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Abstract

We propose a self-supervised spatiotemporal learn-

ing technique which leverages the chronological order of

videos. Our method can learn the spatiotemporal represen-

tation of the video by predicting the order of shuffled clips

from the video. The category of the video is not required,

which gives our technique the potential to take advantage

of infinite unannotated videos. There exist related works

which use frames, while compared to frames, clips are more

consistent with the video dynamics. Clips can help to re-

duce the uncertainty of orders and are more appropriate to

learn a video representation. The 3D convolutional neu-

ral networks are utilized to extract features for clips, and

these features are processed to predict the actual order. The

learned representations are evaluated via nearest neighbor

retrieval experiments. We also use the learned networks

as the pre-trained models and finetune them on the action

recognition task. Three types of 3D convolutional neural

networks are tested in experiments, and we gain large im-

provements compared to existing self-supervised methods.

1. Introduction

3D convolutional neural networks (CNNs) have been

explored for the action recognition task in many previ-

ous works [38, 2, 30]. While many high-level tasks have

been proposed such as captioning [3] and question answer-

ing [43], action recognition is always significant for its

foundation status. However, compared to the progress made

by 2D CNNs over images, the improvements of 3D CNNs

over videos are much slower. Until recently, the 2D CNNs

that take both the RGB and flow streams [33] as inputs

still behave competitively with 3D CNNs in action recog-

nition. The primary reason is that most of the existing

video datasets are relatively small-scale which may not be

able to optimize the immense number of parameters in 3D

CNNs [13]. ImageNet [5] plays an important role in vari-

ous tasks in the image domain, but there is a lack of sim-
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Figure 1. Illustration of the necessity to use clips. The top three

rows show examples of frame-based order prediction. For the

shuffled frames, both order 1 and order 2 has the same correctness

since we cannot tell the direction of the gymnast in the balance

beam. However, for the clip-based order prediction in the bottom

rows, the judgment is simpler. The dynamics in each clip will help

to reveal the correct order.

ilar dataset in the video domain. In [13], several success-

ful model architectures in image classification are extended

and trained on Kinetics [2] video dataset. The authors con-

clude that 3D CNNs and Kinetics may have the potential to

contribute to significant progress in fields related to various

video tasks as the 2D CNNs and ImageNet do.

Though nowadays the large-scale video datasets begin

to appear [12, 2], annotating new video datasets are always

required to tackle the problem in new domains. It needs a

wealth of resources and meticulous design to annotate such

one. Therefore it is valuable if we can leverage the unla-

beled videos to facilitate learning. Self-supervised learning

is one kind of technique where the supervisory signal can be

obtained easily from the data itself. Researches have been

done in this area, in which both the images and videos are

exploited. For image data, there exist self-supervised tasks

such as predicting relative positions of image patches [6],

solve jigsaw puzzles [27], image inpainting [29] and image

color channel prediction [21]. Since the particular prop-
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erty of the video is temporal information, recent works also

attempt to leverage the temporal relations among frames,

such as order verification [26, 9] and order prediction [22]

of frames.

The existing self-supervised works that utilize the video

have the framework as follows: first use 2D CNNs to extract

features from the frames, then concatenate these features

and predict the verification result or the actual order of the

input frames. The whole framework is trained end-to-end.

After the training, the learned 2D CNNs can be used as an

image feature extractor or finetuned to other tasks such as

image classification and detection. Compared to order ver-

ification [26, 9], order prediction [22] contains much richer

supervisory signals and shows better performance in several

validation experiments.

However, the order is not uniquely determined when re-

ferring to frames merely. As Figure 1 shows, given the shuf-

fled frames, it is hard to tell the correct order of frames since

both directions of the gymnast in the balance beam seems

possible. To mitigate the defect of this, [22] groups both the

forward and backward orders as the same class. It is a com-

promise under the circumstances that only frames and 2D

CNNs are used. In contrast, we propose to directly use clips

and 3D CNNs to make the task more well-defined. From the

figure, we can get that if the shuffled clips are provided, the

order will be more specific because of the inner dynamics

contained in each clip. Besides, the 3D CNNs are always

believed to be hard to optimize due to the lack of labeled

videos [13]. With the assistance of the clip order prediction

task, the 3D CNNs can leverage numerous videos without

any labels. The 3D CNNs thus can be easily pre-trained

to adapt to different video distributions in new application

domains, which is a prerequisite to gain good performance.

In this paper, we integrate 3D CNNs into the clip order

prediction task. First several fixed-length clips are sampled

from the video and shuffled randomly, then 3D CNNs are

used to extract features for these clips, and finally, a simple

neural network is employed to predict the actual order of the

shuffled clips. The learned 3D CNNs can be either used as a

clip feature extractor or a pre-trained model to be finetuned

on other tasks. The main contributions of the paper can be

summarized as follows:

• We propose to utilize 3D CNNs and video clips to do

order prediction task, which is more consistent with

the video dynamics;

• C3D, R3D, and R(2+1)D networks are tested to prove

that the proposed self-supervised learning framework

is available widely;

• We validate the learned representations via the nearest

neighbor retrieval experiments, and also finetune the

learned 3D CNNs on action recognition, both experi-

ments show promising results;

The rest of the paper is organized as follows. We first re-

view related works in Section 2, then the details of the pro-

posed method are explained in Section 3. In Section 4, the

implementation and results of the experiments are provided

and analyzed. Finally, we conclude our works in Section 5.

2. Related Work

In this section, we first introduce the recent progress in

action recognition, then we discuss recent works on self-

supervised representation learning.

Action Recognition Action recognition is one of the

classic problems in computer vision area. The basic

pipeline to tackle the task is first extracting features then

doing classification. From traditional hand-crafted fea-

tures [32, 18, 4, 7, 31, 41] to deep neural networks derived

features [44, 11, 8, 35, 15, 23], the improvements are obvi-

ous.

Lots of researches relating to applying 2D CNNs on

videos are proposed since the breakthrough on image clas-

sification made by AlexNet [19]. Many of them extract

features for frames sampled from the video and fuse these

features as a representation of the video. In [33], the in-

put video is decomposed into the spatial stream and opti-

cal flow stream. Each stream are processed by a deep 2D

CNNs and the prediction is made by late fusion. [17] pro-

poses three kinds of fusion methods to integrate the tempo-

ral information of the video. It also implements multireso-

lution by splitting the inputs frames into context stream and

fovea stream. Both streams are processed using 2D CNNs.

3D CNNs is a natural extension of 2D CNNs over tempo-

ral data such as videos. [38] proposes the C3D architecture

where 3D convolution kernels are stacked followed by fully

connected layers. In [2], the successful 2D CNNs trained

on ImageNet are converted into 3D CNNs via inflating all

the filters and pooling kernels. The proposed I3D model

is based on Inception-v1 [37] and take both RGB and flow

as inputs. The ResNet [14] architecture is also extended

in [30, 39, 13] by adapting the 2D convolution kernels to 3D

ones. [30] designs three types of bottleneck building blocks

and interleaves these blocks to form the P3D ResNet. The

decomposition of 3D convolution to 2D spatial and 1D tem-

poral convolutions are adopted in both [30, 39]. In [13],

they focus on the training of very deep 3D CNNs from

scratch and indicate that deeper 3D CNNs trained on large

datasets can be more effective.

Self-Supervised Representation Learning With the

availability of large-scale data and abundant computing

power, deep neural networks show promising results in

computer vision tasks such as image classification and

video recognition. CNNs are one of the critical factors to

gain such improvements. It learns hierarchical representa-

tions of the input data which can be used in other related

tasks directly or after finetuning. Though there exists a large
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Figure 2. Overview of Clip Order Prediction Framework. (a) Sample and Shuffle: Sample non-overlapping clips and shuffle them to a

random order. (b) Feature Extraction: Use the 3D ConvNets to extract the feature of all clips. The 3D ConvNets is not pre-trained in any

datasets. (c) Order Prediction: The extracted features are pairwise concatenated, and fully connected layers are placed on top to predict the

actual order. The dashed lines mean that the corresponding weights are shared among clips. The framework can be trained end-to-end, and

the 3D ConvNets can be used as a video feature extractor or pre-trained weights after training.

amount of data, it takes great efforts to annotate such mas-

sive data, which is necessary to enable the supervised train-

ing of the CNNs. Self-supervised representation learning is

one type of techniques that learn representations by solv-

ing a surrogate task, where the supervisory signals can be

obtained for free.

There exist many works that leverage the unlabeled im-

ages. [6] proposes to learn image representation by predict-

ing the relative positions between two image patches. The

patches are sampled from the same image in eight spatial ar-

rangements. In [27], nine tiles are extracted from the image

and shuffled according to a predefined permutation set to

make jigsaw puzzles. The permutation set is determined via

a greedy algorithm based on Hamming distance between all

possible permutations. [29] use an encoder-decoder archi-

tecture to tackle the image inpainting task, while [21] focus

on image colorization, where the color components of an

image are predicted given its intensity.

Videos are also utilized because of the temporal coher-

ence and dynamics they have. [42] exploits different self-

supervised approaches to learn representations invariant to

inter-instance and intra-instance variations among object

patches. The object patches are extracted from unlabeled

videos using motion cues. [10] use the ranking machines to

capture the evolution of appearances among frames, and the

learned functional parameters can be used as the video rep-

resentation. In [26, 9], the chronological order of frames in

the video are exploited, and the method is required to tell

whether the frame sequence is ordered or not. [22] propose

another related task, in which the actual order of input frame

sequences should be predicted. The task is formulated as

a multi-class classification problem, and both the forward

and backward orders are grouped into the same class. Since

the number of possible permutations or orders are exploded

when patches or frames are increased, the permutations are

always predefined as we mentioned before [27]. While in

[1], a reinforcement learning algorithm is used to propose

permutations for the 2D CNNs training.

Though the above works make use of videos for self-

supervised representation learning, the actual inputs are

frames. As a result, the learned CNNs are only capable of

extract features for still images. We extend the order predic-

tion task proposed in [22] from frames to clips, which can

help to leverage the strength of 3D CNNs and inner dynam-

ics of clips. The details of our method are explained in the

next section.

3. Clip Order Prediction

In this section, we will first give a brief overview of the

proposed method, then each part of the method will be clar-

ified in detail. Figure 2 presents the overall framework,

which is composed of mainly three procedures. In sample

and shuffle, several clips are uniformly sampled and shuf-

fled; in feature extraction, 3D CNNs are used to extract fea-

tures for the clips, and all 3D CNNs used here shared same

weights; in order prediction, we resolve the task via clas-

sification as in [22]. The extracted features are pairwise

concatenated and forwarded through two linear layers, after

which a softmax layer is applied to output the probability

distribution over the possible orders.

In order to make the following descriptions more clear,
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we first introduce several definitions. A clip is made up

of continuous frames sampled from the video with the size

c×l×h×w, where c is the number of frame channels, l is the

number of frames, h and w indicates the height and width

of frames. A 3D convolution kernel has the size t × d × d,

where t is the temporal depth and both d are spatial size.

We define a tuple of ordered clips as C = 〈c1, c2, . . . , cn〉,
and the features extracted by 3D CNNs are represented as

F = 〈f1,f2, . . . ,fn〉. The subscript here indicates the

chronological order.

3.1. Sample and Shuffle

For N clips, there exist N ! possible orders. The num-

ber of orders overgrows with the increase in the number of

clips. For example 7! = 5040, which already makes the

classification task very hard. Previous works [27, 1] select

several particular orders from all possible orders either de-

terminately or adaptively. Since clip order prediction is just

a proxy task and we focus on the learning of 3D CNNs, the

task should be solvable. Otherwise, if the whole task is too

hard to solve, almost nothing can be learned. We restrict the

number of clips between 2 to 5, which makes the number of

order classes less than 120.

The clips are sampled uniformly from the video, with

an interval of m frames. The clips are forced to be non-

overlapping, which can avoid the situation that the whole

framework tackles the task by comparing lower character-

istics such as texture and color. For an extreme case, if the

clips are overlapped by 1 frame, a simple comparison of

frames pixels can solve the task.

After the clips are sampled, they are shuffled to form the

input data while the actual order is served as the target, as

shown in Figure 2 (a). The shuffle step should be random,

and no particular permutations are preferred. During the

training step, the number of generated samples belonging

to each order class is roughly the same.

3.2. Feature Extraction

Once the shuffled clips are prepared, 3D CNNs are used

to extract features for each clip. The same 3D CNNs are

used for all clips in one tuple, as Figure 2 (b) shows. We

choose three different 3D CNNs as the feature extractor,

which are C3D [38], R3D and R(2+1)D [39] networks. The

structure of distinct convolution blocks are presented in Fig-

ure 3. We will discuss the architecture of each network con-

cretely in the following.

C3D [38] The model is a natural extension from 2D

CNNs over videos. 3D CNNs is well-suited for spatiotem-

poral learning since it can model the temporal information

and dynamics of the video [15, 38]. C3D network includes

8 convolution layers stacked one by one, with 5 pooling lay-

ers interleaved, and followed by two fully connected layers

terminally. The size of all convolution kernels are 3×3×3,

d

d

t

d

d

t

d

d

t

(a) C3D Conv Blocks (b) R3D Conv Blocks (c) R(2+1)D Conv Blocks

d

d

1

t
1
1

d

d

1

t
1
1

Figure 3. Three types of 3D Conv Blocks. (a) C3D Conv Blocks:

the classic 3D convolution kernel with size t × d × d, which are

stacked to form the C3D network. (a) R3D Conv Blocks: classic

3D convolution kernels with a shortcut connection. (c) R(2+1)D

Conv Blocks: the 3D kernel are decomposed into a spatial 2D

kernel (1 × d × d) and a temporal 1D kernel (t × 1 × 1). Batch

normalization and ReLU layers are omitted for clarity.

which is the best practice gained from their experiments.

R3D [39] Residual learning principle [14] is a milestone

for the architecture design of 2D CNNs. ResNet pushes the

performance of many image-related tasks such as classifi-

cation, detection, and segmentation to state-of-the-art. R3D

network is the 3D CNNs with residual connections. The

operations of the basic convolution block are as follows:

xo = F2(F1(xi)) +H(xi) (1)

where xi and xo stands for the input and output of the

block, F is the 3D convolution operation, and H is a fucn-

tion to scale the xi to the size of xo when necessary. The

convolution block consists of two 3D kernels, with batch

normalization and ReLU layers appended. There are 5 con-

volution layers in total, the specification can be refered in

Table 1 of [39].

R(2+1)D [39] The 3D convolution kernel is convolved

over a volume both spatially and temporally. The procedure

can be refactored by first applying spatial convolution then

temporal convolution [30, 36]. The concrete operations in

the convolution block are as follows:

xm = T1(S1(xi))

xo = T2(S2(xm)) +H(xi)
(2)

where xi, xm and xo correspond to the input, middle and

output of the block, S stands for spatial convolution, T
stands for temoporal convolution, and H is the same func-

tion as mentioned before. The overall architecture is the

same as R3D, except that more ReLU layers are inserted

in the block, which means the number of nonlinearties are
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doubled while the number of parameters are almost the

same. The R(2+1)D network also leads to state-of-art re-

sults on four action recognition benchmarks.

Both R3D and R(2+1)D networks use a global spa-

tiotemporal pooling layer to aggregate the activations after

the convolution layers. The obtained vector is treated as the

extracted feature for the input clip. To have a fair compari-

son, we modify the original C3D implementation to follow-

ing the same design. The batch normalization is also added

after each convolution layer.

3.3. Order Prediction

The order prediction is formulated as a classification

task. The input is a tuple of clip features, and the output

is a probability distribution over different orders. We use

a simple multi-layer perceptron, and the extracted features

are pairwise concatenated, which is proved to be better for

both order prediction and the learning of underlying feature

extractors [22]. Given the extracted features, the operations

are as follows:

hk = gθ(W1(fi‖fj) + b1)

a = W2‖
N
k=1

hk + b2

pi =
exp(ai)∑C

j=1
exp(aj))

(3)

where ‖ means the concatenation of vectors, gθ is a nonlin-

ear function, W and b are the parameters of linear transfor-

mation, hk captures the relationship between fi and fj , a

is the logits and pi is the probability that the order belongs

to class i.

Assume a tuple contains 3 clips, after shuffling, we get

C = 〈c2, c3, c1〉 and the corresponding extracted features

F = 〈f2,f3,f1〉. As Figure 2 (c) shows, the features

are first pairwise concatenated as 〈f23,f21,f31〉 and then

transformed to form a tuple of three vectors which capture

the relationship between each clip. These vectors are con-

catenated again and a fully-connected layer with softmax

are applied over to output the final prediction. The target

classes are permutations of 〈1, 2, 3〉, one of which is the ac-

tual order 〈2, 3, 1〉.
The correctness of the prediction is measured using

cross-entropy as follows,

L = −
C∑

i=1

yilog(pi) (4)

where yi and pi are the probability of the sample belong-

ing to order class i in groundtruth and prediction, and C

is number of all possible orders. The loss L is then back-

propagated to optimize the whole framework. When the

framework is trained to predict the order of clips, the 3D

CNNs are trained to extract the meaningful features of clips

meanwhile.

4. Experiments

In this section, we will first describe the concrete set-

tings of the clip order prediction experiments and their re-

sults, then the learned 3D CNNs are evaluated both quan-

titatively and qualitatively via nearest neighbor retrieval in

Section 4.1 and action recognition in Section 4.2.

Though our self-supervised method is designed to learn

from unlabeled videos, we choose to experiment based

on UCF101 [34] since its diverse enough and well orga-

nized. Besides, it has many reported results to compare.

HMDB51 [20] are also utilized to test the generalizability

of the proposed method. The details of both datasets are

described in the following.

UCF101 is an action recognition dataset of realistic ac-

tion videos, collected from YouTube, having 101 action

categories. The action categories can be divided into five

types: 1) Human-Object Interaction 2) Body-Motion Only

3) Human-Human Interaction 4) Playing Musical Instru-

ments 5) Sports. With 13,320 videos from 101 action cat-

egories, UCF101 has large diversity regarding actions and

with the presence of large variations in camera motion, ob-

ject appearance and pose, object scale, viewpoint, cluttered

background, illumination conditions, etc.

HMDB51 is collected from various sources, mostly from

movies, and a small proportion from public databases such

as the Prelinger archive, YouTube and Google videos. The

actions categories can be grouped in five types: 1) Gen-

eral facial actions 2) Facial actions with object manipula-

tion 3) General body movements 4) Body movements with

object interaction 5) Body movements for human interac-

tion. The dataset contains 6,849 clips divided into 51 action

categories, each containing a minimum of 101 clips.

We use PyTorch [28] to implement the whole frame-

work. Since the C3D network contains 8 convolution lay-

ers, we implement the R3D network with no repetitions in

conv{2-5} x, which results in 9 convolution layers in total.

C3D network is also modified by replacing the two fully

connected layers with a global spatiotemporal pooling layer

as used in the R3D network. R(2+1)D network follows

the same architecture as the R3D network, with only 3D

kernels decomposed. Dropout layers are applied between

fully-connected layers with p = 0.5. All nonlinearities are

ReLU.

The split 1 of UCF101 is used to train and test our self-

supervised learning method. We choose clip length as 16

frames since most 3D CNNs [30, 39, 13, 38] requires a

16-frames clip as input. The interval is set to be 8 frames,

which is required to avoid trivial solutions of the task. For

tuple length, 3 clips per tuple are reasonable since 2 clips or-

der prediction is more like an order verification, while more

than 3 tuples become a relatively hard task. This decision

is also based on the conclusion from [27] that a good self-

supervised task is neither simple nor ambiguous. On-the-

10338



3D CNNs C3D R3D R(2+1)D

Accuracy 68.5 68.4 64.2

Table 1. Clip order prediction results on UCF101. C3D, R3D

and R(2+1)D networks are trained with clip order prediction

framework separately.

fly data augmentation is used to prepare the input data. We

randomly split 800 videos from the training set to do valida-

tion during training. The input video clips are first resized

to 128 × 171, then randomly cropped to 112 × 112 during

training. During validation or testing, the clip is cropped in

the center.

To optimize the framework, we use mini-batch stochas-

tic gradient descent. Memory consumption is always a

trouble when training neural networks with large batches,

especially for 3D CNNs. Recently [25] shows that small

mini-batch sizes provide more up-to-date gradient calcula-

tions and yields more stable and reliable training. Thus we

choose 8 tuples per batch. The learning rate is set to 0.001,

while the momentum is 0.9 and weight decay is 0.0005. The

training process lasts for 300 epochs, and the model with the

lowest validation loss is saved to be the best model.

As Table 1 shows, with the clip as 16 frames, the interval

as 8 frames and the tuple as 3 clips, the clip order predic-

tion task can reach an accuracy higher than 64% for all three

3D CNNs. Considering that the accuracy of random guess-

ing for the task is 16.7%, the framework indeed learns to

analyze the content of clips and reason the order out. We

also test the 4 clips per tuple with the C3D network. During

the training phase, the accuracy increases very slowly but

continuously, while a larger learning rate causes unstable

training at present. As a result, for the following validation

experiments, we use the ones trained under 3 clips per tuple

setting if not particularly specified.

4.1. Nearest Neighbor Retrieval

As mentioned before, to accomplish the clip order pre-

diction task, the framework needs to analyze and understand

the content of clips. As the feature extractor, the 3D CNNs

are trained together with the whole framework. To evaluate

the learned representations, we choose the nearest neighbor

retrieval method since it is also used in [1, 26].

We basically follow the experiment settings in [1]. The

split 1 of UCF101 is used for validation. In their experi-

ment, 10 frames are extracted per video, and the pool5 layer

of CaffeNet [16] is selected as the representation. In our

experiment, we extract 10 clips per video likewise. Since

the pool5 representation of CaffeNet has the dimension of

256×6×6, we apply a max pooling operation instead of the

original global spatiotemporal pooling in three 3D CNNs to

get a 512× 2× 3× 3 spatiotemporal representation, which

is the same size as the other one. The clips extracted from

the test set are used to query the clips from the training set.

The cosine distance of representations between the query

clip and all clips in the training set are computed. When the

class of a test clip appears in the classes of k nearest training

clips, it is considered to be correctly predicted.

We show the accuracies for k = 1, 5, 10, 20, 50 and com-

pare with the other self-supervised methods on UCF101 in

Table 2. The top row in the table are those which use 2D

CNNs, specifically, CaffeNet as the feature extractor, and

the bottom shows 3D CNNs trained by our self-supervised

method. The results of random initialized 3D CNNs are also

presented. As we can see, our self-supervised trained 3D

CNNs perform better than random initialized ones and self-

supervised trained 2D CNNs especially when k becomes

larger. Büchler et al. [1] presents a competitive result when

k is less than 10. Their method focuses on adjusting the

permutation set based on network states, which we can ex-

pect to apply in our method and get a promotion as well

when we use more clips per tuple. We also test the trained

3D CNNs on split 1 of HMDB51, the results are presented

Methods Top1 Top5 Top10 Top20 Top50

Jigsaw [27] 19.7 28.5 33.5 40.0 49.4

OPN [22] 19.9 28.7 34.0 40.6 51.6

Büchler et al. [1] 25.7 36.2 42.2 49.2 59.5

C3D (random) 16.0 22.5 26.7 31.4 39.3

C3D 12.5 29.0 39.0 50.6 66.9

R3D (random) 10.5 17.2 21.5 27.0 36.7

R3D 14.1 30.3 40.0 51.1 66.5

R(2+1)D (random) 10.2 17.3 21.9 27.7 38.5

R(2+1)D 10.7 25.9 35.4 47.3 63.9

Table 2. Frame and clip retrieval results on UCF101. The meth-

ods in top row are based on 2D CNNs while 3D CNNs in our

framework are presented in bottom row.

Methods Top1 Top5 Top10 Top20 Top50

C3D (random) 7.7 12.5 17.3 24.1 37.8

C3D 7.4 22.6 34.4 48.5 70.1

R3D (random) 5.5 11.3 16.5 23.8 37.2

R3D 7.6 22.9 34.4 48.8 68.9

R(2+1)D (random) 4.6 11.1 16.3 23.9 39.3

R(2+1)D 5.7 19.5 30.7 45.8 67.0

Table 3. Clip retrieval results on HMDB51. The 3D CNNs used

here are self-supervised trained on split 1 of UCF101 merely.
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Query C3D (random) R(2+1)DC3D R3D

Basketball Horse Race Rock Climbing Indoor Basketball Surfing Basketball Basketball Basketball Volleyball Spiking

Playing Cello Rope Climbing Biking Playing Violin Playing Cello Playing Cello Apply Eye Makeup Archery Playing Cello

Balance Beam Punch Balance Beam Front Crawl Balance Beam Uneven Bars Balance Beam Balance BeamBalance Beam

Figure 4. Video retrieval samples on UCF101. The first column contains query clips from the test split, and the remaining columns

indicate top2 nearest clips retrieved by different trained models from the training split. The class of each video is displayed in bottom.

in Table 3. Since these feature extractors are trained on

UCF101 merely, which means they never see any videos

from HMDB51 theoretically (actually there may be some

duplicated videos between two datasets since we find one

in samples). The results are even better which indicates the

generalizability of our trained feature extractors.

Note that for k = 1, the self-supervised trained 3D

CNNs do not show noticeable improvement. We find that

the top1 accuracy is sensitive to the clip sample rate. To fur-

ther evaluate the learned representation, we adopt the same

experiment in video level. The video representation is the

average of the 10 extracted clip features. As shown in Fig-

ure 5, compared to randomly initialized networks, the accu-

racy of all trained 3D CNNs are higher for all k consistently

in both datasets, among which R3D and C3D networks are

slightly better than R(2+1)D network.

To have an intuitive understanding of the video retrieval

results, we also visualize the top2 retrieved videos from

UCF101 in Figure 4. The videos are represented by their
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Figure 5. Video retrieval results. The clip features are averaged

to form the video representation.

central frames, and the actual classes are displayed un-

der the figures. The leftmost columns are videos used for

the query, and the remaining columns show top2 retrieved

videos by different feature extractors. As we can see, the

self-supervised trained 3D CNNs can find videos with sim-

ilar meanings. For query video of basketball, R(2+1)D net-

work also finds volleyball spiking video which both is also

sports and contains balls. For balance beam video, R3D net-

work also retrieves uneven bars video, which is also gym-

nastics.

To test the generalizability of our trained feature ex-

tractors, we also adopt cross-dataset video retrieval be-

tween UCF101 and HMDB51 using the trained R3D net-

work. Since the two datasets have different classes, we can-

not evaluate the video retrieval performance quantitatively.

Several results are showed in Figure 6 to understand the sta-

tus qualitatively. We use one dataset for query and the other

dataset for retrieval. Though the classes are not the same,

we can see that the retrieved videos have the classes relating

to the query one more or less.

From the above experimental results, we can conclude

that the clip order prediction task indeed encourages the 3D

CNNs to learn more general spatiotemporal representations

for clips and videos.

4.2. Action Recognition

In addition to acting as feature extractors, we can also

take the trained 3D CNNs as initializations and finetune the

networks on other supervised tasks. Here we finetune the

network on action recognition task on both UCF101 and

HMDB51.

The three networks all output a 512-dimension vector af-

ter the global spatiotemporal pooling layer, and we append

a fully-connected layer with softmax on top of it as in [39].

Only the fully-connected layers are randomly initialized,

other layers are initialized from the self-supervised training

one correspondingly. The hyperparameters and data pre-
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Figure 6. Cross-dataset retrieval samples. The dataset names in

left and top indicates the query and retrieval sources correspond-

ingly. The class of each video is displayed in bottom.

processing steps are the same as before. All networks are

finetuned for another 150 epochs. To get the action recog-

nition result for a video, we follow the method from [39].

10 clips are sampled from the video to get clip predictions,

which are then averaged to obtain the video prediction.

We report the average classification accuracy over 3

splits and compare with other finetuning results from exist-

ing self-supervised methods in Table 4. The training from

randomly initialized 2D CNNs and 3D CNNs are reported

for reference. We also show the accuracies from finetuned

models which are pre-trained on large supervised datasets

such as ImageNet and Kinetics. As we can see, the 3D

CNNs trained from scratch already beats several 2D CNNs

after finetuning, which indicates the capability of 3D CNNs

over videos. The finetuned C3D network gives 4.0% and

5.2% improvements on UCF101 and HMDB51 compared

to the randomly initialized one. R3D and R(2+1)D net-

works gain lower accuracy if only trained from scratch on

both datasets. However, with the initialization from our

self-supervised training, the R3D and R(2+1)D networks

achieve even better accuracies than the C3D network. The

best-performed R(2+1)D network gets 16.2% and 8.9% pro-

motions on both datasets than random initialization. The

model also beats the state-of-the-art from Büchler et al. [1]

by 13.8% on UCF101 and 5.9% on HMDB51.

Since our initialization networks are only trained on split

1 of UCF101, the same improvements gained by all fine-

tuned networks on 3 splits of the UCF101 and HMDB51

datasets prove that our self-supervised learning technique is

widely applicable and has good generalizability.

Method UCF101 HMDB51

Shuffle&Learn [26] 50.2 18.1

VGAN [40] 52.1 -

Luo et al. [24] 53.0 -

OPN [22] 56.3 22.1

Jigsaw [27] 51.5 22.5

Büchler et al. [1] 58.6 25.0

ImageNet pre-trained 67.1 28.5

C3D (random) 61.6 23.2

C3D 65.6 28.4

R3D (random) 54.4 21.5

R3D 64.9 29.5

R(2+1)D (random) 56.2 22.0

R(2+1)D 72.4 30.9

Kinetics pre-trained 96.8 74.5

Table 4. Action recognition results on UCF101 and HMDB51.

The top row is frame-based methods and the bottom row is clip-

based methods.

5. Conlusions

In this paper, we introduce the clip order prediction task

to leverage the inner dynamics of the video better. The task

is very suitable for 3D CNNs which can model the spa-

tiotemporal information. We experiment with three types

of 3D CNNs and evaluate them using nearest neighbor re-

trieval and finetuning on action recognition. From the ex-

perimental results, we can get that the clip order prediction

task can encourage the 3D CNNs to learn a general spa-

tiotemporal representation as well as a good initialization.

We hope that our work will inspire more research inter-

ests on self-supervised learning of 3D CNNs. While our

study shows promising results, the finetuning from super-

vised pre-training on larger datasets such as Kinetics still

act as the best. Future direction will be the combination

of our method with more unlabeled videos and search for

diverse task settings.
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