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Figure 1. Existing super-resolution method (RDN [38]) does not perform well for real captured images as shown in (c). We can obtain

sharper results (d) by re-training existing model [38] with the data generated by our method. Furthermore, we recover more structures and

details (e) by exploiting the radiance information recorded in raw images. The two input images (a) are captured by Leica SL Typ-601 and

iPhone 6s respectively, and both cameras are not seen by the models during training. Results best viewed electronically with zoom.

Abstract

Most existing super-resolution methods do not perform

well in real scenarios due to lack of realistic training data

and information loss of the model input. To solve the first

problem, we propose a new pipeline to generate realistic

training data by simulating the imaging process of digital

cameras. And to remedy the information loss of the input,

we develop a dual convolutional neural network to exploit

the originally captured radiance information in raw images.

In addition, we propose to learn a spatially-variant color

transformation which helps more effective color correction-

s. Extensive experiments demonstrate that super-resolution

with raw data helps recover fine details and clear struc-

tures, and more importantly, the proposed network and data

generation pipeline achieve superior results for single im-

age super-resolution in real scenarios.

1. Introduction

In optical photography, the number of pixels represent-

ing an object, i.e. the image resolution, is directly propor-

tional to square of the focal length of the camera [11]. While

one can use a long-focus lens to obtain a high-resolution im-

age, the range of the captured scene is usually limited by the

size of the sensor array at the image plane. Thus, it is often

desirable for users to capture the wide-range scene at a low-

er resolution with a short-focus camera (e.g. a wide-angle

lens), and then apply the single image super-resolution tech-

nique which recovers a high-resolution image from its low-

resolution version.

Most state-of-the-art super-resolution methods [4, 18,

31, 34, 20, 32, 38, 37] are based on data-driven models,

and in particular, deep convolutional neural networks (C-

NNs) [4, 27, 21]. While these methods are effective on

synthetic data, they do not perform well for real captured

images by cameras or cellphones (examples shown in Fig-

ure 1(c)) owing to lack of realistic training data and infor-

mation loss of network input. To remedy these problems

and enable real scene super-resolution, we propose a new

pipeline for generating training data and a dual CNN mod-

el for exploiting additional raw information, which are de-

scribed as below.

First, most existing methods cannot synthesize realistic

training data; the low-resolution images are usually gener-

ated with a fixed downsampling blur kernel (e.g. bicubic

kernel) and homoscedastic Gaussian noise [38, 35]. On one

hand, the blur kernel in practice may vary with zoom, fo-
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Figure 2. Typical ISP pipeline of digital cameras. (b) represents

a Bayer pattern raw image, where the sensels surrounded by the

black-dot curve is a Bayer pattern block.

cus, and camera shake during image capturing, which is

beyond the fixed kernel assumption. On the other hand,

image noise usually obeys heteroscedastic Gaussian distri-

bution [26] whose variance depends on the pixel intensity,

which is in sharp contrast to the homoscedastic Gaussian

noise. More importantly, both the blur kernel and noise

should be applied to the linear raw data whereas previous

approaches use the pre-processed non-linear color images.

To solve above problems, we synthesize the training data

in linear space by simulating the imaging process of digital

cameras, and applying different kernels and heteroscedastic

Gaussian noise to approximate real scenarios. As shown in

Figure 1(d), we can obtain sharper results by training exist-

ing model [38] with the data from our generation pipeline.

Second, while modern cameras provide both the raw data

and the pre-processed color image (produced by the image

signal processing system, i.e. ISP) to users [12], most super-

resolution algorithms only take the color image as input,

which does not make full use of the radiance information

existing in raw data. By contrast, we directly use raw data

for restoring high-resolution clear images, which conveys

several advantages: (i) More information could be exploit-

ed in raw pixels since they are typically 12 or 14 bits [1],

whereas the color pixels produced by ISP are typically 8

bits [12]. We show a typical ISP pipeline in Figure 2(a).

Except for the bit depth, there is additional information loss

within the ISP pipeline, such as the noise reduction and

compression [25]. (ii) Raw data is proportional to scene

radiance, while the ISP contains nonlinear operations, such

as tone mapping. Thus, the linear degradations in the imag-

ing process, including blur and noise, are nonlinear in the

processed RGB space, which brings more difficulties in im-

age restoration [24]. (iii) The demosaicing step in the ISP is

highly related to super-resolution, because these two prob-

lems both refer to the resolution limitations of cameras [39].

Therefore, to solve the super-resolution problem with pre-

processed images is sub-optimal and could be inferior to a

single unified model solving both problems simultaneously.

In this paper, we introduce a new super-resolution

method to exploit raw data from camera sensors. Existing

raw image processing networks [2, 29] usually learn a direct

mapping function from the degraded raw image to the de-

sired full color output. However, raw data does not have the

relevant information for color corrections conducted with-

in the ISP system, and thereby the networks trained with

it could only be used for one specific camera. To solve

this problem, we propose a dual CNN architecture (Fig-

ure 3) which takes both the degraded raw and color images

as input, so that our model could generalize well to differ-

ent cameras. The proposed model consists of two parallel

branches, where the first branch restores clear structures and

fine details with the raw data, and the second branch recov-

ers high-fidelity colors with the low-resolution RGB image

as reference. To exploit multi-scale features, we use dense-

ly connected convolution layers [15] in an encoder-decoder

framework for image restoration. For the color correction

branch, simply adopting the technique in [29] to learn a

global transformation usually leads to artifacts and incor-

rect color appearances. To address this issue, we propose to

learn pixel-wise color transformations to handle more com-

plex spatially-variant color operations and generate more

appealing results. In addition, we introduce feature fusion

for more accurate color correction estimation. As shown in

Figure 1(e), the proposed algorithm significantly improves

the super-resolution results for real captured images.

The main contributions of this work are summarized as

follows. First, we design a new data generation pipeline

which enables synthesizing realistic raw and color training

data for image super-resolution. Second, we develop a d-

ual network architecture to exploit both raw data and col-

or images for real scene super-resolution, which is able to

generalize to different cameras. In addition, we propose to

learn spatial-variant color transformations as well as fea-

ture fusion for better performance. Extensive experiments

demonstrate that solving the problem using raw data helps

recover fine details and clear structures, and more impor-

tantly, the proposed network and data generation pipeline

achieve superior results for single image super-resolution in

real scenarios.

2. Related Work

We discuss state-of-the-art super-resolution methods as

well as learning-based raw image processing, and put this

work in proper context.

Super-resolution. Most state-of-the-art super-resolution

methods [34, 18, 32, 4, 38, 20, 6, 37] learn CNNs to re-

construct high-resolution images from low-resolution color

inputs. Dong et al. [4] propose a three-layer CNN for map-

ping the low-resolution patches to high-resolution space,

but fail to get better results with deeper networks [5]. To

solve this problem, Kim et al. [18] introduce residual learn-

ing to accelerate training and achieve better results. Tong et

al. [32] use dense skip connections to further speed up the

reconstruction process. While these methods are effective

in interpolating pixels, they are based on preprocessed col-

or images and thus have limitations in producing realistic

1724



Figure 3. Overview of the proposed network. Our model has two parallel branches, where the first branch exploits raw data Xraw to restore

high-resolution linear measurements X̂lin for all color channels with clear structures and fine details, and the second branch estimates the

transformation matrix to recover the final color result X̂ using the low-resolution color image Xref as reference.

details. By contrast, we propose to exploit both raw data

and color image in a unified framework for better super-

resolution.

Joint super-resolution and demosaicing. Many existing

methods for this problem estimate a high-resolution color

image with multiple low-resolution frames [7, 33]. More

closely related to our task, Zhou et al. [39] propose a deep

residual network for single image super-resolution with mo-

saiced images. However, this model is trained on gamma-

corrected image pairs which may not work well for real lin-

ear data. More importantly, these works do not consider the

complex color correction steps applied by camera ISPs, and

thus cannot recover high-fidelity color appearances. Differ-

ent from them, the proposed algorithm solves the problems

of image restoration and color correction simultaneously,

which are more suitable for real applications.

Learning-based raw image processing. In recent years,

learning-based methods have been proposed for raw image

processing [16, 2, 29]. Jiang et al. [16] propose to learn

a large collection of local linear filters to approximate the

complex nonlinear ISP pipelines. Following their work,

Schwartz et al. [29] use deep CNNs for learning the col-

or correction operations of specific digital cameras. Chen et

al. [2] train a neural network with raw data as input for fast

low-light imaging. In this work, we learn color correction in

the context of raw image super-resolution. Instead of learn-

ing a color correction pipeline for one specific camera, we

use a low-resolution color image as reference for handling

images from more diverse ISP systems.

3. Method

For better super-resolution results in real scenarios, we

propose a new data generation pipeline to synthesize more

realistic training data, and a dual CNN model to exploit the

radiance information recorded in raw data. We describe the

synthetic data generation pipeline in Section 3.1 and the net-

work architecture in Section 3.2.

3.1. Training Data

Most super-resolution methods [18, 4] generate training

data by downsampling high-resolution color images with

a fixed bicubic blur kernel. And homoscedastic Gaussian

noise is often used to model real image noise [38]. How-

ever, as introduced in Section 1, the low-resolution images

generated in this way does not resemble real captured im-

ages and will be less effective for training real scene super-

resolution models. Moreover, we need to generate low-

resolution raw data as well for training the proposed du-

al CNN, which is often approached by directly mosaicing

the low-resolution color images [9, 39]. This strategy ig-

nores the fact that the color images have been processed

by nonlinear operations of the ISP system while the raw

data should be from linear color measurements of the pix-

els. To solve these problems, we start with high-quality

raw images [1] and generate realistic training data by sim-

ulating the imaging process of the degraded images. We

first synthesize ground truth linear color measurements by

downsampling the high-quality raw images so that each pix-

el could have its ground truth red, green and blue values.

In particular, for Bayer pattern raw data (Figure 2(b)), we

define a block of Bayer pattern sensels as one new virtual

sensel, where all color measurements are available. In this

way, we can obtain the desired images Xlin ∈ R
H×W×3

with linear measurements of all three colors for each pixel.

H and W denote the height and width of the ground truth

linear image. Similar with [17], we compensate the color

shift artifact by aligning the center of mass of each color in

the new sensel. With the ground truth linear measurements

Xlin, we can easily generate the ground truth color images
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Figure 4. The image restoration branch adopts dense blocks in an encoder-decoder framework, which reconstructs high-resolution linear

color measurements X̂lin from the degraded low-resolution raw input Xraw.

Xgt ∈ R
H×W×3 by simulating the color correction steps

of the camera ISP system, such as color space conversion

and tone adjustment. For the simulation, we use Dcraw [3]

which is a widely-used raw processing software.

To generate degraded low-resolution raw images

Xraw ∈ R
H

2
×

W

2 , we separately apply blurring, downsam-

pling, Bayer sampling, and noise onto the linear color mea-

surements:

Xraw = fBayer(fdown(Xlin ∗ kdef ∗ kmot)) + n, (1)

where fBayer is the Bayer sampling function which mosaic-

s images in accordance with the Bayer pattern (Figure 2(b)).

fdown represents the downsampling function with a sam-

pling factor of two. Since the imaging process is likely to

be affected by out-of-focus effect as well as camera shake,

we consider both defocus blur kdef modeled as disk ker-

nels with variant sizes, and modest motion blur kmot gen-

erated by random walk [28]. ∗ denotes the convolution op-

erator. To synthesize more realistic training data, we add

heteroscedastic Gaussian noise [23, 26, 13] to the generated

raw data:

n(x) ∼ N (0, σ2

1
x+ σ2

2
), (2)

where the variance of noise n depends on the pixel inten-

sity x. σ1 and σ2 are parameters of the noise. Finally,

the raw image Xraw is demosaiced with the AHD [14],

a commonly-used demosaicing method, and further pro-

cessed by Dcraw to produce the low-resolution color image

Xref ∈ R
H

2
×

W

2
×3. We compress Xref as 8-bit JPEG as

normally done in digital cameras. Note that the settings for

the color correction steps in Dcraw are the same as those

used in generating Xgt, so that the reference colors corre-

spond well to the ground truth. The proposed pipeline syn-

thesizes realistic data so that the models trained on Xraw

and Xref generalize well to real degraded raw and color

images (Figure 1(e)).

3.2. Network Architecture

A straightforward way to exploit raw data for super-

resolution is to directly learn a mapping function from raw

images to high-resolution color images with neural net-

works. While the raw data is advantageous for image

restoration, this naive strategy does not work well in prac-

tice; because the raw data does not have the relevant in-

formation for color correction and tone enhancement which

have been conducted within the ISP system of digital cam-

eras. In fact, one raw image could potentially correspond

to multiple ground truth color images generated by differ-

ent image processing algorithms of various ISP pipelines,

which will confuse the network training and make it non-

practical to train a model to reconstruct high-resolution im-

ages with desired colors. To solve this problem, we propose

a two-branch CNN as shown in Figure 3, where the first

branch exploits raw data to restore high-resolution linear

measurements for all color channels with clear structures

and fine details, and the second branch estimates the trans-

formation matrix to recover high-fidelity color appearances

using the low-resolution color image as reference. The ref-

erence image complements the limitations of raw data; thus,

jointly training two branches with raw and color data could

essentially help recover better results.

Image restoration. We show an illustration of the im-

age restoration network in Figure 4. Similar with [2], we

first pack the raw data Xraw into four channels which re-

spectively correspond to the R, G, B, G patterns in Fig-

ure 2(b). Then we apply a convolution layer to the packed

four-channel input for learning low-level features, and con-

secutively adopt four dense blocks [15, 32] to learn more

complex nonlinear mappings for image restoration. The

dense block is composed of eight densely connected con-

volution layers. Different from previous work [15, 32], we

deploy the dense blocks in an encoder-decoder framework

to make the model more compact and efficient. We use
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Figure 5. Network architecture of the color correction branch. Our

model predicts the pixel-wise transformation L (Xref ) with a ref-

erence color image.

g1(Xraw) to denote the encoded features as shown in Fig-

ure 4. Finally, the feature maps with the same spatial size

are concatenated and fed into a convolution layer, and this

layer produces 48 feature maps which are rearranged by a

sub-pixel layer [30] to restore the three-channel linear mea-

surements X̂lin ∈ R
H×W×3 with 2 times resolution of the

input.

Color correction. With the predicted linear measurements

X̂lin, we learn the second branch for color correction which

reconstructs the final result X̂ ∈ R
H×W×3 using the color

reference image Xref . Similar with [29], we use a CNN

to estimate a transformation G (Xref ) ∈ R
3×3 to produce

a global color correction of the image. Mathematically,

the correction could be formulated as: G (Xref )X̂lin[i, j],

where X̂lin[i, j] ∈ R
3×1 represents the RGB values at pixel

[i, j] of the linear image. However, this global correction

strategy does not work well when the color transformation

of camera ISP involves spatially-variant operations.

To solve this problem, we propose to learn a pixel-wise

transformation L (Xref ) ∈ R
H×W×3×3 which allows dif-

ferent color corrections for each spatial location. Thus, we

can generate the final results as:

X̂[i, j] = L (Xref )[i, j]X̂lin[i, j], (3)

where L (Xref )[i, j] ∈ R
3×3 is the local transformation

matrix for the RGB vector at pixel [i, j]. Note that we

directly transform the RGB vectors instead of using the

quadratic form in [29] as we empirically find no benefits

from it.

We adopt a U-Net structure [8, 36] for predicting the

transformation L (Xref ) in Figure 5. The CNN starts with

an encoder including three convolution layers with 2 × 2
average pooling to extract the encoded features g2(Xref ).
To estimate the spatially-variant transformations, we adopt

a decoder consisting of consecutive deconvolution and con-

volution layers, which expands the encoded features to the

desired resolution H×W . We concatenate the feature maps

with the same resolution in the encoder and decoder to ex-

ploit hierarchy features. Finally, the output layer of the de-

coder generates 3 × 3 weights for each pixel, which form

the pixel-wise transformation matrix L (Xref ).

Feature fusion. As the transformation L (Xref ) is applied

to the restored image, it would be beneficial to make the

matrix estimation network aware of the features in the im-

age restoration branch, so that L (Xref ) could more ac-

curately adapt to the structures of the restored image. To-

wards this end, we develop feature fusion for g2(Xref ) us-

ing the encoded features from the first branch g1(Xraw).
As g2(Xref ) and g1(Xraw) are likely to have different s-

cales, we fuse them by weighted sum where the weights are

learned to adaptively update the features. We could formu-

late the feature fusion as:

g2(Xref )← g2(Xref ) + φ(g1(Xraw)), (4)

where φ is a 1×1 convolution. After this, we put the updat-

ed g2(Xref ) back into the original branch, and the follow-

ing decoder could further use the fused features for trans-

formation estimation. The convolutions are initialized with

zeros to avoid interrupting the initial behavior of the color

correction branch.

4. Experimental Results

We describe the implementation details of our method

and present analysis and evaluations on both synthetic and

real data in this section.

4.1. Implementation Details

For generating training data, we use the MIT-Adobe 5K

dataset [1] which is composed of 5000 raw photograph-

s with size around 2000 × 3000. After manually remov-

ing images with noticeable noise and blur, we obtain 1300
high-quality images for training and 150 for testing which

are captured by 19 types of Canon cameras. We use the

method described in Section 3.1 to synthesize the training

and test datasets. The radius of the defocus blur is random-

ly sampled from [1, 5] and the maximum size of the motion

kernel is sampled from [3, 11]. The noise parameters σ1, σ2

are respectively sampled from [0, 10−2] and [0, 10−3].
We use the Xavier initializer [10] for the network weight-

s and the LeakyReLU [22] with slope 0.2 as the activation

function. We adopt the L1 loss function for training the net-

work and use the Adam optimizer [19] with initial learning

rate 2× 10−4. We crop 256× 256 patches as input and use

a batch size of 6. We first train the model with 4×104 itera-

tions where the learning rate is decreased by a factor of 0.96
every 2×103 updates, and then another 4×104 iterations at

a lower rate 10−5. During the test phase, we chop the input

into overlapping patches and process each patch separately.

The reconstructed high-resolution patches are placed back

to the corresponding locations and averaged in overlapping

regions.

Baseline methods. We compare our method with state-of-

the-art super-resolution methods [4, 18, 32, 38] as well as
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Figure 6. Results on our synthetic dataset. References for the baseline methods could be found in Table 1. “GT” represent ground truth.

Table 1. Quantitative evaluations on the proposed synthetic

dataset. “Blind” represents the images with variable blur kernels,

and “Non-blind” denotes fixed kernel. Red and blue text indicates

the first and second best performance, respectively.

Methods
Blind Non-blind

PSNR SSIM PSNR SSIM

SID [2] 21.87 0.7325 21.89 0.7346

DeepISP [29] 21.71 0.7323 21.84 0.7382

SRCNN [4] 28.83 0.7556 29.19 0.7625

VDSR [18] 29.32 0.7686 29.88 0.7803

SRDenseNet [32] 29.46 0.7732 30.05 0.7844

RDN [38] 29.93 0.7804 30.46 0.7897

w/o color branch 20.54 0.7252 21.13 0.7413

w/o local color correction 29.81 0.7954 30.29 0.8095

w/o raw input 30.05 0.7827 30.51 0.7921

w/o feature fusion 30.73 0.8025 31.68 0.8252

Ours full model 30.79 0.8044 31.79 0.8272

learning-based raw image processing algorithms [2, 29]. As

the raw image processing networks [2, 29] are not originally

designed for super-resolution, we add deconvolution layers

after them for increasing the output resolution. All the base-

line models are trained on our data with the same settings.

4.2. Results on Synthetic Data

We quantitatively evaluate our method using the test

dataset described above. Table 1 shows that the proposed

algorithm performs favorably against the baseline method-

s in terms of both PSNR and structural similarity (SSIM).

Figures 6 shows some restored results from our synthetic

dataset. Since the low-resolution raw input does not have

the relevant information for color conversion and tone ad-

justment conducted within the ISP system, the raw image

processing methods [2, 29] can only approximate the col-

or corrections of one specific camera, and thereby cannot

recover good results for different camera types in our test

set. In addition, the training process of the raw processing

models is influenced by the color differences between the

predictions and ground truth, and cannot focus on restor-

ing sharp structures. Thus, the results in Figures 6(c) are

still blurry. Figure 6(d)-(e) show that the super-resolution

methods with low-resolution color image as input generate

shaper results with correct colors, which, however, still lack

fine details. In contrast, our method achieves better results

with clear structures and fine details in Figure 6(f) by ex-

ploiting both the color input and raw radiance information.

Non-blind super-resolution. Since most super-resolution

methods [4, 18, 38] are non-blind with the assumption that

the downsampling blur kernel is known and fixed, we also

evaluate our method for this case by using fixed defocus k-

ernel with radius 5 to synthesize training and test datasets.

As shown in Table 1, the proposed method achieves com-

petitive super-resolution results under non-blind settings.
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Figure 7. Ablation study of the proposed network on the synthetic dataset.

Figure 8. Generalization to manually retouched color images from MIT-Adobe 5K dataset [1]. The proposed method generates clear

structures and high-fidelity colors.

Learning more complex color corrections. In addition

to the reference images rendered by Dcraw, we also train

the proposed model on manually retouched images by pho-

tography artists from the MIT-Adobe 5K dataset [1], which

represent more diverse ISP systems. We test our model

on the same raw input with different reference images pro-

duced by different artists in Figure 8. The proposed algo-

rithm generates clear structures as well as high-fidelity col-

ors, which shows that our method is able to generalize to

more diverse and complex ISP systems.

4.3. Ablation Study

For better evaluation of the proposed algorithm, we test

variant versions of our model by removing each component.

We show the quantitative results on the synthetic dataset-

s in Table 1 and provide qualitative comparisons in Fig-

ure 7. First, without the color correction branch, the net-

work directly uses the low-resolution raw input for super-

resolution, which cannot effectively recover high-fidelity

colors for diverse cameras (Figure 7(c)). Second, sim-

ply adopting the global color correction strategy from [29]

could only recover holistic color appearances, such as in the

background of Figure 7(d), but there are still significant col-

or errors in local regions without the proposed pixel-wise

transformations. Third, to evaluate the importance of the

raw input, we use the low-resolution color image as the in-

put for both branches of our network, which is enabled by

adaptively changing the packing layer of the image restora-

tion branch. As shown in Figure 7(e), the model without

raw input cannot generate fine structures and details due to

the information loss in the ISP system. In addition, the net-

work without feature fusion cannot predict accurate trans-

formations and tends to bring color artifacts around sub-

tle structures in Figure 7(f). By contrast, our full model

effectively integrates different components, and generates

sharper results with better details and fewer artifacts in Fig-

ure 7(g) by exploiting the complementary information in

raw data and preprocessed color images.

4.4. Effectiveness on Real Images

We qualitatively evaluate our data generation method

as well as the proposed network on real captured images.

As shown in Figure 1(d) and 9(d), the results of RDN be-

come sharper after re-training with the data generated by
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Figure 9. Results on real images. Since the outputs are of ultra-high resolution, typically 8000×12000 for a Leica camera and 4000×6000
for Canon, we only show image patches cropped from the tiny yellow boxes in (a). The images from top to bottom are captured by Canon,

Sony, Nikon and Leica cameras, respectively.

our pipeline. On the other hand, the proposed dual CNN

model cannot generate clear images (Figure 9(e)) by train-

ing on previous data generated by bicubic downsampling,

homoscedastic Gaussian noise and non-linear space mo-

saicing [4, 9]. By contrast, we achieve better results with

sharper edges and finer details by training the proposed net-

work on our synthetic dataset as shown in Figure 1(e) and

9(f), which demonstrates the effectiveness of the proposed

data generation pipeline as well as the raw super-resolution

algorithm. Note that the real images are captured by differ-

ent types of cameras, and all of them are not seen during

training.

5. Conclusions

We propose a new pipeline to generate realistic training

data by simulating the imaging process of digital cameras.

In addition, we develop a dual CNN to exploit the radiance

information recorded in raw data. The proposed algorith-

m compares favorably against state-of-the-art methods both

quantitatively and qualitatively, and more importantly, en-

ables super-resolution for real captured images. This work

shows the superiority of learning with raw data, and we ex-

pect more applications of our work in other image process-

ing problems.
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