Algorithm

According to the first criterion, the adversarial noise ǫ for

the targeted partial caption is derived by the maximization of

log marginal likelihood, while minimizing ‖ǫ‖2
2
, as follows:

argmax
ǫ

lnP (SO|ǫ)− λ‖ǫ‖2
2

(4)

≡ argmax
ǫ

ln
∑

SH

P (SO,SH|ǫ)− λ‖ǫ‖2
2
,

subject to the constraint I0 + ǫ ∈ [0, 1]. This constraint

can be easily satisfied by clipping. For clarity, we ignore

it hereafter. λ denotes the trade-off parameter. Due to the

summation over all possible configurations of SH, the above

problem is difficult. To tackle it, the generalized expecta-

tion maximization (GEM) algorithm [4] is adopted. The

core idea of GEM is introducing the factorized posterior

q(SH) =
∏

t∈H q(St) to approximate the posterior proba-

bility P (SH|SO, ǫ). Then, we have the following equation,

lnP (SO|ǫ) = L(q, ǫ) +KL(q ‖ P (SH|SO, ǫ)), (5)

L(q, ǫ) =
∑

SH

q(SH) ln
P (SO,SH|ǫ)

q(SH)
, (6)

KL
(

q(SH) ‖ P (SH|SO, ǫ)
)

=
∑

SH

q(SH) ln
q(SH)

P (SH|SO, ǫ)
.

(7)
According to the property of the KL divergence that

KL(q(SH) ‖ P (SH|SO, ǫ)) > 0, we obtain thatL(q, ǫ) 6
lnP (SO|ǫ). Consequently, the maximization problem (4)

can be optimized through the following two alternative sub-

problems, until convergence.

E step: Given ǫ, q(SH) is updated by minimizing the fol-

lowing equation

KL
(

q(SH) ‖ P (SH|SO, ǫ)
)

=
∑

SH

q(SH) lnq(SH) (8)

−
∑

SH

q(SH)
[

lnP (SO,SH|ǫ)− ln
∑

SH

P (SO,SH|ǫ)
]

=

N
∑

t=1

|V|
∑

k=1

q(Sk
t )
[

lnq(Sk
t )−

∑

S<t,H

q(S<t,H) lnP (Sk
t |S<t, ǫ)

]

,

where the constant
∑

SH
q(SH)

[

ln
∑

SH
P (SO,SH|ǫ)

]

in

the last formula is ignored. q(Sk
t ) = q(St = k) in-

dicates the probability of the variable St with the state

k, and
∑

k∈V q(Sk
t ) = 1. S<t = {S1, . . . ,St−1} and

S<t,H = S<t ∩ SH. When t = 1 and t ∈ H, we define

S<t,H = ∅. Due to the sequential dependency among S, the

probability q(St) can be updated in an ascending order (i.e.,

from 1 to N ). Specifically, with fixed q(S<t,H), the update

of q(Sk
t ) is derived by setting its gradient to 0, as follows:

1 + lnq(Sk
t )−

∑

S<t,H

q(S<t,H) lnP (Sk
t |S<t,H, ǫ) = 0
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⇒ q(Sk
t ) = exp

(

∑

S<t,H

q(S<t,H) lnP (Sk
t |S<t,H, ǫ)− 1

)

⇒ q(Sk
t )← q(Sk

t )/
(
∑|V |

k q(Sk
t )
)

(9)

M step: Given q(SH), ǫ is updated as follows:

argmax
ǫ

L(q, ǫ)− λ‖ǫ‖2
2

(10)

= const− λ‖ǫ‖2
2
+
∑

SH

q(SH) lnP (SO,SH|ǫ) = const

+

N
∑

t=1

[

∑

S1∼t,H

q(S1∼t,H) lnP (St|S<t, ǫ)

]

− λ‖ǫ‖2
2
,

where S1∼t,H = {S1, . . . ,St} ∩ SH, and const =
−
∑

SH
q(SH) lnq(SH). It can be easily optimized by any

gradient based method for training deep neural networks,

such as stochastic gradient descent (SGD) [25] or adaptive

moment estimation (ADAM) [13]. It will be specified in our

experiments. However, the number of all possible configu-

rations of S1∼t,H is |V||S1∼t,H|. It could be very large even

for moderate |S1∼t,H|. Fortunately, since q(Sk
t ) ∈ [0, 1]

and
∑|V|

k q(Sk
t ) = 1 for any t ∈ {1, . . . , N}, the values of

q(S1∼t,H) for most configurations of S1∼t,H are so small

that they can be numerically ignored. Thus, we only con-

sider the configurations of top-3 probabilities of q(St) for

each latent variable St. Consequently, the number of all

configurations is reduced to 3|S1∼t,H|, over which the sum-

mation becomes tractable.

4.2. Structural SVMs with Latent Variables

According to the second criteria, the adversarial noise ǫ

is generated by structural SVMs with latent variables [37],

argmin
ǫ

λ‖ǫ‖2
2
−max

SH

lnP (SO,SH|ǫ) (11)

+ max
ŜO,ŜH

[

lnP (ŜO, ŜH|ǫ) +△(SO, ŜO)
]

,

△(SO, ŜO) =
∑

t∈O

△(St, Ŝt), △ (St, Ŝt) =

{

ζ, St 6= Ŝt

0, St = Ŝt,

(12)

where the scalar ζ > 0will be specified in experiments. This

problem can be optimized by the following two alternative

sub-problems, until convergence.

(1) Latent variable completion with fixed ǫ:

S∗
H = argmax

SH

lnP (SO,SH|ǫ). (13)

It is solved by sequential inference in an ascending order.

(2) Optimizing ǫ via Structural SVMs with fixed S∗
H:

argmin
ǫ

λ‖ǫ‖2
2
+ max

ŜO,ŜH

[

lnP (ŜO, ŜH|ǫ) +△(SO, ŜO)
]

− lnP (SO,S
∗
H|ǫ). (14)

This problem is also optimized by two alternative steps.

(2.1) Loss augmented inference with fixed ǫ:

Ŝ∗
O, Ŝ

∗
H = argmax

ŜO,ŜH

lnP (ŜO, ŜH|ǫ) +△(SO, ŜO). (15)

This inference problem is also sequentially solved in an

ascending order. Specifically, given the inferred configura-

tions Ŝ∗
<t, the inference over Ŝt is solved as follows:

1. When t ∈ O, Ŝ∗
t = argmax

Ŝt

[

lnP (Ŝt|Ŝ
∗
<t, ǫ) +

△(St, Ŝt)
]

.

2. When t ∈ H, Ŝ∗
t = argmax

Ŝt
lnP (Ŝt|Ŝ

∗
<t, ǫ).

(2.2) Update ǫ with fixed Ŝ∗
O, Ŝ

∗
H:

argmin
ǫ

λ‖ǫ‖2
2
+ lnP (Ŝ∗

O, Ŝ
∗
H|ǫ)− lnP (SO,S

∗
H|ǫ). (16)

Similar to M step (see Eq. (10)) in GEM, as the gradients of

all three terms in the above objective function with respect to

ǫ can be easily computed, any gradient based optimization

method for training deep neural networks can be used. It

will be specified in our experiments.

Remarks on both Sections 4.1 and 4.2. Unlike the gen-

eral structured output learning with a repeated inference

process (e.g., MRFs [14]), the proposed GEM and la-

tent SSVMs are based on CNN+RNN architecture (i.e.,

P (S|I0, ǫ;θ) in Eq. (1)), which requires only one pass

along the prediction sequence of RNNs. Excluding the

forward and backward through CNNs, the complexities of

GEM and latent SSVMs are O
(

T (|V|N2 + 3Nd)
)

and

O
(

Touter(|V|NH + Tinner(|V|N + 2Nd))
)

, respectively,

with T being the iteration number, and d being the output

dimension of RNNs.

5. Experiments

5.1. Experimental Setup

In this section, we evaluate the attack performance of the

proposed two methods on three CNN+RNN based image

captioning models, including Show-Attend-and-Tell (SAT)

[35], self-critical sequence training (SCST) [24], and Show-

and-Tell (ST) [30]. We also compare with the only related

method (to the best of our knowledge), called Show-and-

Fool [6], that also attacks the Show-and-Tell model.

Database and targeted captions. Our experiments are con-

ducted on the benchmark database for image captioning, i.e.,

Microsoft COCO 2014 (MSCOCO) [20]. We adopt the split

of MSCOCO in [12], including 113, 287 training, 5, 000 val-

idation and 5, 000 test images. Following the setting of [6],

we randomly select 1, 000 from 5, 000 validation images

as the attacked images. Using each attacked model (i.e.,

SAT, SCST, or ST), we predict the captions of the remaining
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4, 000 benign validation images. We randomly choose 5 dif-

ferent targeted complete captions from these 4, 000 captions

for each attacked image. Based on each targeted complete

caption, we also generate 6 targeted partial captions, includ-

ing the partial captions with 1 to 3 latent words (all other

words are observed), and those with 1 to 3 observed words

(all other words are latent), respectively. Latent or observed

words are randomly chosen from each targeted caption. As

the first word in most targeted captions is ‘a’, we keep it

as observed, and skip it when choosing latent or observed

words. Due to the memory limit of GPUs, observed words

are randomly chosen from the second to the 7th location in

each targeted caption. The selected 1, 000 images and corre-

sponding 5, 000 targeted complete captions of each attacked

model will be released along with our codes in early future.

Evaluation metrics. Given one targeted caption SO for the

benign image I0, the adversarial noise ǫ is measured by its

ℓ2 norm, i.e., ‖ǫ‖2; the predicted caption S∗
ǫ

(see Eq. (3))

for I0 + ǫ is evaluated by the following three metrics. First,

the success sign is defined as follows:

succ-sign =

{

1, if S∗
ǫ,O ≡ SO

0, if S∗
ǫ,O 6≡ SO

, (17)

where ≡ exactly compares two sequences, and S∗
ǫ,O ⊂ S∗

ǫ

denotes the sub-sequence of S∗
ǫ

at observed locationsO. As

S∗
ǫ

may be too short to include all observed locations, we

know that |S∗
ǫ,O| 6 |SO|, with | · | calculating the length of

sequence. However, succ-sign cannot measure how many

inconsistent words in S∗
ǫ

with SO. Thus, we also define the

following two metrics:

Precision =
|S∗

ǫ,O ∩ SO|

|S∗
ǫ,O|

, Recall =
|S∗

ǫ,O ∩ SO|

|SO|
, (18)

where the operator ∩ between two sequences returns a sub-

sequence including the same words at the same locations.

If succ-sign is 1, then both Precision and Recall are 1; if

succ-sign is 0, then Precision and Recall may be larger than

0. Besides, considering that |S∗
ǫ,O| 6 |SO|, we obtain that

Precision > Recall > succ-sign. We report the average

values of above four metrics over all targeted (partial) cap-

tions of all images, i.e., 5000 captions. The average value of

succ-sign is called as success rate (SR). The lower average

norm ‖ǫ‖2, while the higher average values of other three

metrics, indicate the better attack performance.

Implementation details. The PyTorch implementations

of three target models are downloaded from an open-source

GitHub project1. We train these models based on the training

set of MSCOCO. We adopt the ResNet-101 architecture

[11] as the CNN part in SAT and SCST. Besides, to fairly

compare with the Show-and-Fool algorithm [6], we adopt

the Inception-v3 [28] architecture as the CNN part in the ST

1https://github.com/ruotianluo/self-critical.PyTorch

method metric 0 latent 1 latent 2 latent 3 latent 1 obser 2 obser 3 obser

GEM

‖ǫ‖2 ↓ 4.2767 4.4976 4.6942 4.858 3.0304 3.5611 3.6583

SR ↑ 0.9926 0.9154 0.759 0.5604 0.8908 0.862 0.892

Prec ↑ 0.9953 0.9575 0.9092 0.856 0.8908 0.8897 0.9236

Rec ↑ 0.9953 0.9528 0.8855 0.8 0.8908 0.8876 0.9234

‖ǫ‖2 ↓ 5.1678 5.4558 5.7074 5.8706 5.2509 5.6838 5.8681

Latent SR ↑ 0.9806 0.9126 0.8466 0.7526 0.85 0.731 0.708

SSVMs Prec ↑ 0.9892 0.955 0.9197 0.8868 0.85 0.8092 0.8096

Rec ↑ 0.9889 0.9524 0.9151 0.8792 0.85 0.7896 0.7917

Table 1. Results of adversarial attack to the Show-Attend-and-

Tell model. ‘1 obser’ indicates the targeted partial caption of one

observed word. ‘Prec’ indicates Precision, while ‘Rec’ means

Recall. ↓ means that the lower value of that metric is the better

attack performance, while ↑ means that the higher value of that

metric is the better attack performance.

model. For the GEM based attack method, the maximum

number of iterations between E and M step is set to 50; for the

latent SSVM based attack method, the maximum numbers

of both outer and inner iterations are set to 10. In the M step

(see Eq. (10)) of GEM, and the (2.2) step (see Eq. (16)) of

latent SSVMs, we adopt the ADAM optimization algorithm

[13] to update the noise ǫ, with the learning rate 0.001, while

all other hyper-parameters are set to the default values in the

master branch of PyTorch2. If without specific illustrations,

the trade-off parameters λ in both Eq. (4) and (11) are set to

0.1 in experiments. The scalar ζ of the structured loss (see

Eq. (12)) in latent SSVMs is set to 1.

5.2. Attack Results of Three State-of-the-Art Image
Captioning Models

Attack results of the Show-Attend-and-Tell model [35] are

presented in Table 1. (1) In terms of the attacks of targeted

complete captions (i.e., ‘0 latent’ in the third column of Ta-

ble 1), the SR of GEM is up to 0.9926, while means that only

37 targeted captions out of 5, 000 targeted captions are not

successfully predicted after generating adversarial noises.

And, the corresponding Precision and Recall of GEM are

up to 0.9953. It means that even in failed attacks, many

words are also successfully predicted. The average noise

norm ‖ǫ‖2 of GEM is 4.2767. As shown in Fig. 2, such

small noises are invisible to human perception. In contrast,

the results of latent SSVMs are slightly worse than those of

GEM. (2) In terms of the attacks of targeted partial captions

with 1 to 3 latent words, along the increase of the number of

latent words, the results of both GEM and latent SSVMs get

worse, with decreasing (SR, Precision, Recall) and increas-

ing ‖ǫ‖2. The reason is that more latent words bring in more

uncertainties on predictions of these latent locations. Then,

the observed words after latent locations will be influenced

by these uncertainties. (3) In terms of the attacks of targeted

partial captions with 1 to 3 observed words, there is not a

clear relationship between the attack performance and the

number of observed words. The reason is that there is a

trade-off between satisfying observed words and the uncer-

2https://github.com/PyTorch/PyTorch/blob/master/torch/

optim/adam.py
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Benign Image Adversarial Noise Adversarial Image Adversarial Noise Adversarial Image Adversarial Noise Adversarial Image

(a) (b) (c)

(Original) A red and white 

airplane flying in the sky.

(Original) A group of people 

sitting at a table eating food.

(Result) A woman sitting at

 a table with a cell phone. 

(Result) A baseball player is 

swinging a bat on a field. 

(Targeted) A baseball player is 

        a bat on         field. 

(4.9876)

(Targeted) A baseball player is 

holding a bat on a field. 

(4.8603)

(Result) A baseball player is 

holding a bat on a field. 

(Targeted) A woman sitting at 

a table with a cell phone. 

(2.6841)

(Result) A woman sitting at a 

table with a cell phone.

(Targeted) A woman sitting at 

        table         a cell phone. 

(3.6306)

(Targeted)                  sitting

         a                         . (2.0917)

(Result) A man sitting on a 

chair with a plate of food. 

(Targeted)                          is 

holding                         . (3.9415)

(Result) A small airplane is 

holding a red and yellow kite.

Figure 2. Some qualitative examples of adversarial attacks to the Show-Attend-and-Tell [35] model, using the proposed GEM method.

Attacks of (a) targeted complete captions; (a) targeted partial captions with two latent words; (a) targeted partial captions with two observed

words. All targeted partial/complete captions are successfully attacked, while the adversarial noises are invisible to human perception.

method metric
λ

0.001 0.01 0.1 1 10 100

GEM

‖ǫ‖2 ↓ 8.6353 7.67 4.2767 1.6862 0.7513 0.2701

SR ↑ 0.9956 0.9952 0.9926 0.9402 0.4126 0.0118

Prec ↑ 0.9973 0.9969 0.9953 0.9595 0.5832 0.2128

Rec ↑ 0.9972 0.9969 0.9953 0.9589 0.5754 0.2011

‖ǫ‖2 ↓ 9.2682 8.2134 5.1678 2.5074 1.023 0.2939

Latent SR ↑ 0.985 0.9818 0.9806 0.9252 0.4144 0.012

SSVMs Prec ↑ 0.9919 0.99 0.9892 0.9588 0.6172 0.227

Rec ↑ 0.9917 0.9897 0.9889 0.9574 0.6092 0.2161

Table 2. Attack results of targeted complete captions to the Show-

Attend-and-Tell model, with different trade-off parameters λ (see

Eqs. (4) and (11)).

tainty from the latent words. (4) In comparison of GEM and

latent SSVMs, the average norm ‖ǫ‖2 of adversarial noises

produced by GEM is always lower than that produced by la-

tent SSVMs at all cases. The attack performance (evaluated

by SR, Precision and Recall) of GEM is also better than that

of latent SSVMs at most cases, excluding two cases of 2 and

3 latent words. However, based on these results, we cannot

simply conclude which method is better for adversarial at-

tacks to image captioning. Because these two methods are

influenced by the trade-off parameter λ, and latent SSVMs

is also affected by the parameter ζ defined in Eq. (12).

In the above analysis, the trade-off parameters λ in both

Eqs. (4) and (11) are fixed at 0.1. In the following, we

explore the influence of λ to the attack performance. When

λ becomes larger, the norm of adversarial noises is expected

to be smaller, while the loss gets larger, leading to weaker

attack performance. This point is fully verified by the results

in Table 2. When λ = 0.001, the SR value of GEM is up

to 0.9956, and ‖ǫ‖2 is 8.6353; when λ = 100, the SR value

of GEM is up to 0.0118, and ‖ǫ‖2 is 0.2701. With the

same λ, GEM performs slightly better than latent SSVMs in

most cases, with lower ‖ǫ‖2 and higher SR, Precision, and

Recall. However, the performance of latent SSVMs may be

also influenced by ζ (see Eq. (12)). Due to the space limit,

it will be studied in the supplementary material.

Attack results of the SCST model [24] are shown in Table

method metric 0 latent 1 latent 2 latent 3 latent 1 obser 2 obser 3 obser

GEM

‖ǫ‖2 ↓ 5.1978 5.5643 5.8561 6.1171 4.3749 4.8465 4.8419

SR ↑ 0.992 0.9168 0.7438 0.5178 0.6344 0.6372 0.7838

Prec ↑ 0.9956 0.9549 0.8847 0.7788 0.6344 0.7328 0.8543

Rec ↑ 0.9956 0.9528 0.872 0.7503 0.6344 0.7319 0.8543

‖ǫ‖2 ↓ 4.7005 5.0926 5.5109 5.8674 5.989 5.7939 5.4646

Latent SR ↑ 0.9804 0.916 0.8576 0.7598 0.569 0.7066 0.8294

SSVMs Prec ↑ 0.9926 0.9684 0.934 0.8835 0.6538 0.7835 0.8815

Rec ↑ 0.9924 0.967 0.9306 0.8784 0.6502 0.7809 0.8801

Table 3. Results of adversarial attacks to the SCST model.

3. The phenomenon behind these results is similar with that

behind the results of the Show-Attend-and-Tell model. The

reason is that the model structures of Show-Attend-and-Tell

and SCST are similar that the visual features extracted by

CNNs are fed into RNNs at each step.

Attack results of the Show-and-Tell model [30] are re-

ported in Table 4. It is found that the attack performance of

Show-and-Tell is much worse than that of Show-Attend-and-

Tell (see Table 1) and SCST (see Table 3). The main reason

is that the model structure of Show-and-Tell is significantly

different with the structures of the other two models. Specif-

ically, the visual features extracted by CNN is only fed into

the starting step of RNNs, while they are fed into RNNs at ev-

ery step in Show-Attend-and-Tell and SCST. Consequently,

the gradients of observed words in targeted partial captions

can be directly back-propagated to the input image in Show-

Attend-and-Tell and SCST. In contrast, the gradients of both

observed words and latent words are firstly multiplied, then

are back-propagated to the input image. Obviously, the in-

fluence of observed words becomes much weaker. Thus, it is

expected that the observed word closer to the end of one cap-

tion is more difficult to be successfully attacked. To verify

this point, we summarize the success rate of observed words

at each location. As the lengths of targeted captions vary

significantly, we only summarize the words at the first 7 lo-

cations. As shown in Fig. 3, in both targeted partial captions

with one observed word and targeted complete captions, as

well as using both GEM and latent SSVMs, the SR value

decreases along the increasing of locations.

Due to the space limit, we will present: (1) attack results
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method metric 0 latent 1 latent 2 latent 3 latent 1 obser 2 obser 3 obser

GEM

‖ǫ‖2 ↓ 4.5959 3.4488 3.3999 3.3783 2.2588 2.5779 2.7472

SR ↑ 0.4404 0.5034 0.4094 0.3408 0.4606 0.4248 0.4962

Prec ↑ 0.6758 0.7475 0.691 0.6455 0.4606 0.5468 0.6403

Rec ↑ 0.6635 0.7344 0.6763 0.626 0.4606 0.5468 0.6403

‖ǫ‖2 ↓ 1.7635 4.5913 4.6584 4.7369 4.5513 4.8617 4.933

Latent SR ↑ 0.4924 0.5808 0.4634 0.3978 0.287 0.2118 0.227

SSVMs Prec ↑ 0.7438 0.7982 0.7257 0.6697 0.287 0.3609 0.4065

Rec ↑ 0.7318 0.7862 0.7122 0.6545 0.287 0.3459 0.3898

Table 4. Results of adversarial attacks to the Show-and-Tell model.
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Figure 3. Statistics of success rates of observed words at different

locations, on attacking the Show-and-Tell model. (Left): the attack

of targeted partial captions with one observed word; (Right): the

attack of targeted complete captions.

of the Show-and-Tell model with the ResNet-101 architec-

ture as the CNN part; (2) results of transfer attacks among

three captioning models; (3) more qualitative results (like

Fig. 2) of attacks of targeted partial captions on above

three image captioning models, in supplementary materi-

als. We also report the average runtime of attacking one

image in the case of targeted complete captions, using the

proposed two methods. On the four attacked models, in-

cluding Show-Attend-and-Tell, SCST, Show-and-Tell with

Inception-v3 and Show-and-Tell with ResNet-101, the re-

spective average runtime (seconds) of the GEM method is

95, 81, 36 and 61, and of latent SSVMs is 28, 25, 15 and 24.

As GEM requires more back-propagation (see the summa-

tion term
∑N

t=1

∑

S1∼t,H
in Eq. (10)) than latent SSVMs,

its runtime is larger.

5.3. Comparison with Show-and-Fool [6]

In this section, we compare with the only related work

called Show-and-Fool [6]. Its attack of targeted captions

is a special case of our studied attack of targeted partial

captions, i.e., targeted complete captions. The derivations of

two methods proposed in Show-and-Fool also start from the

joint probability of a caption given a pre-trained CNN+RNN

model, which is same with our derivations. However, the

derived objective functions of Show-and-Fool are totally

different with our objective functions. Specifically,

• Maximizing logits in Show-and-Fool (see Eq. (6)

in [6]) vs. our maximizing log likelihood (see Eq.

(4)). Show-and-Fool directly removes the normaliza-

tion term of the Softmax function of RNNs, as they

thought this term is a constant with respect to the input

adversarial noises. Actually, this normalization term

depends on adversarial noises. Thus, maximizing log-

its and maxiziming log likelihood are different.

• Max margin of logits in Show-and-Fool (see Eq. (7)

in [6]) vs. our max margin of log likelihood (see Eq.

(11)). Show-and-Fool maximizes the logit margin be-

tween each observed word and all other possible words

at the same location. When inferring the word from all

other possible words at one location, the corresponding

logit exploits the observed word at its previous location

as the condition, rather than the inferred word of its

previous location. This objective function is standard

SVMs factorized at each location, while our objective

function is structural SVMs of the whole caption.

In the following, we present some experimental com-

parisons between Show-and-Fool and our methods, on the

attack of targeted complete captions. Show-and-Fool is im-

plemented using Tensorflow3, and attacks the Show-and-

Tell model [30], of which the CNN part is the Inception-v3

model [28]. To fairly compare with Show-and-Fool, we re-

implement our methods using Tensorflow, based on the im-

plementation codes of Show-and-Fool, and attack the same

checkpoint of the Show-and-Tell model. Besides, Show-

and-Fool adopts the arctanh function to transform I0 and

I0 + ǫ to y = arctanh(I0), w = arctanh(I0 + ǫ), to satisfy

the requirement that I0, I0+ǫ ∈ [−1, 1]. In this section, our

method also adopt this setting. However, when computing

the norm ‖ǫ‖2 for evaluation, we still transform I0 and ǫ into

the range I0, I0 + ǫ ∈ [0, 1]. The trade-off parameter λ is

set to 1 for both Show-and-Fool and our methods. The slack

constant ζ (see Eq. (12)) in max margin of Show-and-Fool is

set to 10, 000 (the default value in the provided code), while

1 in our SSVM method. The experiments are also conducted

on the selected 1000 images and 5000 targeted captions (see

Section 5.1). The results are shown in Table 5. Our GEM

method shows the best attack performance. However, due

to the differences on objective functions and optimization

methods, these results with similar hyper-parameters may

not give a clear conclusion that which method is better. But,

we still obtain two observations: (1) Using logits or log

probabilities in the loss term can affect the attack perfor-

mance; (2) The comparison between Table 4 and Table 5

tells that different checkpoints of the same attacked model

(i.e., Show-and-tell) will influence the attack performance.

Show-and-Fool [6] also presented the attack of targeted

keywords, requiring that the targeted keywords should occur

in the predicted caption, but their locations cannot be deter-

mined. In contrast, our attack of targeted partial captions

can enforce the targeted words to occur at specific locations.

Besides, the formulations for attacks of targeted captions and

3 https://github.com/huanzhang12/ImageCaptioningAttack
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metric
Show-and-Fool [6] Our methods

max logits max margin of logits GEM latent SSVMs

‖ǫ‖2 ↓ 1.5202 1.7423 2.3494 4.7854

SR ↑ 0.5226 0.6586 0.7134 0.4996

Prec ↑ 0.7239 0.8009 0.8933 0.7335

Rec ↑ 0.7135 0.7926 0.886 0.7215

Table 5.Comparisons between Show-and-Fool [6] and our methods.

Passive Sentence
 (Targeted) A frisbee is played by 

a young boy on the beach.

 (1) A man is playing frisbee with 

a dog (on the beach). (3.5022)

 (2) A frisbee is played by a young 

boy on the beach. (4.6760)  

 (3) A frisbee is playing with a

 frisbee on the beach. (6.3204) 

Attributive Clause
   (Targeted) A young boy is playing with a 

  frisbee which is orange on the beach. 

   (1) A young boy is playing with a frisbee     

  (which is orange on the beach). (3.2735)

   (2) A young boy is playing with a frisbee   

  (which is orange) on the beach. (4.7610)

   (3) A young boy is playing with a frisbee 

  (which is orange) on the beach. (5.3805)

Passive Sentence
 (Targeted) A bike is ridden by a 

man with a dog. 

 (1) A dog is riding a horse on the 

beach. (3.6312)

 (2) A bike is ridden by a man 

with a dog. (5.6850)

 (3) A bike is driving down a 

street with a dog.  (6.8397) 

Attributive Clause
   (Targeted) A toilet that is white in a 

                bathroom with a table. 

   (1) A small bird sitting on a rock in the  

                 middle of a field. (4.2003)

   (2) A toilet (that) is in the middle of a 

          bathroom (with a table). (5.8707)

   (3) A toilet (that) is standing in a

         bathroom with a table. (7.0076)  

Figure 4. Two examples of attacks different styles of targeted cap-

tions using GEM. (1), (2) and (3) represent the results of Show-

And-Tell, Show-Attend-And-Tell and SCST model, respectively.

(Original caption) A man is playing 

tennis on a tennis court. 

(Untargeted caption) A girl green 

green green green green green green 

green green green green green green 

green. (5.8350)

(Original caption) A man riding a 

wave on top of a surfboard. 

(Untargeted caption) A woman is 

holding a dog is playing a blue bird in 

the water. (7.1830)

Benign Image Adversarial ImageCaptions

Figure 5. Examples of untargeted attacks to Show-Attend-and-Tell.

targeted keywords are different in Show-and-Fool, while the

proposed structured output learning with latent variables

provides a systematic formulation of both targeted attacks

of complete and partial captions.

6. Extended Discussions

What style of targeted captions can be successfully at-

tacked? As demonstrated in Section 5.1, the targeted cap-

tions are selected from the captions of 4000 benign vali-

dation images. It is found that most of these captions are

active sentences, due to that most training captions are ac-

tive. Can the image captioning system produce other styles

of captions through adversarial attacking? To answer it, we

run a simple test of using passive sentences and attributive

clauses as targeted captions. As shown in Fig. 4 (left),

only the Show-Attend-and-Tell model can produce passive

sentences, while other two models still keep active. Fig. 4

(right) shows that all three models fail to produce attributive

clauses. It demonstrates that current image captioning sys-

tems are not flexible enough to produce different styles of

captions like humans.

Untargeted caption attack. Until now, we have only pre-

sented targeted caption attacks. In the following, we present

a brief analysis about the untargeted caption attack, which

can be formulated as follows:

argmin
ǫ

lnP (S0|ǫ) + λ‖ǫ‖2
2
, s.t. I0 + ǫ ∈ [0, 1], (19)

where S0 denotes the predicted caption on the benign im-

age I0. This problem can be easily solved by the projected

gradient descent algorithm. Two attack results to the Show-

Attend-and-Tell model are shown in Fig. 5. The predicted

captions after attacking are non-meaningful, i.e., violating

the grammar of natural language. It is not difficult to explain

this observation. In image classification, the classification

space is continuous and closed, and the prediction will jump

from one to another label if the image is attacked. However,

the distributions of meaningful captions are not continuous

in image captioning. There are massive non-meaningful

captions around every meaningful caption. Consequently,

we think it makes no sense to calculate how many captions

are fooled by untargeted attacks. However, this simple anal-

ysis reveals an important information that state-of-the-art

DNN-based image captioning systems have not learned or

understood the grammar of natural language very well.

A brief summary. The above two studies demonstrate that

state-of-the-art CNN+RNN image captioning systems are

still far from human captioning. The proposed methods can

be used as a probe tool to check what grammars have been

learned by the automatic image captioning system, thus to

guide the improvement towards human captioning.

7. Conclusions

In this paper, we have fooled the CNN+RNN based im-

age captioning system to produce targeted partial captions

by generating adversarial noises added onto benign images.

We formulate the attack of targeted partial captions as a

structured output learning problem. We further present two

structured methods, including the generalized expectation

maximization and the structural SVMs with latent variables.

Extensive experiments demonstrate that state-of-the-art im-

age captioning models can be easily attacked by the pro-

posed methods. Furthermore, the proposed methods have

been used to explore the inner mechanism of image caption

systems, revealing that current automatic image captioning

systems are far from human captioning. In our future work,

we plan to use the proposed methods to guide the improve-

ment of automatic image captioning systems towards human

captioning, and enhance the robustness.
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