
MHP-VOS: Multiple Hypotheses Propagation for Video Object Segmentation

Shuangjie Xu1‡* Daizong Liu1* Linchao Bao2† Wei Liu2 Pan Zhou1†

1Huazhong University of Science and Technology 2Tencent AI Lab

{shuangjiexu, dzliu, panzhou}@hust.edu.cn linchaobao@gmail.com wl2223@columbia.edu

Abstract

We address the problem of semi-supervised video object

segmentation (VOS), where the masks of objects of inter-

ests are given in the first frame of an input video. To deal

with challenging cases where objects are occluded or miss-

ing, previous work relies on greedy data association strate-

gies that make decisions for each frame individually. In this

paper, we propose a novel approach to defer the decision

making for a target object in each frame, until a global

view can be established with the entire video being taken

into consideration. Our approach is in the same spirit as

Multiple Hypotheses Tracking (MHT) methods, making sev-

eral critical adaptations for the VOS problem. We employ

the bounding box (bbox) hypothesis for tracking tree for-

mation, and the multiple hypotheses are spawned by propa-

gating the preceding bbox into the detected bbox proposals

within a gated region starting from the initial object mask

in the first frame. The gated region is determined by a gat-

ing scheme which takes into account a more comprehensive

motion model rather than the simple Kalman filtering model

in traditional MHT. To further design more customized al-

gorithms tailored for VOS, we develop a novel mask propa-

gation score instead of the appearance similarity score that

could be brittle due to large deformations. The mask prop-

agation score, together with the motion score, determines

the affinity between the hypotheses during tree pruning.

Finally, a novel mask merging strategy is employed to han-

dle mask conflicts between objects. Extensive experiments

on challenging datasets demonstrate the effectiveness of the

proposed method, especially in the case of object missing.

1. Introduction

Semi-supervised Video Object Segmentation (VOS) is

the task to automatically segment the objects of interests

in a video given the annotations in the first frame, which

is a fundamental task with wide applications in video edit-

ing, video summarization, action recognition, etc. Although

tremendous progress has been made with semantic segmen-
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Figure 1. Challenging examples handled by previous approaches.

In the first example, the front object instance is segmented as two

different objects and the farther instance is missing in the result.

In the second example, the occluded instance and the re-appearing

instance are missing. In the last example, the smaller object near

the larger object is incorrectly segmented to be the larger one.

tation CNNs [24, 7, 8, 28] recently, VOS is still challeng-

ing in objects missing and association problems due to oc-

clusions, large deformations, complex object interactions,

rapid motions, etc., as shown in Fig. 1.

To tackle these challenges, many recent works [22, 35,

25] resort to object proposal schemes [13, 34] to restore

missing objects or re-establish objects associations. In these

works, proposals of target objects are either generated indi-

vidually in each frame [22, 35] by semantic detectors, or

further merged with a few neighboring frames [25]. How-

ever, these approaches rely on a greedy selection of the best

object proposal at each time step, for a given object, which

becomes a complication with utter dependence on a reli-

able Re-ID network [25] that can provide accurate similar-

ity scores. In this paper, we instead deal with this problem

by employing a multiple hypotheses propagation approach,

which builds up a tracking tree for different hypotheses in

time steps, enabling us to defer the selection of the best ob-

ject proposal for each target till a whole proposal tree along

temporal domain is established. This delayed decision mak-

ing provides us a global view to determine data associations

in each frame by considering objects information over the

entire video, provably more reliable than greedy methods.

The idea of tracking using multiple hypotheses is not

new. In the seminal work by Cox and Hingorani [11], Mul-

tiple Hypotheses Tracking (MHT) was first introduced to
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the vision community and applied in the context of visual

tracking. Unfortunately, the performance of MHT was lim-

ited by unreliable target detectors at that time and later aban-

doned for decades. More recently, it is again demonstrated

to achieve state-of-the-art performances for multiple objects

tracking when implemented with modern techniques [20].

The basic idea of MHT is to build up a tracking tree with

proposals from each frame, and then prune the tree using

the tracking scores until the best track left. The key ingre-

dients for the success of MHT in [20] are the gating scheme

and scoring function during the construction and pruning

of the tracking trees. In the gating scheme, Kalman filter-

ing is employed to restrict proposal children to be spawned

within a certain gating area near their parent, such that the

tree does not expand too quickly. The scoring function is

to determine the similarity between two hypotheses using

motion and appearance cues. However, the algorithm is not

that reliable when it comes to VOS, especially when there

are large object deformations or sudden changes of object

movements (see carousel in Fig. 1 as an example). In this

case, the simple motion model of Kalman filtering would

break and the appearance score would be very brittle.

In this paper, we adapt MHT to VOS and propose a novel

method called Multiple Hypotheses Propagation for Video

Object Segmentation (MHP-VOS). Starting from the initial

bounding box (bbox) of object mask in the first frame, mul-

tiple hypotheses are spawned by proposals from the class-

agnostic detector within a novel motion gated region instead

of Kalman filtering. We also design a novel mask propa-

gation score instead of the appearance similarity score that

could be brittle due to large deformations in challenging

cases. The mask propagation score, together with motion

score, determines the affinity between hypotheses during

the tree pruning. After pruning the proposal tree, the fi-

nal instance segmentation can be generated and propagated

with a mask refinement CNN for each object of interests.

And the conflicts between objects are further handled with a

novel mask merging strategy. Comparing to state-of-the-art

approaches, our method is much more robust and achieves

the best performances on the DAVIS datasets.

Our main contributions are summarized as follows:

• We adapt a multiple hypotheses tracking method to the

VOS task to build up a bbox proposal tracking tree

for different objects with a new gating and pruning

method, which can be regarded as a delayed decision

for global consideration.

• We apply a motion model to proposal gating instead of

using the Kalman filtering, and design a novel hybrid

pruning score of motion and mask propagation, which

are tailored for VOS tasks. We also design a novel

mask merging strategy for multi-objects tasks.

• We conduct extensive experiments to show the ef-

fectiveness of our method in distinguishing similar

objects, handling occluded and re-appearing objects,

modeling long-term object deformations, etc., which

are very difficult to deal with for previous approaches.

2. Related Work

In this section, we briefly summarize recent researches

related to our work, including semi-supervised video object

segmentation and multiple hypotheses tracking.

Matching-based Video Object Segmentation. This

type of approaches generally utilize the given mask in the

first frame to extract appearance information for objects of

interests, which is then used to find similar objects in suc-

ceeding frames. Yoon et al. [42] proposed a siamese net-

work to match the object between frames in a deep feature

space. In [5], Caelles trained a parent network on still im-

ages and then finetuned the pre-trained work with one-shot

online learning. To further improve the finetuning perfor-

mance in [5], Khoreva et al. [19] synthesized more train-

ing data to enrich the appearances on the basis of the first

frame. In addition, Chen et al. [9] and Hu et al. [16] used

pixel-wise embeddings learned from supervision in the first

frame to classify each pixel in succeeding frames. Cheng et

al. [10] proposed to track different parts of the target object

to deal with challenges like deformations and occlusions.

Propagation-based Video Object Segmentation. Dif-

ferent from the appearance matching methods, mask prop-

agation methods utilize temporal information to refine seg-

mentation masks propagated from preceding frames. Mask-

Tracker [29] is a typical method following this line, which

is trained from segmentation masks of static images with

mask augmentation techniques. Hu et al. [15] extended

MaskTracker [29] by applying active contour on optical

flow to find motion cues. To overcome the problem of tar-

get missing when fast motion or occlusion occurs, methods

[40, 38] combined temporal information from nearby frame

to track the target. The CNN-in-MRF method [1] embeds

the mask propagation step into the inference of a spatiotem-

poral MRF model to further improve temporal coherency.

Oh et al. [39] applied instance detection to mask propaga-

tion using a siamese network without online finetuning for

a given video. Another method [41] that does not need on-

line learning uses Conditional Batch Normalization (CBN)

to gather spatiotemporal features.

Detection-based Video Object Segmentation. Object

detection has been widely used to crop out the target from

a frame before sending it to a segmentation model. Li et al.

[22] proposed VS-ReID algorithm to detect missing objects

in video object segmentation. Sharir et al. [35] produced

object proposals using Faster R-CNN [34] to gather proper

bounding boxes. Luiten et al. [25] used Mask R-CNN [13]

to detect supervised targets among the frames and crop them

as the inputs of Deeplabv3+ [8]. Most works based on de-

tections select one proposal at each time step greedily. In
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contrast, we keep multiple proposals at each time step and

make decisions globally for the segmentation.

Multiple Hypotheses Tracking. MHT method is widely

used in the field of target tracking [3, 4]. Hypotheses track-

ing [11] algorithm originally evaluates its usefulness in the

context of visual tracking and motion correspondence, and

the MHT in [20] proposed a scoring function to prune the

hypothesis space efficiently and accurately which is suited

to current visual tracking context. Also, Vazquez et al. [36]

first adopted MHT in the semantic video segmentation task

without pruning. In our method, we adapt the approach

to the class-agnostic video object segmentation scenario,

where propagation scoring is class-agnostic with the mo-

tion rules and the propagation correspondences instead of

the unreliable appearance scores.

3. Approach

The overall architecture of our proposed MHP-VOS is

illustrated in Fig. 2. We first generate bbox object propos-

als P t = {ptn, n = 1, . . . , Nroi} of image It from frame

t with a class-agnostic detection approach in Sec. 3.1, and

then apply multiple hypotheses propagation recurrently dur-

ing building the hypotheses propagation tree (Sec. 3.2) with

our novel gating and scoring strategies and filter out disturb-

ing hypotheses by N -scan pruning (Sec. 3.3) to introduce

long-term knowledge for hypotheses decision. To take ad-

vantage of spatial information between different objects in

a sequence, the propagation trees for each object are built at

the same time. After acquiring each corresponding bound-

ing box proposal bt associated with the best hypotheses for

each object, we obtain current mask Mi for object i using a

segmentation model with bt in Sec. 3.4. At last, we merge

instance masks Mi to multi-objects mask M with consider-

ation of intra-objects conflicts in Sec. 3.5.

3.1. Proposal Generation

There are many approaches [34, 13] used to detect the

target object in each video frame. In this paper, we take

Mask R-CNN [13] network fine-tuned on each sequence as

the base-model to generate coarse object proposals, which

are the bbox around the objects. Specially, we change the

category number of Mask R-CNN from Ncoco classes to

only one class to make it class-agnostic for detecting fore-

ground objects. Note that segmentation results from the

Mask branch are not used for VOS, as this branch shares

the classification confidence which is not suitable for the

segmentation task. With the input of each frame image, we

just extract coarse object bounding box proposals with the

detection confidence greater than thp, and non-maximum

suppression threshold of thn to retain all possible proposals

for the further mask proposal propagation in the next step.

Here, we denote the output proposal of frame t as ptn, where

n is the n-th proposal of all Nt proposals in detection step.

3.2. Hypotheses Tree Construction

After generating coarse object proposals, we construct

the hypotheses propagation tree, whose data structures are

designed as follows: each hypothesis node in the tree con-

sists of a bounding box proposal ptk and its correspond-

ing mask hypothesis Mpt

k . For each target object, the tree

starts from the ground-truth mask in the first frame, and

will be extended by appending children proposals in the

next frame. In this children spawning step, only proposals

within a gated region are considered. And the mask hypoth-

esis Mpt

k for each child proposal ptk is obtained using the

method detailed in Sec. 3.4. This process is repeated until

the final hypotheses tree is constructed completely. In addi-

tion, each proposal outside the gated region is treated as the

starting node in a new tree to catch missing objects. Dur-

ing the tree construction, a novel mask propagation score of

each node can be recorded and would be used for tree prun-

ing later, which is more robust than the appearance score.

Gating. To build the hypotheses tree, we need to gate

most closely proposals in next frame to be the child nodes,

shown in Fig. 3 (a). In general, the bounding box of objects

in frame t depends on two main variables: size st, (wt, ht)
and center point coordinate pt, (xt, yt). Thus, the historical

movements in n frame from t− n to t− 1 are adopted as

prior knowledge to predict the probability bbox in frame t.

For the position prediction, the velocity vt is estimated by

vt =
1

n

t−n
∑

m=t−1

(pm − pm−1). (1)

Then the predicted center point is obtained by pt = pt−1 +
vt. And the corresponding average size is taken as the pre-

dicted object size st = 1
n

t−n
∑

m=t−1
sm, since the change in

size is tiny and smooth. With the estimation of pt and st, it

gives the bbox candidate ct for comparison in gating.

In order to filter out disturbing proposals, we gate the

candidate proposals by computing the IOU score with the

bounding box ct in the last frame as follows:

1tn =

{

1, iou(ct, p
t
n) > thg

0, iou(ct, p
t
n) ≤ thg

, (2)

where thg is the threshold of gating, and 1tn denotes whether

the candidate box ptn gates in or out. With proposals chosen

from gating, we can build up the propagation tree to simu-

late multiple hypotheses proposal propagation.

Scoring. In the propagation tree, each hypotheses is as-

sociated with a class-agnostic score for further pruning. It

is a recurrent process in each tree node, which is formalized

as:

S
(

t, ptk
)

= wmSm

(

t, ptk
)

+ wpSp

(

t, ptk
)

, (3)

where Sm (t, ptk) and Sp (t, p
t
k) denote the motion score and

mask propagation score, respectively. t = 0, 1, ..., T means
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Figure 2. The pipeline of our MHP-VOS algorithm. We first obtain bounding box proposals from Mask RCNN [13], and then construct the

proposal propagation tree for each object with gating and scoring strategies. To avoid calculation explosion, an N-scan pruning strategy

is applied to remove branches that are far from the best hypothesis. Through this recurrent process between tree building and branches

pruning, we can obtain the best propagation track, and then obtain the segmentation mask for each object by mask propagation and merging.

the current video frame number, ptk denotes the proposal

of the k-th hypotheses track. wm and wp control the ratio

between motion score and propagation score. There is no

Re-ID score involved since it may cause ambiguity when

objects of similar appearances exist.

For each bounding box proposal ptk of the node in the

propagation tree, we define the motion score as:

St
m

(

t, ptk
)

= wf

ptk ∩ pt−1
k

ptk ∪ pt−1
k

+wn max
i �=k

(

ptk ∩ pt−1
i

ptk ∪ pt−1
i

)

. (4)

The motion score is composed of two parts: a) iou score be-

tween proposals of same hypotheses in continuous frames,

which is positive to the decision; b) iou score between frame

t proposal of k-th track and the (t− 1)-th proposal node in

other hypotheses track, and it is expected to be small.

Motion score gives a qualitative mark when the continu-

ity of propagation track is smooth. However, the motion

score will be out of order when severe occlusion occurs. In

order to handle such case, the mask propagation score is

proposed utilizing the quality of segmentation propagated

in target proposal, which can be formalized as:

St
p

(

t, ptk
)

=
Mpt

k ∩Qt◦Mp
t−1

k

Mpt

k ∪Qt◦Mp
t−1

k

, (5)

where ◦ denotes the warp operation that warps mask from

last frame to current frame with optic flow Q. And Mpt

k

denotes the single object mask segmentation obtained by

method in Sec. 3.4 with the proposal ptk. Mpt

k composes

the mask hypothesis with bounding box proposals: it starts

from ground-truth in frame t = 0, and forwards propagation

with the construction of proposal tree (warp to next frame

as priori mask for mask generation in pt+1
k progressively).

As for the new start tree for the missing object, the mask of

tree root is obtained with blank mask as the priori mask.

At last, the final score of the long-term hypotheses can

be computed recursively as:

S
(

t, ptk
)

= S
(

t− 1, pt−1
k

)

+ St
(

t, ptk
)

, (6)

St
(

t, ptk
)

=

{

ln (1− PD) , t = 0
wmSt

m + wpS
t
p, t �= 0

, (7)

where PD denotes the probabilities of detection.

3.3. Hypotheses Tree Pruning

During the construction of the hypotheses tree, the num-

ber of hypotheses tracks increases exponentially during

propagation, which leads to the explosion of memory and

computation. Thus, we have to take a pruning step to limit

the size of the tree. In other words, we need to determine

the most likely context propagation tracks in long term, of

which the optimization can be formulated as:

max
H

T
∑

t=0

S
(

t, ptk
)

, (8)

where Hk =
{

pik|t = 0, 1, . . . , t
}

means a proposal propa-

gation hypothesis (track path from root to leaf node in the

propagation tree) and H = {Hk|k = 0, 1, . . . , Nh} means

hypothesis space for tracks of an object. Nh means the Hy-

potheses space size for the target object.

To find the best track among the kinds of propagation

tracks, this task can be formulated as a Maximum Weighted

Independent Set (MWIS) problem as described in [27]. For

the track tree in frame t, we build an undigraph G = (V,E)
with each propagation hypothesis Hk taken as a node in V .

The edge (l, j) in E connects the hypothesis pair (Hl, Hj)
which has the same proposal at the same frame, which

means the two hypotheses are conflicting and cannot co-

exist for the final independent set B =
{

bi|i = 0, . . . , t
}

.

With the track score described in Eq. (8) as the weight w

317



K-1

k

k k

kkkkkk

kkk

1

2 1

2 3 2

1 2 31

T=K-1

T=K

Frame k

1

2

2

3

2 3

1 2

K-1

K

T=1

...

1121

1123

1221

1231

1222

1

2 1

2 3 2

1 2 31

(a) Gating (b) Propagation Tree (c) MWIS (d) N-scan Pruning

K-1

1

k

4

KKKK--11111111

222222

3333

kkkkkkkkkkkkkkkk

KKKK-11

111111
kkkkkkkkkkkkkkkkkkkkkkkkkkkk

kkkkkk

1111 444444

3

1 2

34 33

1 2

34 3

Object 1 Tree 1 Object 2 Tree 1

2314

2

2313

2323

Object 1

3

2

3

2

1

4 3

Object 2

Object 1

Object 2

Figure 3. The illustration of MHP at time k. (a) A gating example for propagation track of two objects from frame k − 1 to k. Bbox IOU

scores between proposal from the current frame and the predicted bbox from the last frame are utilized as a gate with thresholds dth. (b)

The corresponding propagation trees. Each tree node is associated with a proposal observation. (c) The undigraph for the example of (b),

in which each node represents a propagation path in the tree and each edge connects two tracks that are conflicted. The black nodes in

graph form the Maximum Weighted Independent Set (MWIS). (d) An N-scan pruning example when N = 2. The dark branches denote the

global hypothesis at frame k, and the oblique lines represent the pruning of this branch which is far from the global hypothesis in k −N .

of each track branch, we optimize the problem to find the

maximum weight independent set B as follows:

max
i

wi, i ∈ {l, j}, ∀(i, j) ∈ E. (9)

We utilize the existing phased local search (PLS) algo-

rithm [32, 33, 2] to solve the MWIS optimization prob-

lem. Also, we take the N -scan pruning method to prune the

disturbing branches gradually instead of pruning the whole

tree. First, we apply the Eq. (9) to choose the maximum in-

dependent set as the best hypothesis from hypothesis space

H , and then track the nodes in frame k back to the node in

frame k − N as sub-trees. Finally, we prune the sub-trees

except the independent tracks. A larger N makes a longer

decision delay, which will bring an improvement in preci-

sion but take time efficiency as price. In addition, we also

limit the number of branches to avoid proposal tree growing

too large. If the number of branches is more than thb at any

node in any frame, we retain the top thb branches with the

propagation scores and prune the other branches.

3.4. Single Object Segmentation

We employ Deeplabv3+ [8] network with a ResNet101

[14] backbone as our segmentation module, to generate seg-

mentation results from bounding box proposals. Similar to

MaskTracker [29], the segmentation network takes an addi-

tional rough mask as input, which is warped from the mask

of the previous frame to the current frame using optical flow

estimated by FlowNet2 [17]. This module is used to gener-

ate mask hypothesis from proposal during the tree construc-

tion, and can produce the final segmentation result once the

best proposal for an object is obtained after the tree prun-

ing. Taking the final segmentation as an example, we crop

the bounding box of a single object and its previous mask

by bti with margin ratio r, and then concatenate the RGB

image with the warped mask Qt
i as a fourth channel input.

After obtaining the segmentation probability map Zt
i from

Deeplabv3+, we obtain the instance-specific mask M t
i with

Algorithm 1 Multi-Instance Merging Strategy.

Require:

instance-specific masks M t
i , i = 1, . . . , C for all objects,

history mask M t−1
i , segmentation probability map from

Deeplabv3+ Zt
i , i = 1, . . . , n, and Gaussian map Gbt

i .

Ensure:

set multi-instance segmentation Y t with the object id that

has the max value in M t pixel-by-pixel;

for patch a in all overlap patches

Ids ⇐ all object ids sorted by value sum (Zt
i [a]) from

high to low;

if sum
(

Gbt

Ids[0] ∗ Z
t
Ids[0] [a]

)

· λ

>sum
(

Gbt

Ids[1] ∗ Z
t
Ids[1] [a]

)

then

Y ft [a] ⇐ Ids[0];
else

obtain the warped mask Qt
Ids[0] from M t−1

Ids[0], Q
t
Ids[1]

from M t−1
Ids[1];

if sum
(

Gbt

Ids[0] ∗Q
t
Ids[0] [a]

)

>sum
(

Gbt

Ids[1] ∗Q
t
Ids[1] [a]

)

then

Y t[a] ⇐ Ids[0];
else

Y t[a] ⇐ Ids[1];
return Y t for the multi-instance segmentation;

threshold thm as following:

M t
i = (Zt

i > thm), i = 1, 2, ...., C, (10)

where C denotes the total object number in one sequence.

3.5. Conflicts Handling for Multiple Objects

To merge the instance-specific masks M t
i into the fi-

nal multi-instance segmentation Y t, we propose a merging

strategy as shown in Algorithm 1. In general, there are two
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Figure 4. Per-sequence results of metric G on the DAVIS2017 test-dev set.

Dataset Metric OSMN [41] FAVOS [10] OSVOS [5] OnAVOS [37] OSVOS-S [26] CINM [1] Ours

validation

J Mean M ↑ 52.5 54.6 56.6 61.6 64.7 67.2 71.8

F Mean M ↑ 57.1 61.8 63.9 69.1 71.3 74.0 78.8

G Mean M ↑ 54.8 58.2 60.3 65.4 68.0 70.6 75.3

test-dev

J
Mean M ↑ 37.7 42.9 47.0 49.9 52.9 64.5 66.4

Recall R ↑ 38.9 48.1 52.1 54.3 60.2 73.8 76.0

Decay D ↓ 19.0 18.1 19.2 23.0 24.1 20.0 18.0

F
Mean M ↑ 44.9 44.2 54.8 55.7 62.1 70.5 72.7

Recall R ↑ 47.4 51.1 59.7 60.3 70.5 79.6 82.2

Decay D ↓ 17.4 19.8 19.8 23.4 21.9 20.0 19.0

G Mean M ↑ 41.3 43.6 50.9 52.8 57.5 67.5 69.5

Table 1. Quantitative comparison of state-of-the-art methods on the DAVIS2017 validation and test-dev sets. The up-arrow ↑ means that

larger is better while the down-arrow ↓ means that smaller is better. Our algorithm achieves the best performances on both sets.

kinds of cases when we decide each pixel id in the final

segmentation. For the pixel belonging to one object, we set

the object id to be the same as the the corresponding pixel

among the single instance masks. However, the pixel may

belong to different objects at the same time when the over-

lap conflicts happen between multi-instance masks. To de-

termine the object id for the overlapped region, we first take

the top two possible object ids sorted by the corresponding

values in the probability map from DeeplabV3+ as id candi-

dates. We then accept the object id with higher probability

only when there is a large margin between the two proba-

bility values (we use a marginal ratio λ = 0.8). Otherwise,

we take temporal coherency of the warped mask in con-

sideration when it is ambiguous to use spatial information

only. Besides, a two-dimensional gaussian map Gbt is gen-

erated from the proposal bt with parameters of σt
x = w/2

and σt
y = h/2 as prior knowledge to obtain the weighted

mask without noise out of the region of interests, where w

and h are the width and height of proposal bt, respectively.

4. Experiments
In this section, we investigate the performance of our

method on standard benchmark datasets: DAVIS2016 [30]

and DAVIS2017 [6]. We compare our model with state-of-

the-art methods and perform ablation study to demonstrate

the advantage of each component in MHP-VOS.

4.1. Implementation Details

To adapt the Mask R-CNN [13] network to DAVIS

[30, 31, 6] task, we first train the network on COCO [23]

dataset with the pre-trained ImageNet [12] weights, and

then finetune it on DAVIS dataset. Before testing, we

finetune the parent model weights on each sequence re-

spectively with the corresponding Nl = 200 synthetic in-

domain image-pairs of Lucid Dreaming [5]. Then, coarse

proposals are selected with the thp = 0.05 and thn = 0.6.

During the training of the Deeplabv3+ [8] network with

a ResNet101 [14] backbone, we crop the bbox of the four

channel input by using the spatial information of the an-

notation with margin ratio r = 0.15. Then, we resize the

cropped data into 512 × 512, jitter the image color, and

then train them for 100 epochs both on COCO [23] and

DAVIS [30, 31, 6] datasets. We use BCEWithLogits loss

function, and set Adam [21] optimizer with lr = 1e − 5
which reduces by power of 0.9 for every 10 epochs. In

the fine-tuning, we only train the parent model on synthetic

image-pairs for 50 epochs, and the lr starts from 5e − 6
and also reduces by power of 0.9 for every 10 epochs.

We set thm = 0.3 to get the valid mask with the corre-

sponding probability map. At last, the instance masks are

merged with λ = 0.8. In N-scan pruning phase, we set

N = 3 and thb = 50. All experiments are implemented

on a single NVIDIA 1080 GPU. The code is available at

https://github.com/shuangjiexu/MHP-VOS.

4.2. Datasets and Evaluation

DAVIS2016. DAVIS2016 [30] dataset is proposed re-

cently to evaluate VOS methods and contains 50 video se-

quences divided into train and test parts. Each video se-

quence consists of a single object, and it provides each ob-

ject with the corresponding mask among the sequences.

DAVIS2017. DAVIS2017 [31] dataset is extended from
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Figure 5. Qualitative results from the DAVIS2017 test-dev and DAVIS2016 validation sets, where the images are sampled at the average

intervals for each video. From top to bottom, the sequences are ”carousel”, ”monkeys-trees”, and ”salsa” on the DAVIS2017 test-dev,

”bmx-trees” and ”libby” on the DAVIS2016 validation. Different objects are highlighted as different colors.

DAVIS2016, and it is more challenging in multiple objects

which correspond to different targets. It provides extra test-

dev data with 30 challenging videos, which contains some

similar objects in the same videos and object occlusion or

missing in the continues frames. Background noise is also a

challenge which has similar appearance with target objects.

Evaluation. We adopt the protocols in [30] which con-

tains two evaluation metrics, region similarity J and con-

tour accuracy F . In addition, both two evaluation metrics

consist of three statistics measurement: mean M, recall R
and decay D. The global metric G is the mean of J and F .

4.3. DAVIS2017

Comparison to the State-of-the-arts. Table. 1 shows

the quantitative comparison on DAVIS-2017 valid and test-

dev sets, where we find that MHP-VOS performs the state-

of-the-art in most evaluation matrices. Especially on the

validation set, MHP-VOS beats all the latest methods and

achieves higher Mean value. As illustrated in Table. 1 on

the more challenge test-dev set, our model also gets great

results. In terms of MJ , MF and MG , our method out-

performs the state-of-the-art CINM [1] by 2.1%, 2.2% and

2.0% respectively, with neither CRF or MRF applied.

Improvement. Many previous works are troubled by oc-

clusion, similar objects or fast motion. However, as shown

in Fig. 5, our method handles these challenges well. In

the case of similar objects like ”carousel”, which will be

mistakenly switched identities by OSVOS [5], our propaga-

Settings
Mean M Boost

wm wp N Merge Gating

1.0 0.0 1 × × 47.3 -

0.3 0.7 1 × × 52.1 4.8

0.3 0.7 3 × × 59.7 7.6

0.3 0.7 3 � × 67.3 7.6

0.3 0.7 3 � � 69.5 2.2

Table 2. Ablation study on the DAVIS2017 test-dev set.

tion proposals can track different instances well and iden-

tify each object. Also, we investigate that our method is

robustly enough to the issues of fast motion and small in-

stances, especially in ”monkeys-tree” sequence. For the oc-

clusion problem, we find that the segmentation on ”salsa”

performs identifiable which demonstrates the strong repre-

sentation power of our model. The performances on these

challenge sequences can also be illustrated in Fig. 4, where

we achieve the state-of-the-art on almost all the videos.

Ablation Study. Table. 2 shows how much each pre-

sented component builds up to the final result. We start by

the baseline model only with the motion score for pruning

(wm = 1.0,wp = 0.0), and there is no no multiple hypothe-

ses (N=1), no merge strategy (× in Merge, which means

choose area with larger probability when conflict) and no

traditional gating strategy [20] (× in Gating) in addition.

Results show that the hybrid scoring of motion and prop-

agation achieves 4.8 higher than the original motion score.

Multiple hypotheses and the conflicts handling strategy both

make the maximum improvement of performance with 7.6,
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Figure 6. Segmentation qualities on DAVIS17 according to the two

hyper-parameters: wn, wm. (a) Score versus wm when wn =

−0.4. (b) Score versus wn when wm = 0.3.

respectively. At last, our gating strategy brings another im-

provement of 2.2 instead of using Kalman Filter [18].

In the scoring phase, four hyper-parameters (wm, wp, wf

and wn) are introduced to balance the weights between the

scores of motion and propagation, where wp = 1−wm and

wf = 1. We apply grid search on parameters wm ∈ [0, 1]
and wn ∈ [−1, 0] with the step set as 0.1. Part of the grid

search result is shown in Fig. 6. Experimental results show

that MHP-VOS achieves the best result when wm = 0.3 and

wn = −0.4. As the phase of proposal tree formation, we

apply N-scan pruning with parameter N to control the delay

time of proposal decision. In practice, N is an interesting

parameter that makes a trades off between performance and

speed. Shown as Table. 3, lager decision delay time (N )

receives a performance boost, but gets the punishment in

speed. We set N = 3 to achieve a balanced performance.

N 1 3 5

time/frame (s) 0.8 14.2 73.6

Mean M 62.8 69.5 69.7

Table 3. Trade-off effect of N-scan pruning on DAVIS2017.

Weakness. Here we report typical examples of mistaken

cases on DAVIS2017 test-dev. In the first video sequence,

the segmentation of deer in the left (green) is partly miss-

ing, which is due to the similar appearance in the context

pixels. The instance detector may regard the body of the

deer to part of the tree and only generates the proposal of

the head with the contrast background. Next in the middle

sequence, we find that the racket is segmented well in previ-

Figure 7. Mistaken cases on DAVIS2017 test-dev. Sequences cor-

respond to ”deer”, ”tennis-vest” and ”people-sunset” respectively.

Method
Mean M Recall R

MJ MF MG RJ RF

OSMN [41] 74.0 72.9 73.5 87.6 84.0

PML [9] 75.5 79.3 77.4 89.6 93.4

MSK [29] 79.7 75.4 77.6 93.1 87.1

FAVOS [10] 82.4 79.5 81.0 96.5 89.4

RGMP [39] 81.5 82.0 81.8 91.7 90.8

CINM [1] 83.4 85.0 84.2 94.9 92.1

MoNet [40] 84.7 84.8 84.7 96.8 94.7

MGCRN [15] 84.4 85.7 85.1 97.1 95.2

OnAVOS [37] 86.1 84.9 85.5 96.1 89.7

OSVOS-S [26] 85.6 87.5 86.6 96.8 95.5

Ours 85.7 88.1 86.9 96.6 94.8

Table 4. Comparison results on the DAVIS2016 validation set.

ous frames but missed in the later. This is because the pro-

posed merging strategy that classifies the identity of overlap

region wrongly in the ambiguous case. In the last video, the

person in yellow is gradually switched to blue which means

the proposal of this person is propagated wrongly during

the tree building with two overlap bounding boxes of these

disturbing objects.

4.4. DAVIS2016

As illustrated in Table. 4, our method achieves great

progress with the MJ , MF and MG of 85.7%, 88.1%

and 86.9%, which outperforms the state-of-the-art OSVOS-

S [26] by 0.1%, 0.6% and 0.3% respectively. Compared to

the traditional method MSK [29], our MHP-VOS improves

a lot by 9.3% on the Global Mean MG . Also, we investigate

that our performance is better than many latest models, like

FAVOS [10] and MoNet [40]. Although our method per-

forms well on DAVIS2016 validation set, there are not huge

improvement between ours and the state-of-the-art models,

for the reason that the proposal propagation is not essential

for single object tracking, and the CNN-based segmentation

module is capable enough to locate the foreground instance.

As shown in Fig. 5, each target object has corresponding ac-

curate segmentation even in motion blur or occlusion cases.

5. Conclusion

In this work, we presented a novel detection based Multi-

ple Hypotheses Propagation (MHP-VOS) method for semi-

supervised video object segmentation. The key to MHP-

VOS is that the decision for proposal in one frame is delayed

to eliminate ambiguity with long-term information. There-

fore, a hypothesis propagation tree was introduced to catch

more potential proposals in each frame for tracking, with a

novel class-agnostic gating and scoring strategy adapted to

the VOS scenario. In addition, a novel conflicts handling

method for multiple objects was proposed to transfer MHP-

VOS to the multiple objects setting. Our experiments in-

vestigate performances of the pipeline and each component

module, which are demonstrated to achieve significant per-

formance gains compared against the state-of-the-arts.
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Temporal map labeling: A new unified framework with ex-

periments. In Proceedings of the 24th ACM SIGSPATIAL

International Conference on Advances in Geographic Infor-

mation Systems, page 23, 2016. 5

[3] S. Blackman and R. Popoli. Design and analysis of modern

tracking systems (artech house radar library). Artech house,

1999. 3

[4] S. S. Blackman. Multiple hypothesis tracking for multiple

target tracking. IEEE Aerospace and Electronic Systems

Magazine, 19(1):5–18, 2004. 3

[5] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé,

D. Cremers, and L. Van Gool. One-shot video object seg-

mentation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017. 2, 6, 7

[6] S. Caelles, A. Montes, K.-K. Maninis, Y. Chen, L. Van Gool,

F. Perazzi, and J. Pont-Tuset. The 2018 davis chal-

lenge on video object segmentation. arXiv preprint

arXiv:1803.00557, 1(2), 2018. 6

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 40(4):834–848, 2018. 1

[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and

H. Adam. Encoder-decoder with atrous separable convo-

lution for semantic image segmentation. arXiv preprint

arXiv:1802.02611, 2018. 1, 2, 5, 6

[9] Y. Chen, J. Pont-Tuset, A. Montes, and L. Van Gool. Blaz-

ingly fast video object segmentation with pixel-wise metric

learning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1189–1198,

2018. 2, 8

[10] J. Cheng, Y.-H. Tsai, W.-C. Hung, S. Wang, and M.-H. Yang.

Fast and accurate online video object segmentation via track-

ing parts. arXiv preprint arXiv:1806.02323, 2018. 2, 6, 8

[11] I. J. Cox and S. L. Hingorani. An efficient implementation of

reid’s multiple hypothesis tracking algorithm and its evalua-

tion for the purpose of visual tracking. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 18(2):138–150,

1996. 1, 3

[12] J. Deng, W. Dong, R. Socher, and L. J. Li. Imagenet: A large-

scale hierarchical image database. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 248–255, 2009. 6

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-

cnn. In IEEE International Conference on Computer Vision,

pages 2980–2988, 2017. 1, 2, 3, 4, 6

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. pages 770–778, 2015. 5, 6

[15] P. Hu, G. Wang, X. Kong, J. Kuen, and Y.-P. Tan. Motion-

guided cascaded refinement network for video object seg-

mentation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1400–1409,

2018. 2, 8

[16] Y.-T. Hu, J.-B. Huang, and A. G. Schwing. Videomatch:

Matching based video object segmentation. arXiv preprint

arXiv:1809.01123, 2018. 2

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017. 5

[18] R. E. Kalman. A new approach to linear filtering and predic-

tion problems. Transactions of the ASME–Journal of Basic

Engineering, 82(Series D):35–45, 1960. 8

[19] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele.

Lucid data dreaming for multiple object tracking. arXiv

preprint arXiv:1703.09554, 2017. 2

[20] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hypoth-

esis tracking revisited. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4696–4704,

2015. 2, 3, 7

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. Computer Science, 2014. 6

[22] X. Li, Y. Qi, Z. Wang, K. Chen, Z. Liu, J. Shi, P. Luo,

X. Tang, and C. C. Loy. Video object segmentation with

re-identification. arXiv preprint arXiv:1708.00197, 2017. 1,

2

[23] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common

objects in context. 8693:740–755, 2014. 6

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015. 1

[25] J. Luiten, P. Voigtlaender, and B. Leibe. Premvos: Proposal-

generation, refinement and merging for the davis challenge

on video object segmentation 2018, 2018. 1, 2

[26] K.-K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-
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