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Abstract

In this paper, we present a unified, end-to-end trainable

spatiotemporal CNN model for VOS, which consists of two

branches, i.e., the temporal coherence branch and the spa-

tial segmentation branch. Specifically, the temporal coher-

ence branch pretrained in an adversarial fashion from un-

labeled video data, is designed to capture the dynamic ap-

pearance and motion cues of video sequences to guide ob-

ject segmentation. The spatial segmentation branch focuses

on segmenting objects accurately based on the learned ap-

pearance and motion cues. To obtain accurate segmenta-

tion results, we design a coarse-to-fine process to sequen-

tially apply a designed attention module on multi-scale fea-

ture maps, and concatenate them to produce the final pre-

diction. In this way, the spatial segmentation branch is en-

forced to gradually concentrate on object regions. These

two branches are jointly fine-tuned on video segmentation

sequences in an end-to-end manner. Several experiments

are carried out on three challenging datasets (i.e., DAVIS-

2016, DAVIS-2017 and Youtube-Object) to show that our

method achieves favorable performance against the state-

of-the-arts. Code is available at https://github.

com/longyin880815/STCNN .

1. Introduction

Video object segmentation (VOS) becomes a hot topic in

recent years, which is a crucial step for many video analy-

sis tasks, such as video summarization, video editing, and

scene understanding. It aims to extract foreground objects

from video clips. Existing VOS methods can be divided

into two settings based on the degrees of human involve-

ment, namely, unsupervised and semi-supervised. The un-

supervised VOS methods [49, 44, 17, 32, 29] do not re-

quire any manual annotation, while the semi-supervised

*Corresponding author.

methods [47, 6, 9, 18] rely on the annotated mask for ob-

jects in the first frame. In this paper, we are interested

in the semi-supervised VOS task, which can be treated as

the label propagation problem through the entire video.

To maintain the temporal associations of object segments,

optical flow is usually used in most of previous methods

[48, 46, 5, 23, 44, 2, 15] to model the pixel consistency

across the time for smoothness. However, optical flow an-

notation requires significant human effort, and estimation

is challenging and often inaccurate, and thus it is not al-

ways helpful in video segmentation. To that end, Li et al.

[33] design an end-to-end trained deep recurrent network

to segment and track objects in video simultaneously. Xu

et al. [51] present a sequence-to-sequence network to fully

exploit long-term spatial-temporal information for VOS.

In contrast to the aforementioned methods, we design a

spatiotemporal convolutional neural network (CNN) algo-

rithm (denoted as STCNN, for short) for VOS, which is a

unified, end-to-end trainable CNN. STCNN is formed by

two branches, i.e., the temporal coherence branch and the

spatial segmentation branch. The features in both branches

are able to obtain useful gradient information during back-

propagation. Specifically, the temporal coherence branch

focuses on capturing the dynamic appearance and motion

cues to provide the guidance of object segmentation, which

is pre-trained in an adversarial manner from unlabeled

video data following [24]. The spatial segmentation branch

is a fully convolutional network focusing on segmenting

objects based on the learned appearance and motion cues

from the temporal coherence branch. Inspired by [15], we

design a coarse-to-fine process to sequentially apply a de-

signed attention module on multi-scale feature maps, and

concatenate them to produce the final accurate prediction.

In this way, the spatial segmentation branch is enforced to

gradually concentrate on the object regions, which benefits

both training and testing. These two branches are jointly

fine-tuned on the video segmentation sequences (e.g., the

training set in DAVIS-2016 [39]) in an end-to-end man-
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ner. We conduct several experiments on three challeng-

ing datasets, i.e., DAVIS-2016 [39], DAVIS-2017 [40] and

Youtube-Object [41, 20], to demonstrate the effectiveness

of the proposed method against the state-of-the-art meth-

ods. Specifically, our STCNN method produces 0.838 in

mIOU for semi-supervised task on the DAVIS-2016 [39],

and achieves the state-of-the-art results with 0.796 in mIoU

on Youtube-Object [41, 20].

Contributions. (1) We present a unified, end-to-end

trainable spatiotemporal CNN algorithm for VOS without

relying on optical flow, which is formed by two branches,

i.e., spatial segmentation branch and temporal coherence

branch. (2) The temporal coherence branch is designed to

capture the dynamic appearance and motion cues across the

time to guide object segmentation, which is pre-trained in

an adversarial manner from unlabeled video data. (3) We

design a coarse-to-fine process to sequentially apply a de-

signed attention module on multi-scale features maps, and

concatenate them to produce the final accurate prediction.

(4) Extensive experiments are conducted on three datasets,

namely, DAVIS-2016, DAVIS-2017, and Youtube-Object,

to demonstrate that the proposed method achieves favorable

performance compared to the state-of-the-arts.

2. Related Work

Semi-supervised video object segmentation. Semi-

supervised VOS aims to segment video objects based on the

preliminarily provided foreground regions, and propagates

them to the remaining frames. In [1], a patch-based prob-

abilistic graphical model is presented for semi-supervised

VOS, which uses a temporal tree structure to link patches

in adjacent frames to exactly infer the pixel labels in video.

Jain et al. [20] design a higher-order supervoxel label con-

sistency potential for foreground region propagation, which

leverages bottom-up supervoxels to guide the estimation to-

wards long-range coherent regions. Wen et al. [48] integrate

the multi-part tracking and segmentation into a unified en-

ergy objective to handle the VOS, which is efficiently solved

by a RANSAC-style approach. Tsai et al. [46] jointly op-

timize VOS and optical flow estimation in a unified frame-

work using an iterative scheme to exploit mutually boot-

strapping information between the two tasks for better per-

formance.

Recently, the deep neural network based methods dom-

inate the VOS task. Khoreva et al. [26] describe a CNN-

based algorithm, which combines offline and online learn-

ing strategies, where the former produces a refined mask

from the estimation of previous frame, and the latter aims

to capture the appearance of the specific object instance.

Cheng et al. [5] presents an end-to-end trainable network

for simultaneously predicting pixel-wise object segmenta-

tion and optical flow in videos, which is pre-trained offline

to learn a generic notion, and fine-tuned online for spe-

cific objects. Caelles et al. [3] design the one-shot video

object segmentation (OSVOS) approach based on a fully-

convolutional neural network to transfer generic semantic

information to tackle the video object segmentation task.

After that, Voigtlaender et al. [47] improve the OSVOS

method by updating the network online using training ex-

amples selected based on the confidence of the network and

the spatial configuration. The online updating strategy no-

ticeably improves the accuracy but sacrifices the running ef-

ficiency. To tackle time-consuming finetuning stage in the

first frame, Cheng et al. [6] propose a fast VOS approach,

which is formed by three modules, i.e., the part-based track-

ing, region-of-interest segmentation, and similarity-based

aggregation. This method is able to immediately start to

segment a specific object through the entire video fast and

accurately. In [16], a recurrent neural net approach is pro-

posed to fuse the outputs of a binary segmentation net pro-

viding a mask and a localization net providing a bounding

box for each object instance in each frame, which is able to

take advantage of long-term temporal structures of the video

data as well as rejecting outliers. Bao et al. [2] propose

a spatio-temporal Markov Random Field (MRF) model for

VOS, which uses a CNN to encode the spatial dependen-

cies among pixels, and optical flow to establish the tempo-

ral dependencies. An efficient CNN-embedded algorithm is

presented to perform approximate inference in the MRF to

complete the VOS task.

Unsupervised video segmentation. Some unsupervised

video segmentation algorithms use the bottom-up strategy

to group spatial-temporal coherent tubes without any prior

information. Xu et al. [50] implement a graph-based hier-

archical segmentation method within the streaming frame-

work, which enforces a Markovian assumption on the video

stream to approximate full video segmentation. Yu et al.

[53] propose an efficient and robust video segment algo-

rithm based on parametric graph partitioning, that identifies

and removes between-cluster edges to generate node clus-

ters to complete video segmentation.

Several other unsupervised video segmentation methods

upgrade bottom-up video segmentation to object-level seg-

ments. Lee et al. [30] use the static and dynamic cues to

identify object-like regions in any frame, and discover hy-

pothesis object groups with persistent appearance and mo-

tion. Then, each ranked hypothesis is used to estimate a

pixel-level object labeling across all frames. Li et al. [31]

track multiple holistic figure-ground segments simultane-

ously to generate video object proposals, which trains an

online non-local appearance models for each track using a

multi-output regularized least squares formulation. Papa-

zoglou et al. [36] present a fast unsupervised VOS method,

which simply aggregates the pixels in video by combin-

ing two kinds of motion boundaries extracted from optical

flow to generate the proposals. In [49], a series of easy-
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Figure 1: Overview of the network architecture of our STCNN algorithm. The part above the dashed line is the temporal

coherence branch, and the part below the dashed line is the spatial segmentation branch. The red lines indicate the attention

mechanism used in our model, and the hexagon indicates the attention module. Notably, each convolution layer is followed

by a batch normalization layer [19] and a ReLU layer.

to-group instances of an object are discovered, and the ap-

pearance model of the instances are iteratively updated to

detect harder instances in temporally-adjacent frames. Tok-

makov et al. [44] use a fully convolutional network to learn

motion patterns in videos to handle VOS, which designs an

encoder-decoder style architecture to first learn a coarse rep-

resentation of the optical flow field features, and then refine

it iteratively to produce motion labels at high-resolution.

3. Spatiotemporal CNN for VOS

As described above, we design a spatiotemporal

CNN for VOS. Specifically, given a video sequence

X = {X1, · · · , Xi, · · · }, we aim to use our STCNN

model to generate the segmentation results, i.e., S =
{S1, · · · , Si, · · · }, where Si is the segmentation mask cor-

responding to Xi. At time t, STCNN takes the previous δ

frames, i.e., Xt−δ, · · · , Xt−1, and the current frame Xt, to

predict the segmentation results at current frame St
1. As

shown in Figure 1, STCNN is formed by two branches, i.e.,

the temporal coherence branch and the spatial segmenta-

tion branch. The temporal coherence branch learns the spa-

tiotemporal discriminative features to capture the dynamic

appearance and motion cues of video sequences instead of

using optical flow. Meanwhile, the spatial segmentation

branch is a fully convolutional network designed to segment

objects with temporal constraints from the temporal coher-

ence branch. In the following sections, we will describe

these two branches in detail.

1For the time index t < δ, we copy the first frame δ − t times to get

the δ frames for segmentation.

3.1. Temporal Coherence Branch

Architecture. As shown in Figure 1, we construct the tem-

poral coherence branch based on the backbone ResNet-101

network [14], with the input number of channels 3δ. That

is, we concatenate the previous δ frames and feed them into

the temporal coherence branch for prediction. After that,

we use three deconvolution layers with the kernel size 3×3.

To preserve spatiotemporal information in each resolution,

we use three skip connections to concatenate low layer fea-

tures. The convolution layer with kernel size 1×1 is used to

compact features for efficiency. Notably, each convolution

or deconvolution layer is followed by a batch normalization

layer [19] and a ReLU layer for non-linearity.

Pretraining. Motivated by [24], we use the adversarial

manner to train the temporal coherence branch by predict-

ing future frames from unlabeled video data. Specifically,

we set the temporal coherence branch as the generator G,

and construct a discriminator D to identify the generated

video frames from G and the real video frames. Here,

we use the Inception-v3 network [43] pretrained on the

ILSVRC CLS-LOC dataset [42]. We replace the last fully

connected (FC) layer by a randomly initialized 2-class FC

layer as the discriminator D.

At time t, we use the generator G to produce the predic-

tion X̂t of the current frame, based on previous δ frames

Xt−δ, · · · , Xt−1, i.e., X̂t = G({Xt−i}
δ
i=1). Then, the dis-

criminator D is adopted to distinguish the generated frame

X̂t from the real one Xt. The generator G and discriminator

D are trained iteratively in an adversarial manner [11]. That

is, for the fixed parameter W G of the generator G, we aims

to optimize the discriminator D to minimize the probability
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of making mistakes, which is formulated as:

minWD
− log

(

1−D(X̂t)
)

− logD(Xt) (1)

where X̂t = G({Xt−i}
δ
i=1) is the generated frame from G

based on previous δ frames, and Xt is the real video frame.

Meanwhile, for the fixed parameter WD of the discrimina-

tor D, we expect the generator G to generate a video frame

more like a real one, i.e.,

minWG
‖Xt − X̂t‖2 − λadv · logD(X̂t) (2)

where the first term is the mean square error, penalizing the

differences between the fake frame X̂t and the real frame

Xt, the second term is the adversarial term used to maxi-

mize the probability of D making a mistake, and λadv is the

predefined parameter used to balance these two terms. In

this way, the discriminator D and generator G are optimized

iteratively to make the generator G capturing the discrimi-

native spatiotemporal features in the video sequences.

3.2. Spatial Segmentation Branch

The spatial segmentation branch is constructed based on

the ResNet-101 network [14] by replacing the convolution

layers in the last two residual blocks (i.e., res4 and res5)

with the dilated convolution layers [4] of stride 1, which

aims to preserve the high resolution for segmentation ac-

curacy. Then, we use the PPM module [54] to exploit the

global context information by different-region-based con-

text aggregation, followed by three designed attention mod-

ules to refine the predictions. That is, we apply the attention

modules sequentially on multi-scale feature maps to help

the network focus on object regions and ignore the back-

ground regions. After that, we concatenate the multi-scale

feature maps, followed by a 3× 3 convolution layer to pro-

duce the final prediction, see Figure 1.

Notably, we design the attention module to focus on ob-

ject regions for accurate results. As shown in Figure 2,

we first use the element-wise addition to exploit high-level

context, and concatenate the temporal coherence features to

integrate temporal constraints. After that, we use the pre-

dicted mask from the previous coarse scale feature map to

guide the attention of the network, i.e., use the element-wise

multiplication to mask the feature map in the current stage.

Let Ŝt to be the predicted mask at current stage. We mul-

tiply Ŝt on the feature map in element-wise and add it to

the concatenated features for prediction. In this way, the

features around the object regions are enhanced, which en-

forces the network gradually to concentrate on object re-

gions for accurate results.

The pixel-wise binary cross-entropy with the softmax

function P(·) is used in multi-scale feature maps to guide

the network training, see Figure 1, which is defined as,

L(St, S
∗
t ) = −

∑

ℓ∗
i,j,t

=1
logP(ℓi,j,t = 1)

−
∑

ℓ∗
i,j,t

=0
logP(ℓi,j,t = 0)

(3)

Figure 2: The architecture of the attention module. Ŝt de-

notes the segmented mask in the current stage.

where ℓ∗i,j,t and ℓi,j,t are the labels of the ground-truth

mask S∗
t and the predicted mask St at the coordinate (i, j),

ℓi,j,t = 1 indicates that the prediction is foreground at the

coordinate (i, j), and ℓi,j,t = 0 indicates that the prediction

is background at the coordinate (i, j).

3.3. Network Implementation and Training

We implement our STCNN algorithm in Pytorch

[37]. All the training and testing codes and the

trained models are available at https://github.com/

longyin880815/STCNN. In training phase, we first pre-

train the temporal coherence branch and the spatial segmen-

tation branch individually, and iteratively update the models

of both branches. After that, we finetune both models on

each sequence for online processing.

Pretraining temporal coherence branch. We pretrain the

temporal coherence branch in the adversarial manner on

the training and validation sets of the ILSVRC 2015 VID

dataset [42], which consists of 4, 417 video clips in total,

i.e., 3, 862 video clips in the training set and 555 video clips

in the validation set. The backbone ResNet-101 network in

our generator G is initialized by the pretrained model on

the ILSVRC CLS-LOC dataset [42], and the other convo-

lution and deconvolution layers are randomly initialized by

the method [13]. While the discriminator D is initialized

by the pretrained model on the ILSVRC CLS-LOC dataset

[42], with the last 2-class FC layer initialized by the method

[13]. Meanwhile, we randomly flip all frames in a video

clip horizontal to augment the training data, and resize all

frames to the size (480, 854) for training. The batch size is

set to 3, and the Adam optimization algorithm [27] is used

to train the model. We set δ to 4, and use the learning rates

10−7 and 10−4 to train the generator G and the discrimi-

nator D, respectively. The adversarial weight λadv is set to

0.001 in training phase.
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Table 1: Performance on the validation set of DAVIS-2016. The performance of the semi-supervised VOS methods are

shown in the left part, while the performance of the unsupervised VOS methods are shown in the right part. The symbol ↑
means higher scores indicate better performance, while ↓ means lower scores indicate better performance. In the last row, the

numbers in parentheses are running time reported in the original papers of the corresponding methods.

Metric
Semi-supervised Unsupervised

Ours CRN[15] OnAVOS[47] OSVOS[3] MSK[38] CTN[23] SegFlow[5] VPN [22] ARP[28] LVO[45] FSEG[21] LMP[44]

J Mean (↑) 0.838 0.844 0.861 0.798 0.797 0.735 0.761 0.750 0.762 0.759 0.707 0.700

Recall (↑) 0.961 0.971 0.961 0.936 0.931 0.874 0.906 0.901 0.911 0.891 0.835 0.850

Decay (↓) 0.049 0.056 0.052 0.149 0.089 0.156 0.121 0.093 0.007 0.000 0.015 0.013

F Mean (↑) 0.838 0.857 0.849 0.806 0.754 0.693 0.760 0.724 0.706 0.721 0.653 0.659

Recall (↑) 0.915 0.952 0.897 0.926 0.871 0.796 0.855 0.842 0.835 0.834 0.738 0.792

Decay (↓) 0.064 0.052 0.058 0.150 0.090 0.129 0.104 0.136 0.079 0.013 0.018 0.025

T (↓) 0.191 - 0.190 0.376 0.189 0.198 0.182 0.300 0.359 0.255 0.295 0.688

Time(s/f) 3.90 (0.73) (15.57) (9.24) (12.0) (1.3) (7.9) - - - - -

Pretraining spatial segmentation branch. We use the

MSRA10K salient object dataset [8] and the PASCAL

VOC 2012 segmentation dataset [10] to pretrain the spa-

tial segmentation branch. The MSRA10K dataset contains

10, 000 images, and the PASCAL VOC 2012 dataset con-

tains 11, 355 images. Meanwhile, we randomly flip the im-

ages horizontally, and rotate the images to augment the data

for training. Each training image is resized to (300, 300).
The SGD algorithm with the batch size 8 and learning rate

10−3 is used to optimize the model. In addition, we directly

add the cross-entropy losses on multi-scale predictions (see

Figure 1) to compute the overall loss for training.

Iterative offline training for VOS. After pretraining, we

jointly finetune the model on the training set of DAVIS-

2016 [39] for VOS, which includes 30 video clips. Specifi-

cally, we train the temporal coherence branch and the spatial

segmentation branch iteratively. When optimizing the tem-

poral coherence branch, we freeze the weights of the spa-

tial segmentation branch, and use the learning rates 10−8

and 10−4 to train the generator G and the discriminator D,

respectively. The Adam algorithm is used to optimize the

weights in temporal coherence branch with the batch size 1.

For training the spatial segmentation branch, similarly we

fix the weights in the temporal coherence branch and only

update the weights in the spatial segmentation branch us-

ing the SGD algorithm with the learning rate 10−4. For

better training, we randomly flip horizontally, rotate and

rescale to augment the training data. For this iterative

learning process, each branch in the network is able to ob-

tain useful information from another branch through back-

propagation. In this way, the spatial segmentation branch

can receive useful temporal information from the tempo-

ral coherence branch, while the temporal coherence branch

can learn more effective spatiotemporal features for accu-

rate segmentation.

Online training for VOS. To adapt the network to a specific

object for VOS, we finetune the network on the first frame

for each video clip. Since we only have the annotation mask

in the first frame, only the spatial segmentation branch is

optimized. Each mask in the first frame is augmented to

generate multiple training samples to increase the diver-

sity. Specifically, we use the “lucid dream” strategy [25]

to generate in-domain training data based on the provided

annotation in the first frame, including 5 steps, i.e., illu-

mination changing, foreground-background splitting, object

motion simulating, camera view changing, and foreground-

background merging. Notably, in contrast to [25], we do not

generate the optical flow since our STCNN do not require

the optical flow for video segmentation. The SGD algo-

rithm with the learning rate 10−4 and batch size 1 is used to

train the network online.

4. Experiment

We evaluate the proposed algorithm against state-of-the-

art VOS methods on three challenging datasets, namely the

DAVIS-2016 [39], DAVIS-2017 [40], and Youtube-Object

[41, 20]. All the experiments are conducted on a worksta-

tion with a 3.6 GHz Intel i7-4790 CPU, 16GB RAM, and

a NVIDIA Titan 1080ti GPU. The quantitative results are

presented in Table 1 and 2. Some qualitative segmentation

results are shown in Figure 3, and more video segmentation

results can be found in supplementary material.

4.1. DAVIS­2016 Dataset

The DAVIS-2016 dataset [39] comprises of 50 se-

quences, 3, 455 annotated frames with a binary pixel-level

foreground/background mask. Due to the computational

complexity being a major bottleneck in video processing,

the sequences in the dataset have a short temporal extent

(about 2-4 seconds), but include all major challenges typi-

cally found in longer video sequences, such as background

clutter, fast-motion, edge ambiguity, camera-shake, and

out-of-view. We tested the proposed method on the 480p

resolution set.
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Table 2: The results on the Youtube-Objects dataset. The mean intersection-over-union is used to evaluate the performance

of methods. The results are directly taken from the original paper. The symbol ↑ means higher scores indicate better

performance. Bold font indicates the best result.

Method BVS[34] JFS[35] SCF[20] MRFCNN[2] LT[25] OSVOS[3] MSK[38] OFL[46] CRN[15] DRL[12] OnAVOS[47] Ours

aeroplane 0.868 0.890 0.863 - - 0.868 0.845 0.899 - 0.852 - 0.869

bird 0.809 0.816 0.810 - - 0.851 0.837 0.842 - 0.868 - 0.879

boat 0.651 0.742 0.686 - - 0.754 0.774 0.740 - 0.799 - 0.786

car 0.687 0.709 0.694 - - 0.709 0.640 0.809 - 0.672 - 0.859

cat 0.559 0.677 0.589 - - 0.676 0.698 0.683 - 0.746 - 0.772

cow 0.699 0.791 0.686 - - 0.762 0.767 0.798 - 0.746 - 0.781

dog 0.685 0.703 0.618 - - 0.779 0.745 0.766 - 0.827 - 0.800

horse 0.589 0.678 0.540 - - 0.714 0.641 0.726 - 0.736 - 0.738

motorbike 0.605 0.615 0.609 - - 0.582 0.892 0.481 - 0.737 - 0.680

train 0.652 0.782 0.663 - - 0.746 0.744 0.763 - 0.830 - 0.796

Mean (↑) 0.680 0.740 0.676 0.784 0.762 0.744 0.717 0.776 0.766 0.781 0.774 0.796

4.1.1 Evaluation

For comprehensive evaluation, we use three measures pro-

vided by the dataset, i.e., region similarity J , contour

accuracy F and temporal instability T . Specifically, re-

gion similarity J measures the number of mislabeled pix-

els, which is defined as the intersection-over-union (IoU)

of the estimated segmentation and the ground-truth mask.

Given a segmentation mask S and the ground-truth mask

S∗, J is calculated as J = S∩S
∗

S∪S∗ . The contour accuracy

F computes the F-measure of the contour-based precision

Pc and recall Rc between the contour points of estimated

segmentation S and the ground-truth mask S∗, defined as

F = 2PcRc

Pc+Rc
. In addition, the temporal instability T mea-

sures oscillations and inaccuracies of the contours, which is

calculated by following [39].

4.1.2 Ablation Study

To comprehensively understand the proposed method,

we conduct several ablation experiments. Specifically,

we construct three variants and evaluate them on the

validation set of DAVIS-2016, to validate the effec-

tiveness of different components (i.e., the “Lucid dream”

augmentation, the attention module, and the temporal co-

herence branch) in the proposed method, shown in Table 3.

Meanwhile, we also conduct experiments to analyze the im-

portance of different training phases in Table 5. For a fair

comparison, we use the same parameter settings except for

the specific declaration.

Lucid dream augmentation. To demonstrate the effect of

the “Lucid Dream” augmentation, we remove it from our

STCNN model (see the forth column in Table 3). As shown

in Table 3, we find that the region similarity J is reduced

from 0.838 to 0.832. This decline (i.e., 0.006) demonstrate

that the “Lucid dream” data augmentation is useful to im-

prove the performance.

Attention module. To validate the effectiveness of the at-

tention module, we construct an algorithm by further re-

moving the attention mechanism in the spatial segmenta-

tion branch. That is, we remove the red lines in Figure 1

to directly generate the output mask. In this way, the object

region is not specifically concentrated by the network. The

segmentation results of the model is reported in the third

column in Table 3. We compare the third and forth columns

in Table 3, and find that the attention module improves 0.01
region similarity J , and 0.015 contour accuracy F , which

demonstrates that the attention module is critical to the per-

formance. The main reason is that the attention module is

gradually applied on multi-scale features maps, enforcing

the network to focus on the object regions to generate more

accurate results.

Temporal coherence branch. We construct a network

based on the spatial segmentation branch without the at-

tention module and report its results in the second column

in Table 3. Comparing the results between the second and

third columns in Table 3, we observe that the temporal co-

herence branch is critical to the performance of video seg-

mentation, i.e., it improves 0.01 mean region similarity J
(0.812 vs. 0.822) and 0.013 mean contour accuracy F
(0.807 vs. 0.820). Most importantly, the temporal coher-

ence branch significantly reduces the temporal instability,

i.e., it reduces relative 13.4% temporal instability T (0.231
vs. 0.200). The results demonstrate that the temporal coher-

ence branch is effective to capture the dynamic appearance

and motion cues of video sequences to help generate accu-

rate and consistent segmentation results.

Training analysis. As described in Section 3.3, we first it-

eratively update the pretrained temporal coherence branch

and the spatial segmentation branch offline. After that, we

finetune both branches on each sequence for online process-

ing. We evaluate the proposed STCNN method with dif-

ferent training phase on the validation set of DAVIS-

2016 to analyze their effects on performance in Table 5. As

shown in Table 5, we find that without online training phase,

the mean region similarity J of STCNN drops 0.096 (i.e.,

0.838 vs. 0.742), while without offline training phase, J
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Figure 3: The qualitative segmentation results of STCNN on the DAVIS-2016 (first two rows) and Youtube-Objects (last row)

datasets. The output on the pixel level are indicated by the red mask. The results show that our method is able to segment

objects under several challenges, such as occlusions, deformed shapes, fast motion, and cluttered backgrounds.

Table 3: Effectiveness of various components in the pro-

posed method. All models are evaluated on the DAVIS-

2016 dataset. The symbol ↑ means high scores indicate bet-

ter result, while ↓ means lower scores indicate better result.

Component STCNN

Temporal Coherence Branch? ! ! !

Attention Module? ! !

Lucid Dream? !

J Mean (↑) 0.812 0.822 0.832 0.838

F Mean (↑) 0.807 0.820 0.835 0.838

T (↓) 0.231 0.200 0.192 0.191

of STCNN drops 0.052 (i.e., 0.838 vs. 0.786). In sum-

mary, both training phases are extremely important to our

STCNN, especially for the online training phase.

4.1.3 Comparison with State-of-the-Arts

We compare the proposed method with 7 state-of-the-art

semi-supervised methods, i.e., CRN [15], OnAVOS [47],

OSVOS [3], MSK [38], CTN [23], SegFlow [5], and VPN

[22], and 4 state-of-the-art unsupervised methods, namly

ARP [28], LVO [45], FSEG [21], and LMP [44] in Table

1.

As shown in Table 1, our algorithm outperforms the ex-

isting semi-supervised algorithms (e.g., OSVOS [3] and

MSK [38]) and unsupervised algorithms (e.g., ARP [28]

and LVO [45]) with 0.838 mean region similarity J , 0.838
mean contour accuracy F , and 0.191 temporal stability T ,

except CRN [15] and OnAVOS [47]. The OnAVOS algo-

rithm [47] updates the network online using training exam-

ples selected based on the confidence of the network and

the spatial configuration, which requires heavy consump-

tion of time and computation resource. Our algorithm is

much more efficient and do not require the optical flow in

both training and testing phase. The online updating mech-

anism in OnAVOS [47] is complementary to our method.

We believe that is can be used in our STCNN to further

improve the performance. In addition, in contrast to CRN

[15] relying on optical flow to render temporal coherence in

both training and testing, our method uses a self-supervised

strategy to implicitly exploit the temporal coherence with-

out relying on the expensive human annotations of optical

flow. The temporal coherence branch is able to capture the

dynamic appearance and motion cues of video sequences,

pretrained in an adversarial manner from nearly unlimited

unlabeled video data.

4.1.4 Runtime Performance

We present the inference time of STCNN and the state-of-

the-art methods on the validation set of DAVIS-2016

in the last row of Table 1. Since different algorithms are de-

veloped and evaluated on different platforms (e.g., different

algorithms are evaluated on different types of GPUs), it is

difficult to compare the running time efficiency fairly. We

report the running speed for reference. Meanwhile, we also

analyze the influence of the number of iterations in the on-

line training phase of STCNN to the segmentation accuracy

and running speed in Table 4. With the number of iterations

increasing, the mean region similarity J increases to reach

a maximal value 0.838. Continue training is not able to ob-

tain the accuracy gain, but slows down the inference speed.

Thus, we set the number of iterations in online training to

400 in our experiments. Compared to the state-of-the-art

methods such as OSVOS (9.24 s/f), OnAVOS (15.57 s/f),

our method achieves impressive results with much faster

running speed.
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Table 4: Performance and running speed of the proposed

STCNN with different number of iterations in online train-

ing phase.

#Iter 100 200 300 400 500 600

mIOU 0.830 0.834 0.836 0.838 0.838 0.838

time(s/f) 1.11 2.04 2.97 3.90 4.83 5.76

Table 5: Performance on DAVIS-2016 for different training

phases of STCNN.

Offline Online

Metric Training Training All

J Mean (↑) 0.742 0.786 0.838

Recall (↑) 0.854 0.921 0.961

Decay (↓) -0.004 0.075 0.049

F Mean (↑) 0.743 0.79 0.838

Recall (↑) 0.806 0.871 0.915

Decay (↓) 0.018 0.089 0.064

Table 6: The results on the DAVIS-2017 dataset. The sym-

bol ↑ means higher scores indicate better performance. Bold

font indicates the best result.

Metric [46] [38] [52] [7] [3] [47] Ours

J Mean (↑) 43.2 51.2 52.5 54.6 56.6 61.6 58.7

F Mean (↑) - 57.3 57.1 61.8 63.9 69.1 64.6

4.2. DAVIS­2017 Dataset

We evaluate our STCNN on the DAVIS-2017 validation

set [40], which consists of 30 video sequences with vari-

ous challenging cases including multiple objects with simi-

lar appearance, heavy occlusion, large appearance variation,

clutter background, etc. The mean region similarity J and

contour accuracy F are used to evaluate the performance in

Table 6. Our STCNN performs favorably against most of

the semi-supervised methods, e.g., OSVOS [3], FAVOS [7],

and MSK [38], with 58.7% mean region similarity J and

64.6% contour accuracy F . The results demonstrate that

our STCNN is effective to segment objects in more com-

plex scenarios with similar appearance.

4.3. Youtube­Objects Dataset

The Youtube-Objects dataset [41, 20] contains web

videos from 10 object categories. 126 video sequences with

more than 20, 000 frames and ground-truth masks provided

by [20] are used for evaluation, where a single object or a

group of objects of the same category are separated from

the background. The videos in Youtube-Objects have a mix

of static and moving objects, and the number of frames in

each video clip ranges from 2 to 401. The mean IoU be-

tween the estimated results and the ground-truth masks in

all video frames is used to evaluate the performance of the

algorithms.

We compare the proposed STCNN method to 11 state-

of-the-art semi-supervised algorithms, namely BVS [34],

JFS [35], SCF [20], MRFCNN [2], LT [25], OSVOS [3],

MSK [38], OFL [46], CRN [15], DRL [12], and OnAVOS

[47] in Table 2. As shown in Table 2, we observe that the

STCNN method produces the best results with 0.796 mean

IoU, which surpasses the state-of-the-art results, i.e., MR-

FCNN [2] (0.784 mean IoU), with 0.012 mIoU. Compared

to the optical flow based methods [46, 38], our STCNN

method performs well on fast moving objects, such as car

and cat. The estimation of optical flow for fast moving ob-

jets is inaccurate, affecting the segmentation accuracy. Our

STCNN relies on the temporal coherence branch to capture

discriminative spatiotemporal features, which is effective to

tackle such scenario. Meanwhile, the algorithm [20] use

long-term supervoxels to capture the temporal coherence.

Only the superpixels are used in segmentation, causing the

inaccurate boundaries of objects. In contrast, our algorithm

design a coarse-to-fine process to sequentially apply the at-

tention module on multi-scale feature maps, enforcing the

network to focus on object regions to generate accurate

results, especially for the non-rigid objects, e.g., cat and

horse. The qualitative results are shown in the last three

rows in Figure 3.

5. Conclusion

In this work, we present an end-to-end trained spatiotem-

poral CNN for VOS, which is formed by two branches, i.e.,

the temporal coherence branch and the spatial segmentation

branch. The temporal coherence branch is pretrained in an

adversarial fashion, and used to predict the appearance and

motion cues in the video sequence to guide object segmen-

tation without using optical flow. The spatial segmentation

branch is designed to segment object instance accurately

based on the predicted appearance and motion cues from

the temporal coherence branch. In addition, to obtain ac-

curate segmentation results, a coarse-to-fine process is it-

eratively applied on multi-scale feature maps in the spatial

segmentation branch to refine the predictions. These two

branches are jointly trained in an end-to-end manner. Exten-

sive experimental results on three challenging datasets, i.e.,

DAVIS-2016, DAVIS-2017, and Youtube-Object, demon-

strate that the proposed method achieves favorable perfor-

mance against the state-of-the-arts.
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